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Abstract

Complementary progeny tests allow for simultaneously rank-
ing parents for their general combining ability (GCA) and with-
in-family forward selection. To do this, progeny tests are estab-
lished with different types of genetic entries (i.e., half-sib and 
full-sib seedlings, respectively), and different experimental 
designs. This study proposes a combined analysis of the GCA 
and full-sib (FS) tests using the mixed model approach to pre-
dict simultaneously the breeding values of grandparents, par-
ents, full-sib families and offspring on the same scale. More-
over, a first order autoregressive spatial mixed model for the 
GCA tests was also implemented in the combined analysis. Our 
empirical study in coastal Douglas-fir (Pseudotsuga menziesii 
(Mirb.) Franco) shows that additional information provided 
from relatives and the overlap genetic entry among GCA and 
FS tests via the proposed combined analysis, improves the 
accuracies of breeding values compared to the non-combined 
analysis. The improvements in the accuracies of breeding val-
ues for backward and forward selections were generally mod-
est. Spatial and combined analyses gave slightly better results 
than the non-spatial combined model.

Keywords: mixed linear model, spatial analysis, backward and 
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Introduction

The most important aspect of practical tree breeding is to reli-
ably select parents (i.e., rank them) and assign an accurate 
genetic quality estimate to these selections in a relatively short 
time frame. This is accomplished through efficient testing pro-
cedures and proper analysis to ensure the identification of the 
parents as well as an estimate of their quality (breeding value 
(BV). According to Namkoong (1979, p. 117), precision of the 
estimates of the genetic value for parents is related to the 
number of relatives that are evaluated in the progeny test (i.e., 
the number of progeny per parent or families), and the higher 
degree of genetic relationships among the different trees, the 
more reliable these estimates become. Several simulation stu-
dies have been carried to assess the efficiency of selection 
when first and second generation data sets are combined 
(Johnson 1998a; Ye et al. 2007). However, these computer 
simulations showed that the inclusion of the previous genera-
tion test data only marginally improved the efficiency of bree-
ding value estimation and selection reliability.

Complementary progeny tests were popular in tree bree-
ding programs (Johnson 1998b) during the last two decades. 
These tests are structured trials were candidate parents are tes-
ted in polycross tests, using an equal amount of pollen from a 
mix of unrelated males, and, at the same time, mated to produ-
ce offspring for forward selection. In a sense, it is a two-step 
approach. That is, parents are tested for their general com-
bining ability via the polycross test (GCA trials) and at the same 
time used to produce the next generation for forward selec-
tion (full-sib family blocks trials). Therefore, this approach can 
reduce the time of testing and in turn increase gain over time. 
Johnson (1998b) summarized additional advantages of com-
plementary testing as follows: 1) accurate GCA estimates for 
parents, 2) parents are tested as outcrossed individuals as 
unrelated pollen donors are used, 3) potential for more precise 
within-family selection in family blocks, and 4) simple data 
analysis. However, there are also drawbacks: 1) the large 
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number of half-sib progenies cannot be used for within family 
selection (unless pedigree reconstruction is used after the 
fact), and 2) possible rank changes in parental GCA tests can-
not be utilized in the crossing for full-sib seedling production 
(i.e., if one would like to utilize assortative mating, as the best 
parents are not yet identified as such at the time of full-sib cros-
sing). Also the individual tree breeding values are predicted in 
a two-step analysis, separate from the one used to estimate 
parental breeding values with loss of statistical precision. 
Moreover, there are no direct breeding values predictions of 
the full-sib families tested in the full-sib family test, as mid-
parent values from the GCA tests are used to rank these fami-
lies (e.g. White et al. 2007) and full-sib blocks are generally not 
replicated (Johnson 1998b).

