Adaptability, stability, productivity and genetic parameters in slash pine second-generation families in early age

Open access

Abstract

The study was conducted to estimate the stability, adaptability, productivity and genetic parameters in Slash pine second-generation half-sib families, considering phenotypic traits in early age. Forty-four families from a first generation seed orchard in Colombo-PR, Brazil, were used in this study. Two progenies tests were established in a randomized complete block design. The first test was implemented in March 2009 in Ribeirão Branco, São Paulo state, containing 40 blocks, one tree per plot, 44 treatments (progenies) and 6 controls. Another test was implemented in Ponta Grossa, Paraná state, using the same experimental design and number of plants per plot, and with 24 treatments, 32 blocks. The growth traits evaluated were total height, diameter at breast height (dbh) and wood volume, within five years. The form traits evaluated were stem form, branch thickness, branch angle, number of branches, fork and fox tail five years after planting. Deviance analysis and estimates of stability, adaptability, productivity and genetic parameters were performed using the methods of best linear unbiased predictor (BLUP) and residual maximum likelihood (REML). There was significant variation among progenies for growth and form traits. Considerable genetic variation was detected mainly for wood volume. High coefficients of genetic variation and heritability showed low environmental influence on phenotypic variation, which is important for the prediction of genetic gain by selection. Crosses between different progenies individuals groups will be prioritized for obtaining heterotics genotypes and increase the probability of obtaining high specific combining ability.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Adams WT BASTIEN JC (1994) Genetics of second flushing in a French plantation of coastal Douglas-fir. Silvae Genetica 43 (5):345-352.

  • Aguiar AV Souza VA Shimizu JY (2010) Seleção genética de progênies de Pinus greggii para formação de pomares de sementes. Pesquisa Agropecuária Brasileira 30 (62): 107-117. Available at https://doi.org/10.4336/2010.pfb.30.62.107

  • Arregui A Espinel S Aragonés A Grado RS (1999) Estimación de prámetros genéticos em um ensayo de progenies de Pinus radiata D. Don en el País Vasco. Investigacíon Agraria: Sistemas y Recursos Forestales 8 (1): 119-128.

  • Alwala S Kwolek T McPherson M Pellow J Meyer D (2010) Comprehensive comparison between Eberhart and Russell joint regression and GGE biplot analyses to identify stable and high yielding maize hybrids. Field Crops Research 119 (2): 225-230. Available at https://doi.org/10.1016/j.fcr.2010.07.010

  • Atwood RA White TL Huber D A (2002) Genetic parameters and gain for growth and wood properties in Florida source loblolly pine in the southeastern United State. Canadian Journal of Forest Research 32 (5): 1025-1038. Available at https://doi.org/10.1139/x02-025

  • Baltunis BS Brawner JT (2010) Clonal stability in Pinus radiata across New Zealand and Australia. I. Growth and form traits. New Forests 40 (3): 305-322. Available at https://doi.org/10.1007/s11056-010-9201-4

  • Carbonell SAM Chiorato AF Resende MDV Dias LAS Beraldo ALA Perina EF (2007) Estabilidade em cultivares e linhagens de feijoeiro e diferentes ambientes no estado de São Paulo. Bragantia 66 (2): 193-201.

  • Codesido V Fernández-López J (2008) Juvenile genetic parameter estimates for vigour stem form branching habit and survival in three radiate pine (Pinus radiate D. Don) progeny test in Galicia NW Spain. European Journal of Forest Research 127 (4): 315-325. Available at https://doi.org/10.1007/s10342-008-0207-9

  • Cotterill PP Zed PG (1980) Estimates of genetic parameters for growth and form traits in four Pinus radiata D. Don progeny tests in South Australia. Australia Forest Research 10 (2): 155-167.

  • Cruz CD (2006) Programa Genes: Análise Multivariada e Simulação. Viçosa: UFV 175 p ISBN 13:9788572692489.

  • Cruz CD. Regazzi AJ Carneiro PCS (2004) Modelos biométricos aplicados ao melhoramento genético. Viçosa: UFV 514 p ISBN 13:9788572694339.

  • Cumbie WP Isik FT Mckeand SE (2012) Genetic improvement of saw timber potential in loblolly pine. Forest Science 58 (2): 168-177. Available at https://doi.org/10.5849/forsci.09-060

  • Dieters MJ (1996) Genetic parameters for slash pine (Pinus elliottii) grown in south-east Queensland Australia: Growth steam straightness and crown defects. Forest Genetics 3 (1): 27-36.

