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Abstract

The study was conducted to estimate the stability, adaptability, 
productivity and genetic parameters in Slash pine second-gen-
eration half-sib families, considering phenotypic traits in early 
age. Forty-four families from a first generation seed orchard in 
Colombo-PR, Brazil, were used in this study. Two progenies 
tests were established in a randomized complete block design. 
The first test was implemented in March 2009 in Ribeirão Bran-
co, São Paulo state, containing 40 blocks, one tree per plot, 44 
treatments (progenies) and 6 controls. Another test was imple-
mented in Ponta Grossa, Paraná state, using the same experi-
mental design and number of plants per plot, and with 24 
treatments, 32 blocks. The growth traits evaluated were total 
height, diameter at breast height (dbh) and wood volume, 
within five years. The form traits evaluated were stem form, 
branch thickness, branch angle, number of branches, fork and 
fox tail five years after planting. Deviance analysis and esti-
mates of stability, adaptability, productivity and genetic 
parameters were performed using the methods of best linear 
unbiased predictor (BLUP) and residual maximum likelihood 
(REML). There was significant variation among progenies for 
growth and form traits. Considerable genetic variation was 
detected mainly for wood volume. High coefficients of genetic 
variation and heritability showed low environmental influence 
on phenotypic variation, which is important for the prediction 
of genetic gain by selection. Crosses between different proge-
nies individuals groups will be prioritized for obtaining het-
erotics genotypes and increase the probability of obtaining 
high specific combining ability.
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Introduction

In Brazil, the most limiting climatic factors for pine cultivation 
are temperature and precipitation. Based on these effects 
observation under reforestation areas (experimental tests) two 
growing areas have been established for pine species in Brazil: 
tropical and temperate regions. For the second region Pinus 
elliottii adapted well to environmental conditions making it the 
second most widely planted species of the genus Pinus for 
wood production and first for resin extraction (Romanelli and 
Sebbenn, 2004).

Slash pine (Pinus elliottii Engelm var. elliottii) occurs on 
coastal plains all over the Indian River Lagoon area, and in 
freshwater upland areas. It may be found on coastal plains 
from South Carolina to Central Florida, and west to Louisiana. 
Slash pine was introduced in Kentucky, Virginia and eastern 
Texas in the 1900’s, and now reproduces naturally within these 
states (United States Department Of Agriculture – USDA, 2004).

The introduction of exotic species in Brazil, as Slash pine 
have driven the forest breeding mainly for increasing producti-
vity, obtaining raw materials of higher quality, improving spe-
cies to adaptive conditions, tolerance to pests and diseases 
and maintaining genetic variability (Martins-Corder et al., 
1996). More specific issues such as genotype x environment 
interaction (GxE) were less prioritized, therefore, it is indispen-
sable to evaluate the maximum number of environments and 
adoption of more rigorous methods of improvement as possi-
ble in order to obtain data with high accuracy, which allows 
selection of the best materials to be multiplied on a commer-
cial scale for many environments. To make this recommendati-
on as reliable as possible, a detailed study is required for geno-
types temporal stability and with regard to their most 
important economically traits (Cruz, 2006). Analysis of adapta-
bility, stability and productivity are statistical procedures to 
identify more stable and performance materials that respond 
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predictably to environmental variations (Silva and Duarte, 
2006). 

The adaptability refers to genotypes ability of responding 
to environmental stimulation and the stability is genotypes 
ability of maintaining the same performance under various 
environmental conditions (Alwala et al., 2010). Adaptability 
and stability analysis allows the identification of predictable 
genotypes behaviours (production) in different environments 
(Cruz et al., 2004). Considering the range of planting zones and 
the existence of diversity in used material in commercial pine 
plantations more detailed investigation in relation to the beha-
viour of genotypes will generate important information for 
establishment of more productive plantings. Furthermore, all 
intents and purposes need to be considered to estimate adap-
tability, stability and productivity for forest species trials (Perei-
ra et al., 1997). The use of biotechnology in many stages of the 
process and estimation of genetic parameters at early ages, 
especially genetic correlations, accuracies and heritability are 
the alternatives to reduce the selection cycle. Thus, silvicultural 
traits of economic interest in juvenile trees are measured in 
order to predict the performance of each individual in adult-
hood (Gonçalves et al., 1998). In this way, in forest improve-
ment, early age selection has shown great advantage shorte-
ning the interval between generations by reducing the 
breeding cycle. More genetic gain may be obtained per unit of 
time (year) if a strong genetic correlation exists between the 
initial stages and the end of the production cycle (Nanson, 
1970; Lambeth, 1980; Mckeand, 1988; Matheson et al., 1994; 
Silva et al., 2014). Therefore, the study was conducted (i) to esti-
mate the stability, adaptability, productivity, genetic diversity 
and genetic parameters in slash pine second-generation half-
sibs families considering the phenotypic traits at early age, and 
(ii) to identify more productive genotypes for commercial plan-
tations in the two major Brazilian states with the largest acrea-
ge of the species, São Paulo and Paraná.