Best linear unbiased predictions (BLUPs) of breeding valu-
es using mixed model approach (Henderson 1984) are the 
norm in forest tree breeding. An important advantage of the 
mixed model approach is that it allows to combine analyses 
across trials with different crosses and field designs (experi-
mental and/or plots). Therefore, the BLUP approach is particu-
larly useful for the analysis of complementary progeny tests 
where different sources of information are combined. When a 
mixed model analysis of multi-environment trials (MET) is 
used, the accuracy of predicted breeding values for parents, 
and offspring can be more reliable, given that  more informati-
on from relatives is utilized and due to the overlap of genetic 
entries among the trials (Hardner et al. 2010). Moreover, MET 
analyses also allows the quantification of the magnitude of the 
genotype by environmental interactions if related material is 
tested (e.g. Costa e Silva et al. 2006; Cappa et al. 2013). Finally, 
mixed models approaches also have the capability of partitio-
ning the environmental variation into a spatially independent 
and a spatially dependent two dimensional first order autore-
gressive (AR1) components (Gilmour et al. 1997) within each 
site.

Global trends or large-scale variation and/or local trend or 
small-scale variation are well known in forestry field trials as a 
result of factors such as variations in soil fertility and depth, 
moisture gradients, or slope. Many studies using mixed models 
with a first order autoregressive residuals correlation structure 
for rows and columns (Gilmour et al. 1997) displayed a consis-
tent reduction in the error variance, an increase in the heritabi-
lity, and in the accuracy of predicted breeding values, in both 
single (e.g. Costa e Silva et al. 2001; Dutkowski et al. 2002; 2006) 
and combined (e.g. Ye and Jayawickrama 2008; Hardner et al. 
2010) spatial analysis of forest genetic trials. For example, Ye 
and Jayawickrama (2008) showed that in 275 first-generation 
progeny trials of Douglas-fir (Pseudotsuga menziesii (Mirb.) 
Franco) established in the Pacific Northwest, the spatial autore-
gressive model, on average, removed from 14 % to 34 % of resi-
dual variance due to spatial heterogeneity, which resulted in 
up to 20 % increase in accuracy of breeding value prediction 
(ranged from 1 % to 20 % for parents and from 1 % to 25 % for 
offspring relative to the classical non-spatial model). Moreover, 
they showed that the spatial analysis of MET data had substan-
tially better model fit (i.e., lower values of Akaike´s Information 
Criterion) and provided more accurate breeding value 

prediction (from 3 % to 17 %) than the classical non-spatial 
MET model.

Using mixed linear models we were able to jointly analyse 
complementary tests in coastal Douglas-fir British Columbia 
advanced generation breeding despite the polycross tests and 
the full-sib blocks having different types of genetic entries and 
experimental designs (e.g., half-sib seedlings in single tree 
plots versus full-sib seedlings in 25-tree family blocks). Further-
more, we were able to make an across site spatial analysis of 
these complementary tests using a first order autoregressive 
correlation structure within each site. Our main objective was 
to evaluate the accuracies of predicted BVs for parents and for-
ward selections using a range of mixed models, including the 
joint analysis of the polycross and full-sibs tests (i.e., combined 
analysis) using non-spatial and spatial MET models. Additio-
nally, models and resulting estimates of genetic parameters 
(heritabilities and genetic correlations) for the non-spatial and 
spatial combined analysis are also compared with correspon-
ding estimates from the separate analysis of the polycross and 
full-sibs tests.

Material and Methods

Two series of breeding and testing were used in this study. The 
basic design, crossing approach and field testing procedures 
were the same for both series (Series 1 and 2). The parents tes-
ted in the two series were different and there were no parents 
in common between the series.

Crossing Procedure and Seedling Propagationt
Most parents for the advanced generation breeding in coastal 
Douglas-fir were forward selected from 8 annual phases of par-
tial, disconnected diallels planted on a total of 88 sites (Heaman 
and Woods 1989). A small number of parents in Series 1 were 
forward selections from Pacific Northwest provenance trials 
and advanced generation parents from the Weyerhaeuser, WA 
tree improvement program (Stoehr et al. 2008). As the forward 
selections from the diallels were related to various degrees, it 
was decided to establish 8 sublines per series with 8 to 17 
parent trees per subline. Due to limited cone production, con-
trol crossings took several years to complete. All parents were 
control pollinated with the same 10-donor mixed pollen. Full-
sib crosses were made opportunistically (within the constraints 
of cone production) within sublines. Reciprocal crosses were 
combined. Seeds from different years of crossing from the 
same cross were bulked. A total of 85 and 77 half-sib parents 
and 119 and 80 full-sib families were tested in Series 1 and 
Series 2, respectively. 