  • Dieters MJ White TL Hodge GR (1995) Genetic parameter estimates for volume from full-sib testes of slash pine (Pinus elliottii). Canadian Journal of Forest Research 25 (5): 1397-1408. Available at https://doi.org/10.1139/x95-152

  • Dorman KW Squillace AE (1974) Genetics of slash pine. USDA Forest Service Research Paper 20 (1): 01-20. Available at https://doi.org/10.5962/bhl.title.87841

  • Espinel S Aragonés A (1997) Genetic parameters for Pinus radiata D.Don in Basque Country. New Zealand Journal Forest Science 27 (3): 272–279.

  • Ettori LC (2004) Variação genética em procedências e progênies mexicanas de Pinus maximinoi. Revista do Instituto Florestal 16 (1): 01-09.

  • Falconer DS Mackay TFC (1996) Introduction to quantitative genetics. London: Longman Group Ltd. 464 p ISBN 0582243025.

  • Freitas MLM Zanatto ACS Morais E Lemos SV Fernandes AC Sebbenn AM (2005) Estimativa de parâmetros genéticos e ganhos na seleção em Pinus caribaea var. bahamensis aos 22 anos de idade. Revista do Instituto Florestal 17 (1): 103-111.

  • Fries A (2012) Genetic parameters genetic gain and correlated responses in growth fibre dimensions and wood density in a scots pine breeding population. Annals of Forest Science 69 (1): 783-794. Available at https://doi.org/10.1007/s13595-012-0202-7

  • Gapare WJ Ivković M Dutkowski GW Spencer DJ Buxton P Wu HX (2012) Genetic parameters and provenance variation of Pinus radiata D. Don. ‘Eldridge collection’ in Australia 1: growth and form traits. Tree Genetics & Genomes 8 (4): 391-407. Available at https://doi.org/10.1007/s11295-011-0449-4

  • Gonçalves PS Bortoletto N Fonseca FS Bataglia OC Ortolani AA (1998) Early selection for growth vigor in rubber tree genotypes in northwestern São Paulo state (Brazil). Genetics and Molecular Biology 21(4): 620-630. Available at https://doi.org/10.1590/s1415-47571998000400018

  • Gonçalves PS Bortoletto N Martins ALM Costa RB Gallo PB (2003) Geno-type-environment interaction and phenotypic stability for girth growth and rubber yield of Hevea clones in São Paulo State Brazil. Genetics and Molecular Biology 26 (4): 441-448. Available at https://doi.org/10.1590/s1415-47572003000400007

  • Gwaze DP (2009) Optimum selection age for height in shortleaf pine. New Forests 37 (1): 9-16. Available at https://doi.org/10.1007/s11056-008-9104-9

  • Gwaze DP Bridgwater FE (2002) Determining optimum selection age for diameter and height in loblolly pine (Pinus taeda). Forest Genetics 9 (2): 159-165.

  • Gwaze D Woolliams J Kanowski PJ (1997) Genetic parameters for height and stem straightness in Pinus taeda L. in Zimbabwe. Forest Genetics 4 (2): 159-169.

  • Hodge GR White TL (1992) Genetic parameter estimates for growth traits at diferente ages in slash pine and some implications for breeding. Silvae Genetica 41 (5): 252-262.

  • Jayawickrama KJS (2001) Genetic parameter estimates for radiata pine in New Zealand and New South Wales: a synthesis of results. Silvae Genetica 50 (2): 45–53.

  • Lambeth CC (1980) Juvenile-mature correlations in Pinaceae and implications for early selection. Forest Science 26 (4): 571–580.

  • Martinez DT Resende MDV Costa RB Higa AR Santos GA Fier ISN (2012) Estudo da interação genótipo x ambiente em progênies de Pinus taeda por meio da análise de parâmetros genéticos. Revista Floresta 42 (3): 539-552. Available at https://doi.org/10.5380/rf.v42i3.20115

  • Martins-Corder MP Mori ES Kageyama PY Lopes CR (1996) Estudo da variabilidade Isoenzimática em Eucalyptus urophylla S.T.Blake das Ilhas Flores. Revista do Instituto Instituto de Pesquisas e Estudos Florestais 50 (1): 43-49.

  • Matheson A Spencer DJ Magnussen D (1994) Optimum age for selection in Pinus radiata using basal area under bark for age-age correlations. Silvae Genetica 43 (5): 352–357.

  • Mckeand SE (1998) Optimum age for family selection for growth in genetic test of loblolly pine. Forest Science 34 (4): 400–411.

  • Mckeand SE Jokela EJ Huber DA Byram TD Allen HL Li B Mullin TJ (2006) Performance of improved genotypes of loblolly pine across different soils climates and silvicultural inputs. Forest Ecology and Management 227 (4): 178-184. Available at https://doi.org/10.1016/j.foreco.2006.02.016

  • Miranda AC Moraes MLT Silva PHM Sebbenn AM (2015) Ganhos de seleção pelo método do índice multi-efeitos em progênies polinização livre de Eucalyptus grandis Hill ex Maiden. Scientia Forestalis 43 (105): 01-07.