Material and Methods

Forty-four families originated from a slash pine first generation 
seed orchard established in Colombo, Paraná  state, Brazil were 
used in this study. The seedlings were produced in municipali-
ty of Ribeirão Branco, São Paulo state in 2008. In March of 2009 
two progeny tests were installed, one in Ponta Grossa (PG), in 
Paraná  state and another in Ribeirão Branco (RB), São Paulo 
State (Table 1).

Data were measured five years after planting for traits: sur-
vival rate; total height, diameter at breast height (dbh) and 
wood volume, computed based on the total height of and dbh, 
according to the following equation:

where VOL was wood volume, FF was the stem form factor and 
TH was total height. The height trait was measured using a
telescopic ruler, circumference at breast height was measured 
with a tape calculating from these values the diameter at 
breast height and survival was adopted “1” to alive and “0” to 

Table 1 
Details of slash pine family tests deployed in municipalities of 
Ribeirão Branco and Ponta Grossa, Brazil 

  Ribeirão Branco Ponta Grossa

Progenies number 44 24

Blocks 40 32

Controls 6 -

Spacing 3m x 3m 

Establishment date March/2009

Border 2 lines

Latitude 25° 05‘ 42‘‘ S 24° 13‘ 15‘‘ S

Longitude 50° 09‘ 43‘‘ W 48° 45‘ 56‘‘ W

Altitude 969 m 875 m

Rainfall 1,346 mm 1,495 mm

Climate classification accor-
ding to Koeppen

Cfb Cfb

Average temperature 18 °C 17.5 °C

Soil type Cambissolo Cambissolo

Table 2 
Scoring for form traits of slash pine families in municipalities 
of Ribeirão Branco and Ponta Grossa, Brazil 

  Scale Description

Traits RB PG RB PG

Stem 
straightness 

1-3 1-5
1 = most crooked 

steams, 3 = straigh-
test stems

1 = most crooked 
steams, 5 = straigh-

test stems

Branch 
thickness 

1-3 1 = thicker, 3 = thinner

Branch 
angle

1-3
1 = less than 45º, 2 = greater than 45º and 3 = 

approximately 90º

Number of 
branches

1-7
1 = 42 to 48 branches, 

7 = 1 to 6 branches
1 = 17 to 18 branches, 

7 = 0 to 2 branches

Fork 1 and 2 “1” for absence and “2” for presence

Fox tail (only 
for Ponta 

Grossa trial)

 
1 and 2 

“1” for absence and “2” for presence

dead plants. Form traits were visually scored as follows (Table 
2).

Estimates of variance components and genetic 
parameters
Estimates of variance and genetic parameters components 
were obtained by REML/BLUP method (restricted maximum 
likelihood/best linear unbiased prediction) from unbalanced 
data, using genetic-statistical SELEGEN-REML/BLUP program 
(Resende, 2007a). Different models were used to perform stati-
stical analyses and estimate genetic parameters, as described 
below.
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Individual analysis and estimation of genetic 
parameters
The model applied to carried out the deviance analysis of half-
sib families tests was randomized complete block, one tree per 
plot, one site: y = Xr + Za + e, where y is the data vector r is the 
vector of replication effects (assumed to be fixed) added to the 
general average, a is the vector of individual additive genetic 
effects (assumed to be random), e is the error vector or resi-
dues (random). The capital letters represent the incidence mat-
rices for these purposes. To use this model, it was necessary to 
assume that the open pollinated progenies of slash pine are 
half-sibs. Thus, the first step was carried out analysis conside-
ring all treatments including the control (for RB). Later, controls 
were removed, proceeding further analysis to estimate the 
parameters and predict genetic values.

The significance test was performed using the likelihood 
ratio test (LRT), obtained by the difference between deviances 
for models with and without effect to be tested and using the 
chi-square test. The genetic parameters estimated were:

a)	 Narrow sense individual heritability:

b)	Average heritability of progenies:

c)	 Accuracy:

 
d)	Individual phenotypic variance: 

e)	Coefficient of individual genetic variance: 

f )	 Coefficient of genetic variation between progenies:

g)	Coefficient of experimental variation: 

Effective sizes and expected selection gains
To select superior genotypes for commercial plantations and 
seedling seed orchards formation were simulated different 
selection methods from progeny individual additive genetic 
values classification of each tests and progenies genetic classi-
fication. For this, volume breeding values were used. After 

obtaining individual additive values for selected trees, accor-
ding to individual classification obtained by BLUP procedure, 
genetic gain in percentage was estimated by the expression: 
SG(%)= mean of the additive genetic values of selected 
individuals/m)x100, where m is the overall average of the 
experiment for a given trait. Selection strategies were: i) selec-
ting of the 80 best individuals from each site to form a clonal 
orchard; ii) selecting the two best individuals per progeny for 
the next breeding cycle and iii) selecting the best 50 % indivi-
duals per families to form a seedling seed orchard. To guide the 
selection strategy adopted in order to avoid excessive loss of 
genetic variability after application of the proposed selection 
methods, the effective population size and genetic diversity 
were estimated from the equation proposed by RESENDE 
(2007b).