 Seedlings were raised at Cowichan Lake Research Station 
on Vancouver Island following standard growing procedures 
for coastal Douglas-fir. Half-sib seedlings were planted on four 
sites per series (GCA tests) using an incomplete block design 
(Whitacker et al. 2002) with 15 single-tree plots per incomplete 
block in 30 (Series 1) and 32 (Series 2) replications. Full-sib 
block tests (FS tests) were planted as 5 × 5 tree plots on two 
sites per series. Series 1 was planted in 1999 while Series 2 was 
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planted in 2003. The percentage of mothers in common bet-
ween the six tests was at least 58 % (Series 1) and 52 % (Series 
2). In all GCA tests, five wind-pollinated families (seed obtained 
from wild-stand trees) were also planted as controls. All sites 
were brushed and weeded to keep weed competition to a 
minimum. Total heights (cm) were measured in each series at 
age 11 from seed. Additional test site information of each 
series is found in Table 1.

Statistical Analysis and Model Development
Five multi-environmental individual-tree mixed models were 
implemented in each of the two series: three separate analyses 
including data from the four GCA and the two FS tests (hereaf-
ter non-combined analysis), and two combined analyses inclu-
ded the joint data across the GCA and FS tests (hereafter com-
bined analysis). 

For Series 1 and Series 2 the following linear model was 
fitted for the four GCA tests (GCA model):

y = µ1 + Z1 s + Z2 r + Z3 b + Z4 a + e

where y is the vector of phenotype data (observation); µ is the 
overall mean; s is the vector of random tests effect; r is the vec-
tor of random replicate effects within test, with r ~ N (0,  2

rσI  ), 
where 2

rσ    is the replicate within test variance (a common vari-
ance was used) and I is the identity matrix; b is the vector of 
random incomplete block effects within replication and test, 
with b ~ N (0, 2

bσI ) , where 2
bσ    is the incomplete block 

within replication and test variance (a common variance was 
used); a is the vector of random additive breeding values of all 
individuals of the GCA tests, with a ~ N (0, A ⊗G A ) , where GA 
is the additive genetic (co)variance matrix between the GCA 
tests with diagonal elements  2

jjaσ   representing the additive 
variance of the jth test and off-diagonal elements  

jj´aσ   repre-
senting the additive genetic covariance between test j and j’, 

the matrix A contains the additive relationships among all trees 
of the GCA tests, and  ⊗   represents the Kronecker product. 
Finally, e is the random vector of residuals, with e ~ N (0, R), 
where 2

1 1
j j

s s

j n e
j j= =

= σ⊕ ⊕R  R =  I , 2
jeσ  , are scalars representing the 

error variance for each test j, with j = 1, ..., 4,  
jnI   is the identity 

matrix of dimension equal to the number of observation within 
each jth test (nj), and d

1

s

j=
⊕   represents the ‘direct sum’ of matrices 

notation. Preliminary analyses indicated that there was consi-
derable spatial heterogeneity within the four GCA tests of both 
series. Therefore, a spatial autoregressive residual structure 
was also implemented within each GCA trials by dividing the 
vector e into spatial dependent (ξ) and spatially independent 
(η) residuals (e.g., Costa e Silva et al. 2001. Gilmour et al. (1997) 
suggested to model the ξ vector as a separable Kronecker pro-
duct of first-order autoregressive covariance structures (AR1) 
on the rows (row) and the columns (col), i.e., 

( ) ( )2 AR1 AR1col rowσ  
 ξ   

ρ ⊗ ρ    where 2σξ    is the spatial residual 
variance, and iρ    the autocorrelation parameter. The vector η 
were assumed pairwise independent, i.e., I 2ση   , where  2ση   is 
the independent residual variance. Hereafter this last model is 
referred as GCA_sp model. Also, 1 is the vector of ones; and  
Z1, Z2, Z3, and Z4, are all incidence matrices for their respective 
effects.