  • Missanjo E Kamanga-Thole G Manda V (2013) Estimation of genetic and phenotypic parameters for growth traits in a clonal seed orchard of Pinus kesiya in Malawi. ISRN Forestry 2013 (1): 1-6. Available at https://doi.org/10.1155/2013/346982

  • Missio RF Cambuim J Moraes MLT Paula RC (2004) Seleção simultânea de caracteres em progênies de Pinus caribaea Morelet var. bahamensis. Scientia Forestalis 66 (2): 161-168.

  • Mulder HA Veerkamp RF Ducro BJ Arendonk JA Bijma P (2006) Optimization of dairy cattle breeding programs for different environments with genotypes by environment interaction. Journal Dairy Science 89 (5): 1740-1752. Available at https://doi.org/10.3168/jds.s0022-0302(06)72242-1

  • Nanson A (1970) Juvenile and correlated trait selection and its effect on selection programs. In: Proceedings of Second Meeting of Working Group on Quantitative Genetics IUFRO Louisina pp. 17-25.

  • Olsson T Ericsson T (2002) Genetic Parameter Estimates of Growth and Survival of Pinus sylvestris with Mixed Model Multiple-trait Restricted Maximum Likelihood Analysis. Scandinavian Journal of Forest Research 17 (1): 103-110. Available at https://doi.org/10.1080/028275802753626746

  • Pereira AB Marques Junior OG Ramalho MAP Althoff P (1997) Eficiência da seleção precoce em famílias de meios-irmãos de Eucalyptus camaldulensis Dehnh avaliadas na região noroeste do estado de Minas Gerais. Cerne 3 (1): 67-81.

  • Pimentel-Gomes F Garcia CH (2002) Estatística aplicada a experimentos agronômicos e florestais: exposição com exemplos e orientações para uso de aplicativos. Piracicaba: FEALQ 309 p ISBN 85-7133-014-X.

  • Pimentel FG (2000) Curso de estatística experimental. Piracicaba: FEALQ 451 p ISBN 978-85-7133-055-9.

  • Pinto Júnior JE Sturion JA Resende MDV Ronzelli Júnior P (2006) Avaliação simultânea de produtividade adaptabilidade e estabilidade genotípica de Eucalyptus grandis em distintos ambientes do estado de São Paulo. Boletim de Pesquisa Florestal 53 (1): 79-108.

  • Pswarayi IZ Barnes RD Birks JS Kanowski PJ (1996) Genetic parameter estimate for production and quality traits of Pinus elliottii Engelm. var. elliottii in Zimbabwe. Silvae Genetica 45 (4): 216-222.

  • Raymond CA (2011) Genotype by environment interactions for Pinus radiata in New Wales Australia. Tree Genetics Genomes 7 (4): 819-833. Available at https://doi.org/10.1007/s11295-011-0376-4

  • Resende MDV (2007b) Matemática e estatística na análise de experimento e no melhoramento genético. Colombo: Embrapa Florestas 362 p ISBN 9788589281157.

  • Resende MDV (2007a) Software SELEGEM – REML/BLUP: sistema estatístico e seleção genética computadorizada via modelos lineares mistos. Colombo: Embrapa Florestas 359 p ISBN 9788589281164.

  • Resende MDV Araújo AJ Sampaio PTB Wiecheteck MDS (1995) Acurácia seletiva intervalos de confiança e variâncias de ganhos genéticos associados a 22 métodos de seleção de Pinus caribaea var. hondurensis. Revista Floresta 25 (1): 03-16. Available at https://doi.org/10.5380/rf.v25i12.6444

  • Resende MDV Higa AR (1994) Maximização da eficiência da seleção em testes de progênies de Eucalyptus através da utilização de todos os efeitos do modelo matemático. Boletim de Pesquisa Florestal 29: 37-55.

  • Riemenschneider DE (1988) Heritability age-age correlations and inferences regarding juvenile selection in jack pine. Forest Science 34 (4): 1076-1082.

  • Roberds JH Strom BL Hain FP Gwaze DP Mckeand SE Lott LH (2003) Estimates of genetic parameters for oleoresin and growth traits in juvenile loblolly pine. Canadian Journal of Forest Reearch 33 (5): 2469–2476. Available at https://doi.org/10.1139/x03-186

  • Romanelli RC Sebbenn AM (2004) Parâmetros genéticos e ganhos na seleção para produção de resina em Pinus elliottii var. elliottii no Sul do Estado de São Paulo. Revista do Instituto Florestal 16 (1): 11-23.