Trait-trait and age-age genetic and phenotypic 
correlations
Genetic and phenotypic correlations between traits and ages 
were undertaken, using SELEGEN-REML/BLUP (Resende, 
2007a).

Productivity, stability and adaptability
For joint analysis, considering the two sites, was used statistical 
procedure MHPRVG (harmonic mean of the relative perfor-
mance of the breeding values) predicted by BLUP, according to 
Resende (2007b). The model used was: y = Xr + Zg +  Wi + e, whe-
re y is the data vector r is the vector of replication effects (assu-
med to be fixed) added to the general average, g is the vector 
of genotypic effects (assumed to be random), i is the vector of 
the effects of genotype x environment interaction (random) 
and e is the vector of errors or residues (random). The capital 
letters represent the incidence matrices for these purposes. 
The vector r includes all measurements in all replications in 
multiple sites simultaneously and adjusts to all these effects 
and their interactions (Resende, 2007b). In addition to the nar-
row sense individual heritability ( ), average heritability of 
progenies ( ), accuracy (râa), coefficient of individual additi-
ve genetic variation (CVgi) and coefficient of residual variation 
(CVe) were estimated:

a)	 Coefficient of determination for genotype x environment 
interaction:

b)	Genotypic correlation between progenies in different envi-
ronments (Type b correlation):



74   Pagliarini et al. · Silvae Genetica (2016) 65-1, 71-82

Results and discussion

Individual deviance analysis and genetic parame-
ters estimation
Survival rate was high in Ribeirão Branco (RB) trial five years 
after planting (95 %) while in Ponta Grossa (PG) was relatively 
low, only 65 % (Fig. 1). Yang et al. (2013) showed the first years 
are important to plant recover the root system and adapt to 
the new environment, if it does not occur, mortality rate of 
seedlings may be high, as observed in PG. Furthermore, lack of 
water in first weeks after planting may be responsible by plant 
mortality, the first month after planting there was less rainfall 
in relation to the normal April month at PG. According to 
Schultz (1997), pine productivity is positively associated to 
places with mild temperatures and mostly smaller water defi-
cit. 

The mean total height, dbh and volume ranged from 1.08 
to 5.82 m, 7.38 to 10.73 cm and 0.01 to 0.03 m3 arv.-1 and 0.91 to 
6.04 m, 7.35 to 11.52 cm and 0.01 to 0.03 m3 arv.-1, in RB and PG, 
respectively. There was little difference in relation to second-
generation slash pine progenies productive performance in 
both assays. Significant variation among progenies was obser-
ved for most of evaluated growth traits at 5 and 1 % of proba-
bility, except for the survival trait in both tests and one year 
after planting in PG trial (Fig. 1).

In RB, commercial controls of slash pine were planted with 
experiment aiming to compare performance of established 
trees with tested progenies, which can be as adaptable as the 
previous one. The best commercial control was I123; however, 
comparing to progenies it is possible to notice, for wood volu-
me at age three only two progenies were better than this con-
trol (C-098-1 and C-100-2). Two years later, at age five, the tes-
ted progenies were more adapted to new environment and in 
this case, it is possible to highlight five better progenies than 
I123, such as C-063-2, C-098-1, C-228, C-001-1 and C-100-2.   
In relation to form traits, significant statistical difference were 
detected for stem straightness and number of branches for RB 
and stem straightness, branch thickness, branch angle and fox 
tail to PG (Fig. 2). Stem form traits mean were similar to both 
sites, except stem straightness and number of branches. PG 
produced trees with score mean of 3.34 and RB of 2.11, in other 
words, greater numbers indicates straighter trees. 

Experimental design showed good precision for majority 
growth and form traits (Fig. 3 and 4). Coefficient of experimen-
tal variation (CVe) ranging from 8.6 % (fork) to 28.9 % (stem 
straightness) for RB and 8.3 % (number of branches) to 34.7 % 
(branch thickness) for PG (Fig. 04). Experimental variation bet-
ween 10 to 20 % can be considered low in field tests due plant 
competition (Pimentel-Gomes and Garcia, 2002). These results 
indicate robust experimental control and accuracy in genetic 
parameters estimation.

Considerable genetic variation for volume may be found 
across the magnitudes of coefficient of individual genetic vari-
ation (CVgi) which ranged from 14.3 to 16.2 % in RB and from 
33.8 to 31.8 % in PG (Fig. 03), as stem straightness and branch 
thickness for PG trial (14.7 % and 21.8 %, respectively, Fig. 04). 
These values have provided high magnitude of individual heri-
tability. Other traits expressed medium to low magnitude for 

genetic variation. For height CVgi ranged from 3.3 to 6.5 % in RB 
and 9.0 to 11.6 % in PG. For dbh, estimates ranged between 
4.986 % to 5.4 % in the first site and 9.0 to 11.9 % in the second 
(Fig. 03). Fork presented low CVgi of 1.9 % (RB) and 5.9 % (PG) 
(Fig. 04). These estimates were considered high in relation to 
those reported in other studies of slash pine (Romanelli and 
Sebbenn, 2004; Sebbenn et al., 2008), P. caribaea var. bahamen-
sis (Sebbenn et al., 1994; Freitas et al., 2005), P. tecunumanii 
(Sebbenn et al., 2005) and P. sylvestris (FRIES, 2012). In contrast, 
Gapare at al. (2012) obtained genetic variation for P. radiata 
closer to PG trail, but higher than RB. Thus, the results of this 
study confirm the genetic potential of theseis families in both 
tests for tree improvement by selection of the best families, 