For both series the following linear mixed model was fit-
ted for the two FS tests (FS model):

y = µ1 + Z1 s + Z2 f + Z3 a + e

where y is the vector of phenotype data (observation); µ is the 
overall mean; s is the vector of random tests effect; f is the vec-
tor of random full-sib family genetic effects (confounded with 
the plot effects), with f ~ N (0, F ⊗G I ) , where GF is the family 
genetic (co)variance matrix between the FS tests with diagonal 
elements 

2
fσ    representing the family variance (a common 

variance was used) and off-diagonal elements 
jj´fσ    represen-

ting the family genetic covariance between test j and j’; a is the 

Table 1 
Geographic and test information for six progeny tests of coastal Douglas-fir in each of two series.

Series 1

Local name Site number Type of test1 Spacing (m) Latitude Longitude Elevation (m) # of test Trees Age 11 Height 
Means (SD; cm)

Buckley 1 GCA 2 × 2 49°33´63´´ 124°54´46´´ 180 2295 501.3 (117)

Snowdon2 2 GCA 1 × 1 50°04´54´´ 125°21´04´´ 96 2479 579.3 (109)

Noomas 3 GCA 2 × 2 50°23´75´´ 126°54´96´´ 460 2167 661.0 (111)

Canoe 4 GCA 2 × 2 49°47´31´´ 124°18´88´´ 171 2095 810.5 (151)

Holiday 5 FS 2 × 2 49°30´69´´ 124°52´61´´ 105 2452 440.2 (99)

Snowdon2 6 FS 1 × 1 50°04´51´´ 125°21´00´´ 96 2470 623.8 (124)

Series 2

Hillcrest 1 GCA 2 × 2 48°46´24´´ 124°07´45´´ 210 1806 677.7 (120)

Big Tree 2 GCA 2 × 2 50°15´80´´ 125°43´59´´ 225 2247 528.6 (95)

Jordan River 3 GCA 2 × 2 48°25´80´´ 124°02´08´´ 145 1671 729.7 (114)

Museeum 4 GCA 2 × 2 49°05´12´´ 124°40´33´´ 410 2055 439.3 (89)

Jordan River 5 FS 2 × 2 48°25´86´´ 124°01´80´´ 160 1667 803.9 (118)

North Arm 6 FS 2 × 2 48°50´72´´ 124°06´53´´ 168 1595 762.6 (119)

NOTE: 1 GCA is general combining ability test, FS is a full-sib test using family blocks.
       2 Some trees at Snowdon FS site were removed to open up growing space as spacing was 1 x 1 m.
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vector of random additive genetic effects of individuals (or 
breeding values) for the FS tests, with a ~ N (0, A ⊗G A )   whe-
re GA is the additive genetic (co)variance matrix between the 
FS tests with diagonal elements  2

jjaσ   representing the additive 
variance of the jth test and off-diagonal elements  

jj´aσ   repre-
senting the additive genetic covariance between test j and j’, 
and the matrix A contains the additive relationships among all 
trees of the FS tests. Finally, e is the random vector of residuals, 
with e ~ N (0, R), where , 2

1 1
j j

s s

j n e
j j= =

= σ⊕ ⊕R  R =  I , 2
jeσ   are scalars 

representing the error variance for each test j, with j = 1, ..., 2. 
Also, 1 is the vector of ones; and Z1, Z2, and Z3, are all incidence 
matrices for their respective effects. Note that there is no spati-
al model for the non-combined analysis of the two FS tests.