  • Sant’ana VZ Freitas MLM Moraes MLT Zanata M Zanatto ACS Moraes MA Sebbenn AM (2013) Parâmetros genéticos em progênies de polinização aberta de Enterolobium contortisiliquum (Vell.) Morong em Luiz Antonio SP Brasil. Hoehnea 40 (3): 515-520. Available at https://doi.org/10.1590/s2236-89062013000300011

  • Schultz RP (1997) Loblolly pine: the ecology and culture of loblolly pine (Pinus taeda L.). Washington: U.S. Department of Agriculture Forest Service 493 p.

  • Sebbenn AM Vilas Bôas O Max JCM (2010) Altas herdabilidades e ganhos na seleção para caracteres de crescimento em teste de progênies de polinização aberta de Pinus elliottii Engelm var. elliottii aos 25 anos de idade em Assis–SP. Revista do Instituto Florestal 20 (2): 95-102.

  • Sebbenn AM Freitas MLM Morais E Zanatto ACS (2005) Variação genética em procedências e progênies de Pinus patula ssp. tecunumanii no noroeste do Estado de São. Revista do Instituto Florestal 17 (1): 01-15.

  • Silva GAP Gouvêa LRL Verardi CK Oliveira ALB Goncalves PS (2014) Annual growth increment and stability of rubber yield in the tapping phase in rubber tree clones: Implications for early selection. Industrial Crops and Products 52 (4): 801-808. Available at https://doi.org/10.1016/j.ind-crop.2013.12.010

  • Silva JM Aguiar AV Mori ES Moraes MLT (2011) Variação genética e ganho esperado na seleção de progênies de Pinus caribaea var. caribaea em Selvíria MS. Scientia Forestalis 39 (90): 241-252.

  • Silva WCJ Duarte JB (2006) Métodos estatísticos para estudo de adaptabilidade e estabilidade fenotípica em soja. Pesquisa Agropecuária Brasileira 41 (1): 23–30. Available at https://doi.org/10.1590/s0100-204x2006000100004

  • United States Department Of Agriculture – USDA (2016) Slash Pine. Pinus elliottii Engelm [on line]. United States of America to be found at < http://plants.usda.gov/plantguide/pdf/pg_piel.pdf> [quoted 01.10.2016].

  • Weng YH Lu P Adams GW Fullarton MS Tosha KJ (2015) Genetic paramenters of growth and stem quality traits for jack pine second-generation progeny tested in New Brunswick. Canadian Journal of Forest Research 45 (1): 36-43. Available at https://doi.org/10.1139/cjfr-2014-0106

  • White TL Adams WT Neale DB (2007) Forest genetics. Wallingford: CABI 500 p ISBN 978-0851993485. Available at https://doi.org/10.1079/9781845932855.0000

  • Wu HX Ivković M Gapare WJ McRae TA (2008) Breeding for wood quality and profit in radiate pine: a review of genetic parameters and implication for breeding and deployment. New Zealand Journal of Forest Science 38 (1): 56-87.

  • Xiong JS McKeand SE Whetten RW Isik FT (2014) Genetics of steam forking and ramicorn branches in a clonal loblolly pine family. Forest Science 60 (5): 360-366. Available at https://doi.org/10.5849/forsci.12-018

  • Xiong JS Isik FT McKeand SE Whetten RW (2010) Genetic variation of steam forking in loblolly pine. Forest Science 56 (5): 429-436.

  • Yang H Liu T Liu C Wang J Chen K Zhong W Chen B Huang S (2013) Genetic parameters and efficiency of early selection for half rotation-aged growth and form traits in Pinus taeda in China. Silvae Genetica 62 (6): 277-284.

  • Zeni Neto H Oliveira RA Daros E Bespalhok Filho JC Zambon JLC Ido OT Weber H (2008) Seleção para produtividade estabilidade e adaptabilidade de clones de cana-de-açúcar em três ambientes no estado do Paraná via modelos mistos. Scientia Agraria 9 (4): 425-430. Available at https://doi.org/10.5380/rsa.v9i4.12475

  • Zobel BJ (1961) Inheritance of wood properties in conifers. Silvae Gnetica 10 (3): 67-70.

Suche
Zeitschrifteninformation
Impact Factor

IMPACT FACTOR 2018: 0.741
5-year IMPACT FACTOR: 0.651

CiteScore 2018: 0.77

SCImago Journal Rank (SJR) 2018: 0.345
Source Normalized Impact per Paper (SNIP) 2018: 0.362

Cited By
Metrics
Gesamte Zeit Letztes Jahr Letzte 30 Tage
Abstract Views 0 0 0
Full Text Views 231 133 1
PDF Downloads 126 88 1