  
Figure 1 
Mean values, likelihood ratio test (LRT) and significance 
levels for slash pine growth traits in municipalities of Ribeirão 
Branco and Ponta Grossa, Brazil. (LRT above dashed line = 
p<0.05; above dotted line = p<0.01 and below dashed line = 
not significant 

Figure 2  
Mean values, likelihood ratio test (LRT) and significance 
levels for slash pine form traits in municipalities of Ribeirão 
Branco and Ponta Grossa, Brazil. (LRT above dashed line = 
p<0.05; above dotted line = p<0.01 and below dashed line 
= not significant – BA: branch angle, BT: branch thickness, 
FOR: fork, FT: fox tail, NB: number of branches, SS: stem 
straightness)
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especially for PG trial. Consequently, genotypes with the high-
est genetic values may be selected for commercial plantations 
and subsequent breeding generations. According to Miranda 
et al. (2015), higher the coefficient of genetic variation indica-
tes greatest the chances of finding superior individuals. 

Low genetic variation for fork can be related to binary fac-
tor. When the trait is binary both phenotypic and genetic vari-
ances may be affected by low frequency (Weng et al., 2015). 
According to quantitative genetic theories, estimation of heri-
tability for binary traits is due to its incidence rate it means as 
lower the incidence as lower will be the phenotypic and gene-
tic variances (Falconer and Mackay, 1996).

In early and intermediate stages of breeding programs, 
accuracy around 70 % or higher are desirable. Most of growth 
traits in both tests showed values more than 70 % (Fig. 03). 
Accuracy is the ratio between true genetic value and the pre-
dicted one and as higher the value, as higher the accuracy 
selection and genetic gain obtained. It can be considered low 
in the range from 0.10 to 0.40, median from 0.41 to 0.70 and 
high if major than 0.70 (Resende et al., 1995). Consequently, 
the estimated accuracy for height can be considered median in 
RB and mid-high in PG. For dbh and volume accuracies were 
high for both locations (Fig. 03). Therefore, there is great expec-
tation to reduce errors in the applied selection, and conse-
quently, the selected material in the test will maintain their 
potential productive in commercial plantations and experi-
ments.

Estimates of narrow sense individual heritability ( ), for 
RB site were considered low for all growth traits and moderate 
to high for number of branches. PG presented medium values 
for growth traits and moderate to high for stem straightness, 
branch thickness and branch angle (Fig. 5). 

Dornan and Squillace (1974), Hodge and White (1992), 
Dieters et al. (1995) and Dieters (1996), previously reported low 

. In the same way, Ettorii et al. (2004) found lower  values 
in Pinus maximinoi as Silva et al. (2011) in P. caribaea var. cari-
baea. In the other hand, Parayi et al. (1996) and Zobel (1961) 
estimated median and high values also for P. caribaea var. cari-
baea at age 5, 8, 14 and 15; Aguiar et al. (2010) for Pinus greggii 
at 13 years old; and Missanjo et al. (2013) for Pinus kesiya at 18 
years old in South Africa. 

Wood volume is one of the most important trait to analyse 
in tree breeding programs. Individual narrow-sense heritabili-
ties for RB were around 0.07 to 0.10 (Fig. 5), similar results found 
by Atwood et al. (2002) in 3 to 11 years old Pinus taeda families 
at Florida, Georgia, Mississippi and Alabama states. In PG, 
were higher and ranged between 0.36 to 0.48 (Fig. 5). When 
different works are analysed together the aim is not to compa-
re and conclude one is better than the other, because there are 
several factors that may cause this differences, the main idea is 
to infer if the studied material is promising for a region. This 
study, the slash pine population presents good performance 
for two regions of planting. Furthermore, this population may 
be main seed source this species for wood companies, since 
that breeding program for this species is restricted some com-
panies in Brazil.

In general, mean heritability among families for growth 
traits were higher in PG than RB (Fig. 5). The different weather 

Figure 3 
Coefficients of experimental variation, individual additive 
genetic variation and accuracy for growth traits for slash pine 
tests in municipalities of Ribeirão Branco and Ponta Grossa, 
Brazil

Figure 4 
Coefficient of experimental variation, individual additive 
genetic variation and accuracy for slash pine progenies test 
in Ribeirão Branco-SP and Ponta Grossa-PR, Brazil. BA: branch 
angle, BT: branch thickness, FOR: fork, FT: fox tail, NB: number 
of branches, SS: stem straightness

Figure 5 
Narrow-sense individual heritability and family heritability 
mean for slash pine growth traits in municipalities of Ribeirão 
Branco and Ponta Grossa, Brazil
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conditions in PG, such as frost occurrence may have contribut-
ed to performance of some families. These results indicate that 
the traits genetic control is high for average level, medium for 
individual level within families. Thus, the results show low envi-
ronmental influence on phenotypic variation, which is impor-
tant for the prediction of genetic gain by selection.