A final combined analysis was done for all tests using the 
following linear mixed model (GCA+FS model):

y = µ1 + Z1 s + Z2 r + Z3 b + Z4 f + Z5 a + e

where y is the vector of phenotype data (observation); µ is the 
overall mean; s is the vector of random tests effect; r is the vec-
tor of random replicate effects within of each GCA test, with  
r ~ N (0, 2

rσI ) , where  2
rσ   is the replicate within test variance 

(for the four GCA tests, a common variance was used) and I is 
the identity matrix; b is the vector of random incomplete block 
effects within replication and GCA test, with b ~ N (0, 2

bσI ) , 
where  2

bσ   is the incomplete block within replication and test 
variance (for the four GCA tests, a common variance was used); 
f is the vector of random full-sib family genetic effects (con-
founded with the plot effects) for the FS tests, with 
f ~ N (0, F ⊗G I ) , where GF is the family genetic (co)variance 
matrix between the FS tests with diagonal elements  2

fσ   repre-
senting the family variance (for the FS tests, a common vari-
ance was used) and off-diagonal elements 

jj´fσ     representing 
the family genetic covariance between test j and j’; a is the vec-
tor of random additive breeding values of all individuals for all 
tests, with a ~ N (0, A ⊗G A ) , where GA is the additive genetic 
(co)variance matrix between the six tests with diagonal ele-
ments  2

jjaσ  representing the additive variance of the jth test and 
off-diagonal elements 

jj´aσ    representing the additive genetic 
covariance between test j and j’, and the matrix A contains the 
additive relationships among all trees of all tests. Finally, e is 
the random vector of residuals, with e ~ N (0, R), where 

2

1 1
j j

s s

j n e
j j= =

= σ⊕ ⊕R  R =  I , 2
jeσ  , are scalars representing the error vari-

ance for each test j, with j = 1, ..., 6. Additionally, a spatial residu-
al structure (Gilmour et al. 1997) was also implemented within 
each GCA tests and this model is referred as GCA+FS_sp. Also, 
1 is the vector of ones; and Z1, Z2, Z3, Z4, and Z5, are tall inci-
dence matrices for their respective effects. 

Note that the additive genetic correlations (
jj´ar )  bet-

ween tests are estimated by the unstructured GA matrix. How-
ever, we finally reported the results from a GA matrix with diffe-
rent additive variances for each tests but the same additive 
genetic covariance between pair of tests (this allows a more 
parsimonious model).

The ASReml (version 3.0) program was used for all analy-
ses (Gilmour et al. 2009). Given the variance components esti-
mated from each GCA test, single-site narrow sense individual 

heritabilities ( 2ˆ
jh )  were estimated as:

 

2
2

2 2
ˆ

ˆ
ˆ ˆ

j

j j

a
j

a e

h =
+

σ

σ σ
 

where  2ˆ
jaσ   is the estimated additive genetic variance of the jth 

test, 2ˆ
jeσ    is the estimated error variance of the jth test. For the 

spatial models (i.e., GCA_sp and GCA+FS_sp models), the  2ˆ
jeσ    

was replaced for the estimated independent residual variance 
of the jth test ( 2ˆ

jη
σ )  (see for example, Ye and Jayawickrama 

2008). The heritabilities of FS tests were not reported because 
the mating and design of these trials (i.e., unreplicated plots 
containing trees from a single family) are not designed to 
obtain heritability estimates.

The BVs were expressed as a percentage of the control 
trees mean for each series (597 cm and 545 cm for Series 1 and 
2, respectively). For non-combined and combined analyses, 
BVs from each site were averaged using the heritability of each 
test as a weight factor to obtain a single BV for each test entry. 
Thus, more weight was given to the sites with high heritabili-
ties.

Model comparison was provided by the accuracy of pre-
diction of breeding values, which was computed using the fol-
lowing expression:

 

2

1 PEV
ˆ

ja

r −
=

σ
 

 The acronym PEV stands for ‘prediction error variance’ of pre-
dicted BVs using BLUPs of parent and offspring, this was calcu-
lated following to Henderson (1984).