Heritability estimates vary with age, environment and 
species. Overall, estimates of mean family heritability for 
growth traits in pine species varies from 0.42 to 0.76 for P. cari-
baea var. bahamensis and P. elliottii (Missio et al., 2004; Roma-
nelli and Sebbenn, 2004; Sebbenn et al., 2008). Olsson and 
Ericsson (2002) found low mean family heritability for six years 
old P. sylvestris progenies in Sweden. They also affirm that the 
estimate of this parameter increases as trial age.  As a result, 
considering the age of the progeny tests, they showed good 
prediction for traits of economic importance, which is interes-
ting when it aims early age selection.

Deviations in shape, caused by sinuosity, stem malforma-
tion, apex loss or damage, and even fork may decrease the 
volume and the value of economic parts of the stem increasing 
the price of handling and transportation (Codesido and 
Fernández-López, 2008). In this case, fork is not easily transmis-
sible due to present lower  in RB (0.05) and PG (0.07), possib-
ly due to the lower incidence of forked trees (Fig. 6). Cotterill 
and Zed (1980) also found low  for fork (0.02-0.04) in P. radia-
ta progeny test. 

The average of  estimate varies considerably in relation 
to other pine species: Wu et al. (2008) for P. radiata found  
ranging from 0.02 to 0.57; Gwaze et al. (1997) for P. taeda from 
0.13 to 0.55 and Weng et al. (2015) for Pinus banksiana from 
0.11 to 0.22. 

Narrow-sense heritability for branch angle was 0.06 in RB 
and 0.17 in PG (Fig. 6). Similar results found by Arregui et al. 
(1999), Espinel and Aragones (1997) and Codesido and 

Fernández-López (2008) in P. radiata. Taking everything into 
consideration, genetic selection for high heritabilities for both 
individual and family mean levels indicate that these families 
have evolutionary potential to respond to artificial changes, 
because significant part of genetic variability is from genetic 
origin.

Table 3 
Selection strategies based on wood volume (VOL) and stem straightness (SS) for slash pine families in municipalities of Ribeirão 
Branco and Ponta Grossa, Brazil at 5 and 4 years old respectively. Strategy: I) Individual selection of 80 best trees; II) best two 
individuals per family and III) best 50% individuals per family

Strategy Site Trait  
s N Nfo Nf kf σ2

kf Ne MEI SG(%) D
^

µ

I

RB
Vol 80 44 19 4.21 19.18 13.43 0.009 8.65 0.21 0.104

SS 80 44 8 10.00 21.43 17.80 0.121 4.04 0.15 3.00

PG
Vol 80 24 15 5.33 30.52 11.37 0.012 23.52 0.31 0.053

SS 80 24 15 5.33 20.52 15.7 0.466 10.52 0.37 4.43

II

RB
Vol 88 44 44 2.00 0.00 70.40 0.005 4.95 1.00 0.103

SS 88 44 44 2.00 0.00 70.40 0.051 1.73 1.00 2.99

PG
Vol 48 24 24 2.00 0.00 38.40 0.009 16.09 1.00 0.055

SS 48 24 24 2.00 0.00 38.40 0.356 7.63 1.00 4.67

III

RB
Vol 828 44 44 18.82 0.48 151.42 0.004 4.42 1.00 0.10

SS 828 44 44 18.82 0.48 151.42 0.029 1.17 1.00 2.50

PG
Vol 243 24 24 10.13 2.46 71.07 0.002 5.07 1.00 0.037

SS 246 24 24 10.25 2.11 71.75 0.621 13.80 1.00 4.50
Number of selected trees (N); original number of progenies (Nf o); number of selected progenies (Nf); number of selected individuals per progeny (kf); variance of 
number of selected individuals per progeny (   2

kfσ ); effective number (Ne); a: additive genetic effect = MEI: Multi-effect Index; selection gain (Sg(%)); genetic diversity     
( D̂ ); general mean (µ). Source: The author

Figure 6 
Narrow-sense individual heritability and family heritability 
mean for slash pine form traits in municipalities of Ribeirão 
Branco and Ponta Grossa, Brazil. BA: branch angle, BT: branch 
thickness, FOR: fork, FT: fox tail, NB: number of branches, SS: 
stem straightness
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Effective sizes and expected selection gains 
Three selection strategies for each site was proposed base on 
individual BLUP (Table 3). This form of selection, enables, 
according to Resende and Higa (1994), explore fractions of 
additive genetic variance that are not considered in the selec-
tion among and within progenies, leading to accuracy selec-
tion maximization, although the inclusion of plot and blocks 
effects can change the selection. Strategy I selected 80 best 
trees from each site with intention to establish clonal seed 
orchards. In RB from 44 families, 19 were selected based on 
volume and eight based on stem straightness, in this way crea-
ting 21 and 15 % of genetic diversity, respectively. In  the other 
hand, from 24 families in PG trial, 15 were selected for both 
chosen traits, creating 31 % of genetic diversity for both (Table 
3). Predict selection gain (Sg) was 8.6 % for volume and 4.0 % for 
stem straightness in RB and 23.5 % for volume and 10.5 % for 
stem straightness in PG. The higest genetic gain in PG is due to 
greater genetic variation in this site (Fig. 4 and 5).