Further model comparison of the non-combined (and 
combined) spatial and non-spatial models was provided by the 
Akaike Information Criterion (AIC) values (Akaike 1974):  
AIC = -2 × logL + 2 × d, where logL is the REML log-likelihood 
for the estimated model and d is a measure of model comple-
xity, “the effective number of parameters”. Models having a 
smaller AIC should be favored, as this indicates a better fit and 
a lower degree of model complexity. Unfortunately, the com-
bined analysis for both non-spatial and spatial models cannot 
be compared with the respective non-combined analysis (i.e., 
GCA+FS model vs. GCA or FS models, and GCA+FS_sp model 
vs. GCA_sp model) using the AIC, as AIC is not appropriate to 
compare models based on different data sets. However, we 
summed the AIC values from the non-combined FS and GCA_sp 
models and compared these values with those from the com-
bined GCA+FS_sp model.

To study the impact of the combined analysis on the back-
ward and forward selection decisions, further comparisons 
were provided by Spearman rank correlations. Specifically, 
Spearman correlations were computed for comparing whether 
the ranking of predicted breeding values for parents and off-
spring differ among the non-combined and combined models. 
Average of predicted breeding values, weighting by the herita-
bility of each site, were used to calculate the Spearman correla-
tions in each Series. For the non-combined models, weighting 
predicted breeding values of parents were averaged across the 
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GCA tests, while weighting predicted breeding values of off-
spring were averaged across the FS tests. For the combined 
models, weighting breeding values of parents and offspring 
were averaged across the six GCA and FS tests.

Results

Model Comparisons
When we compared the AIC values from the non-combined FS 
and GCA_sp models with those from the combined GCA+FS_sp 
model, the results showed a slight improvement for the com-
bined analysis only in the Series 1 (similar results were obtai-
ned using the logL) (Table 2). However, the non-combined and 
combined spatial MET analyses gave an improvement over the 
non-spatial MET models in the two series. For Series 1, the AIC 
criteria of the non-combined (GCA_sp model) and combined 
(GCA+FS_sp model) spatial MET models were smaller  than the 
respective non-combined (GCA model) and combined 
(GCA+FS model) non-spatial MET models. The AIC values for 
Series 2 following the same trend as Series 1, i.e., the non-com-
bined and combined spatial MET models were better than the 
respective non-spatial MET models (Table 2).

Impact of Combined Analysis on Genetic Parame-
ters 
In Series 1, small and variable changes in the single-site narrow 
sense individual heritabilities ( 2ĥ )  between combined and 
non-combined models were observed (Table 2). However, in 
Series 2, the estimated  2ĥ   for the combined models were hig-
her than that estimated for non-combined models for both 
non-spatial (average of 7.6 %) and spatial (average of 7.1 %) 
analyses (Table 2).

The additive genetic correlations (
jj´ar )  for the combined 

models were smaller than those obtained from the 

non-combined models, in both non-spatial and spatial analy-
ses (Table 2). In spite of the family term being confounded with 
plot effect, the same trend was found for the family genetic 
correlation (

jj´fr ) , i.e., smaller values were obtained from the 
combined non-spatial model in the in Series 1 (results not 
shown). However, both 

jj´ar     and 
jj´fr    correlation were fairly 

consistent between the non-spatial (GCA+FS model) and spa-
tial (GCA+FS_sp model) combined analyses.

Impact of Combined Analysis on Accuracy of 
Predicted Breeding Values
Table 3 shows the average accuracies of prediction breeding 
values for all model studied and for parents and offspring at 
individual site. As expected, average accuracy of prediction 
breeding values for parents from the non-combined GCA 
model were higher for the four GCA tests in both series than 
the respective values for the two FS tests. Meanwhile, average 
accuracy of prediction breeding values for offspring were hig-
her for the two FS sites than those values for the four GCA sites 
(Table 3), as full-sibs “sampled” a much narrower range in mic-
roenvironments (thus reducing phenotypic error), growing in a 
contiguous 5x5 block. 

For parents, the average accuracy of breeding values 
across the six complementary tests from the non-spatial com-
bined MET model (GCA+FS model), were higher than those 
obtained from the non-spatial non-combined models (GCA 
and FS models) in both Series studied (Table 3). However, these 
accuracies varied between the GCA tests and the FS tests. 
Meanwhile, the average accuracy for parents across the GCA 
tests from the combined GCA+FS model were slightly smaller 
for Series 1 (-0.67 %) and slightly higher for Series 2 (0.49 %) 
than those values from the non-combined GCA and FS models, 
the corresponding values for the FS tests were 8.8 % and 22.59 
%. Thus, these results highlight the inclusion of the GCA tests 
on the accuracies of parents of the FS tests. Averaging across 
the six complementary tests, the accuracies of BVs for parents 

Table 2 
 Log-likelihood (LogL), Akaike Information Criterion (AIC) values, additive genetic correlations ( âr ), and single-site narrow sense 
individual heritabilities for the general combining ability tests ( 2ĥ  ; standard error in parentheses) for the two complimenta-
ry test series of coastal Douglas-fir progeny tests using the non-combined non-spatial model for the full-sib (FS model) and 
general combining ability tests (GCA model), the non-combined spatial model (GCA_sp model), and the combined non-spatial 
(GCA+FS model) and spatial (GCA+FS_sp model) models. See text for a complete description of the models. 

Series 1 Series 2

GCA Model GCA Model

SITE FS GCA GCA_sp GCA+FS GCA+FS_sp SITE FS GCA GCA_sp GCA+FS GCA+FS_sp

LogL -24.38 -46.68 -46.12 -71.05 -70.48   -16.81 -39.49 -39.24 -56.31 -56.06

AIC 48.74 93.33 92.19 142.06 140.91 33.61 78.96 78.44 112.58 112.06

0.52 (0.13) 0.77 (0.07) 0.76 (0.07) 0.66 (0.06) 0.65 (0.06) 0.39 (0.20) 0.81 (0.07) 0.81 (0.07) 0.69 (0.07) 0.70 (0.07)

1 - 0.14 (0.05) 0.19 (0.06) 0.14 (0.04) 0.19 (0.06) 1 - 0.30 (0.08) 0.30 (0.08) 0.34 (0.09) 0.34 (0.09)

2 - 0.40 (0.08) 0.43 (0.08) 0.40 (0.08) 0.43 (0.08) 2 - 0.29 (0.07) 0.36 (0.08) 0.31 (0.07) 0.38 (0.09)

3 - 0.23 (0.06) 0.23 (0.06) 0.22 (0.06) 0.23 (0.06) 3 - 0.23 (0.07) 0.23 (0.07) 0.24 (0.08) 0.25 (0.08)

4 - 0.22 (0.06) 0.24 (0.07) 0.21 (0.06) 0.24 (0.06) 4 - 0.27 (0.07) 0.26 (0.07) 0.29 (0.08) 0.28 (0.08)

âr

 2ĥ  
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increased when the number of offspring by parents from the 
FS test increased for both the non-combined and combined 
analyses (Figure 1). However, the increase was more pro-
nounced in Series 2. In our data, GCA and FS models showed 
lower accuracies of BVs for parents than GCA+FS model, due to 
the low accuracy of the FS parents breeding values calculated 
with the non-combined GCA or FS model. However, these dif-
ferences decreased when the number of offspring added from 
the FS sites increase (Figure 2).