Strategy II was to selecte two best trees per family to com-
pose the next generation of tree improvement. As all proge-
nies were selected, genetic diversity was 100 % for both local 
and traits (Table 3). After thinning, Sg was 4.9 % for volume and 
1.7 % for stem straightness in RB, while in PG were 16.1 % for 
volume and 7.6 % for stem straightness. Adoption of blander 
selection intensity (strategy II) within progenies decreased the 
percentage of gain selection in both sites. However, PG still 
showed higher selection gains due to higher genetic variation. 

Strategy III selected 50 % of best trees per family, as previ-
ous selection all families were selected obtaining 100 % of 
genetic diversity (Table 3). With a bland selection Sg decreased 
for all traits and sites except for stem straightness in PG, where 
it is possible to see and increase for Sg compared to the other 

strategy. Although intense selection used in Strategy I, it may 
lead to early elimination of important alleles, and result in 
genetic drift during genetic combination, although it increase 
the genetic gain.  

Age-age and trait-trait genetic and phenotypic 
correlation 
Coefficients of genetic correlation (Fig. 7) were positive and 
significant for all pairwise growth traits, ranging from 0.60 to 
0.96 for different ages in RB. However, form traits presented 

Figure 7 
Estimates of genetic correlations (Ponta Grossa = above the 
diagonal, Ribeirão Branco = below the diagonal) between 
growth and forms traits for slash pine progenies in Brazil. H1, 
H2, H3, H4 and H5 = height at age one, two, three, four and 
five; DBH3, DBH4 and DBH5 = diameter at breast height at age 
three, four and five; VOL3, VOL4 and VOL5 = wood volume at 
age three, four and five; SS = stem straightness; BT = branch 
thickness; BA = branch angle; NB = number of branches; FOR 
= fork

genetic correlation values with low to moderate magnitude, 
positive and negative, it include non-significant variables. PG 
presented positive and significant genetic correlation coeffici-
ents for all pairs of growth traits with values between 0.80 and 
0.97. Most of pairs with form traits showed negative genetic 
correlation and some not significant among it. 

High and significant genetic correlation values between 
different assessments of height and dbh in early age indicate 
that both traits are controlled by the same group of genes and 
allows a great reliability in the early selection. According to 
Phillips et al. (2013) and Sant’Ana et al. (2013), when the selec-
tion is made on traits with positive and high magnitude corre-
lation it is possible to achieve high correlated response occur-
ring an advantage on selection.

Table 4 
 Estimate of genetic parameters and genotype x environment 
interaction for height, diameter at breast height (DBH), wood 
volume and stem straightness (SS) in four years old slash pine 
families in Ribeirão Branco-SP and Ponta Grossa-PR, Brazil 

 
 

Height
(m) 

DBH
 (cm)

Volume
(m3 tree-1) 

SS
 

 0.03 (±0.01) 0.02 (±0.01) 0.05 (±0.01) 0.02 (±0.01)

 0.60 0.53 0.62 0.53

râa 0.77 0.73 0.79 0.73

0.01 0.01 0.04 0.00

rb 0.72 0.61 0.58 0.89

CVgi(%) 2.67 3.04 10.04 3.27

CVe(%) 15.57 19.42 41.93 25.23

µ 5.86 10.92 0.03 2.10

LRT 4.24* 3.00ns 5.13* 3.16ns

Narrow sense individual heritability ( ); average heritability of proge-
nies (  );  accuracy (râa); coefficient of determination of genotype x 
environment interaction ( ); genetic correlation between progenies 
between sites – type b correlation (rb); coefficient of individual additive 
genetic variation (CVgi); coefficient of residual variation  (CVe); general 
mean (µ); likelihood ratio test (LRT); significant to 1% (*) with 1 degree 
of freedom; (ns) not significant.
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Favourable genetic correlations were found between the 
growth traits and stem straightness and fork indicating the 
selection of trees with high growth rate will result in trees with 
straighter stems and no fork. These results have a practical 
implication, especially when the purpose is wood for sawing. 
Opposite result was found by Adams and Bastien (1994) in 
Pseudotsuga menziesii progenies and Cumbie et al. (2012) and 
Xiong et al. (2014) for P. taeda. For the same authors, positive 
genetic correlation between traits imply that improvement of 
one trait can automatically lead to the improvement of the 
other one. 

Phenotypic correlations were strongly positive and signifi-
cant between pairs of growth traits to both sites (Fig. 8). Excep-
tion was noted among fork and growth traits in RB. Selection 
on one trait of a pair that is controlled by genetic correlation 
caused by pleiotropic effects will also stimulate response in 
unselected trait. Since the correlations we report here are pos-
sibly of this nature, truncation selection to improve height or 
dbh in slash pine is expected to cause increased wood volume 

(Roberds et al. 2003). Genetic correlations were mostly higher 
than phenotypic correlations to both sites. According Gwa-
ze(2009), models based on phenotypic correlations will unde-
restimate the genetic progress and unnecessarily delay selec-
tion. Similar results have also shown that difference in other 
species of conifers as loblolly pine (Gwaze and Bridgwater, 
2002) and jack pine (Riemenschneider, 1988). For that reason, 
genetic correlations are important for making decision in 
forest breeding programs because, breeders may infer if a trait 
may affect the improvement of another. Evaluation of genetic 
correlation between traits is needed to determine whether 
there will be favourable or unfavourable benefits for breeding 
program and if these correlations are required for the determi-
nation of multi-trait selection index (Atwood et al., 2002).

Table 5 
Slash pine progenies selection based on wood volume for stability (MHVG), adaptability (PRVG) and simultaneously to producti-
vity, stability and adaptability (MHPRVG), at 4 years of age in municipalities of Ribeirão Branco and Ponta Grossa, Brazil

Stability Adaptability Stability and adaptability

Family MHVG Family PRVG PRVG*MG Family MHPRVG     MH PRVG*MG

C-197 0.034 C-197 1.268 0.034 C-197 1.259 0.034

C-189-1 0.031 C-189-1 1.165 0.032 C-189-1 1.162 0.032

C-084-2 0.031 C-084-2 1.142 0.031 C-084-2 1.140 0.031

C-032-2 0.029 C-032-2 1.083 0.029 C-032-2 1.083 0.029

C-228 0.029 C-012-3 1.082 0.029 C-012-3 1.082 0.029

C-012-3 0.029 C-228 1.079 0.029 C-228 1.079 0.029

C-128-2 0.029 C-128-2 1.076 0.029 C-128-2 1.076 0.029

C-067-1 0.029 C-067-1 1.054 0.029 C-067-1 1.053 0.029

C-083-1 0.027 C-083-1 1.004 0.027 C-016-2 1.002 0.027

C-016-2 0.027 C-016-2 1.003 0.027 C-083-1 1.000 0.027

C-048-2 0.027 C-048-2 0.995 0.027 C-048-2 0.995 0.027

C-013 0.027 C-013 0.979 0.027 C-013 0.979 0.027

C-068-1 0.027 C-068-1 0.974 0.026 C-068-1 0.973 0.026

C-025-3 0.026 C-025-3 0.970 0.026 C-025-3 0.970 0.026

C-047-1 0.026 C-047-1 0.966 0.026 C-047-1 0.966 0.026

C-019-1 0.026 C-019-1 0.949 0.026 C-019-1 0.949 0.026

C-217-1 0.025 C-217-1 0.935 0.025 C-217-1 0.935 0.025

C-036-1 0.025 C-032-1 0.917 0.025 C-032-1 0.917 0.025

C-032-1 0.025 C-010-1 0.915 0.025 C-010-1 0.915 0.025

C-010-1 0.025 C-036-1 0.914 0.025 C-036-1 0.914 0.025

C-039-2 0.025 C-039-2 0.908 0.025 C-039-2 0.906 0.025

C-023-1 0.024 C-023-1 0.899 0.024 C-023-1 0.898 0.024

C-272-1 0.024 C-272-1 0.892 0.024 C-272-1 0.892 0.024

C-225 0.023 C-225 0.834 0.023 C-225 0.834 0.023
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Joint analysis
Likelihood ratio test (LRT) was significant only for height and 
volume for joint analysis, indicating that there are genetic dif-
ferences for slash pine families in both sites (Table 4).

Individual narrow-sense heritability ( ) showed low 
magnitude for all traits (Table 4), reaffirming the differences 
between trees at sites. On the other hand, the estimate mean 
heritability among families ( ) were high (> 0.53 - dbh, and 
steam straightness/SS) implying that most of total variation 
observed is from genetic origin leading to high estimates accu-
racy (râa> 0.73 - dbh and SS). These values show high genetic 
control and efficiency in a general selection involving two 
experiments, in case conjoint analysis be adopt as base.

Coefficients of genotype x environment interaction ( ), 
which quantifies the portion of the total variation (phenoty-
pic), which is represented by the variation of G x E interaction, 
showed low values for all traits. However, it led to high magni-
tude of genetic correlation between the performance of pro-
geny and environments (rb – type b correlation, Table 4), sug-
gesting low GxE interaction. Type B genetic correlations 
estimate genotypic performance correlation in different envi-
ronments and provide an indication of the importance of G x E 
interaction (McKeand et al., 2006). Mulder et al. (2006) and Ray-
mond (2011) affirm type b correlation levels should be greater 
than 0.60 to suggest an improvement level. Therefore, the situ-
ation is very favourable for application selection in both sites, 
in this case, height, dbh and stem. Similarly, Hodge and White 

(1992) and Dieters et al. (1995) also found type b correlation 
values greater than 0.60 in five years old slash pine families. The 
same way, Jayawickrama (2001) and Baltunis and Brawner 
(2010) reported relatively high type-b genetic correlations in 
New Zealand, for different P. radiata families sites, for most 
important traits demonstrating open-pollinated families are 
well protected against environmental variation. However, 
authors affirm also that results interpretation should be view-
ed carefully, mainly, if the experiments cover a representative 
species plantation area. In general, this species present low 
genotype x environment interaction, but the information that 
we have is not sufficiently to take good conclusion about this 
subject. P. elliottii is plating large region in Brazil in next gene-
ration is necessary to consider more hetereogenous planting 
area.

The coefficient of genetic variation (CVgi) was high only for 
volume (10.0 %) compared to the other traits (2.7 % - height, 
3.0% - dbh and 3.3 % - SS) (Table 4). Martinez et al. (2012) also 
observed this tendency in loblolly pine families for height and 
dbh. The authors assert that the variance components differen-
ces between joint and individual analysis is due to the fact that 
conjoint analysis generate average components between sites. 

Productivity, stability and adaptability
Progeny ranking for both sites was similar being able to indica-
te the same progenies for both growing region. If the four best 
progenies were taken into consideration (E-197, E-189-1, 
E-084-2 and E-032-2) there is 100% of coincidence based on 
the adaptability (PRVG), stability (MHVG) and adaptability, sta-
bility and productivity criteria simultaneously (MHPRVG) for 
volume (Table 5). Although the selection order of 24 tested 
progenies at two sites was not exactly the same, the best pro-
genies agreed for joint analysis, revealing that the most pro-
ductive progenies are the most stable and present highest 
adaptability. The PRVG and MHPRVG values indicate the ave-
rage genotype superiority in relation to the environmental in 
which it is grown (Resende, 2007b; Zeni Neto et al., 2008). For 
example, the best progeny (E-197) for wood production show-
ed a superiority over 1.27 times the average of environment in 
which it is located. MHPRVG*MH value shows the average 
genotypic value of the progenies in the two sites, and this 
amount has already been penalized by instability and capita-
lized by adaptability (Carbonell et al., 2007). Environmental 
variations can interfere at GxE interactions, thus it is important 
and necessary to identify stable genotypes that produce well 
in various conditions (Gonçalves et al., 2003).

In general, there were not many changes in the ordering 
of progenies (79 % of coincidence). This is due to the high cor-
relation of progeny genetic behaviour on sites, therefore, it is 
suggested that the MHVG, PRVG and MHPRVG methods pre-
sent ranking agreement for progenies and the use of this selec-
tion criteria confer improvement of selection in deducting 
secure genetic values predictions and concomitantly for pro-
ductivity, stability and adaptability (Pinto Junior et al. 2006; 
Resende, 2007b).

For inferences about the expected productivity, the geno-
typic values should be considered as the characteristics of the 

Figure 8 
Estimates of phenotypic correlations (Ponta Grossa = above 
the diagonal, Ribeirão Branco = below the diagonal) between 
growth and forms traits for slash pine progenies in Brazil. H1, 
H2, H3, H4 and H5 = height at age one, two, three, four and 
five; DBH3, DBH4 and DBH5 = diameter at breast height at age 
three, four and five; VOL3, VOL4 and VOL5 = wood volume at 
age three, four and five; SS = stem straightness; BT = branch 
thickness; BA = branch angle; NB = number of branches; FOR 
= fork
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planting site. If plantings are carried out in several other sites 
with varying GxE interaction patterns it should be considered 
the genotypic values (genetic means) for sites average, pena-
lized by instability and capitalized by the adaptability 
(MHPRVG). In addition to these, MHVG values should be consi-
dered if the planting is done in others unknown sites or with 
different interaction of experimental network pattern or high 
heterogeneity within sites. If the sites present the same GxE 
interaction pattern of planting environment should be based 
on the sites average in order to capitalize the responsiveness of 
each progeny in relation to environment improving, PRVG 
values shall be prioritized. For planting in the same sites of the 
experiments consider the genotypic values (genetic means) of 
each local (individual analysis).

Taking everything into consideration, it is important to 
test a major number of families in major number of sites as 
possible to verify adaptability and stability of them in relation 
to next breeding cycles. With this practice will be possible to 
create plantations zones which could decreased time and 
increased productivity. 

Conclusions
There are significant differences among open-pollinated pro-
geny in RB and PG trials for growth trait. Considerable genetic 
variation, especially for wood volume.

High coefficients of genetic variation and heritability show 
low environmental influence on phenotypic variation, which is 
important for the prediction of genetic gain by selection.
The predict genetic gain in selection for volume and tem 
straightness are expected be highest in PG when higher inten-
sity is applied aiming clonal orchard formation.

Positive and significant genetic correlation were found for 
all pairwise growth traits ranging for different ages in RB and 
PG. In relation to form traits, values with low to moderate mag-
nitude, positive and negative for both site were found.

The effect of GxE interaction is the simple type. The planta-
tions made in several other sites with varying GxE interaction 
patterns should consider MHPRVG effect, prioritizing the most 
productive families, stable and high adaptability.

Genotypes such as C-197, C-189-1, C-084-2 and C-032-2 
are indicated to plantations in both São Paulo and Paraná sta-
tes according to stability (MHVG), adaptability (PRVG) and 
simultaneously productivity, stability and adaptability 
(MHPRVG).
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