For offspring, the average accuracy of breeding values 
across the six complementary tests from the GCA+FS model 
was slightly smaller than those obtained from the GCA and FS 
models in Series 1, while this value was slightly higher in Series 
2 (Table 3). However, these accuracies also varied between the 
GCA and FS tests. The average accuracy for offspring from the 
combined GCA+FS model were low, and increased for the GCA 
(average of 2.19 %) and FS (average of 0.93 %) tests of Series 2, 
and decreased for the GCA tests (average of -0.86 %) and incre-
ase for the FS tests (average of 0.83 %) of Series 1, with respect 
to the non-combined GCA and FS models. Averaging across 
the two FS tests, the accuracies of BVs for the FS offspring 
showed no change with adding half-sib offspring from the four 
GCA tests in both FS tests (Figure 3). Moreover, slight differen-
ces in the accuracies of the FS offspring were observed in both 
sites between non-combined (FS model) and combined 

(GCA+FS model) when we increased the number of half-sib off-
spring from the four GCA tests (Figure 3). However, these diffe-
rences between the GCA+FS and FS models increased with an 
increasing number of half-sib offspring from the GCA tests 
(Figure 4).

The average accuracy of prediction breeding values across 
the six trials, calculated from the GCA+FS_sp model were 
slightly higher (only differences in the third decimal place) for 
parents and offspring, than corresponding values from GCA+FS 
model (Table 3). For the GCA_sp analysis, the average accuracy 
of prediction of breeding values were also slightly higher for 
parents and offspring, than corresponding values for parents 
and offspring calculated from GCA model (Table 3). These hig-
her accuracies of breeding values for parents and offspring are 
associated with higher heritabilities estimated with spatial 
models for both combined and non-combined analyses (Table 2). 

In summary, our results show that the additional informa-
tion from the combined analyses resulted in negligible increa-
ses in accuracies of parents of the GCA compared to accuracies 
obtained by GCA analysis alone. In conctrast, for the parents of 
the FS tests, these increases were high (across both series hig-
her than 7.87 %). Also, less than 1 % increase in accuracies were 
found for the offspring of both FS and GCA tests. Similarity, 
increases in the accuracies for parents and offspring was less 
than 1 % compared to the spatial and non-spatial models. It is 

Table 3 
Average individual site accuracies of prediction of breeding values for parents and offspring from the non-combined non-
spatial model for the full-sib (FS, FS model) and general combining ability tests (GCA, GCA model), the non-combined spatial 
model (GCA_sp model), and the combined non-spatial (GCA+FS model) and spatial (GCA+FS_sp model) models. See text for a 
complete description of the models. 

Accuracies of breeding values for parents

Series 1 Series 2

SITE
Model

SITE
Model

FS GCA GCA_sp GCA+FS GCA+FS_sp FS GCA GCA_sp GCA+FS GCA+FS_sp

1 GCA -  0.82 0.83 0.81 0.81 1 GCA  - 0.86 0.86 0.86 0.86

2 GCA  - 0.88 0.89 0.89 0.89 2 GCA  - 0.87 0.87 0.87 0.88

3 GCA  - 0.84 0.84 0.83 0.84 3 GCA  - 0.84 0.85 0.84 0.85

4 GCA  - 0.84 0.84 0.83 0.84 4 GCA -  0.86 0.86 0.86 0.86

5 FS 0.77  - -  0.85 0.85 5 FS 0.70  -  - 0.84 0.84

6 FS 0.80 -  -  0.86 0.86 6 FS 0.64  -  - 0.81 0.81

Average 0.79 0.85 0.85 0.85 0.85 Average 0.67 0.86 0.86 0.85 0.85

Accuracies of breeding values for offspring

Series 1 Series 2

SITE
Model

SITE
Model

FS GCA GCA_sp GCA+FS GCA+FS_sp FS GCA GCA_sp GCA+FS GCA+FS_sp

1 GCA -  0.51 0.52 0.51 0.52 1 GCA  - 0.62 0.62 0.64 0.64

2 GCA -  0.68 0.69 0.68 0.69 2 GCA  - 0.62 0.63 0.62 0.64

3 GCA -  0.57 0.57 0.57 0.57 3 GCA  - 0.57 0.57 0.58 0.58

4 GCA -  0.57 0.58 0.56 0.58 4 GCA  - 0.60 0.60 0.61 0.60

5 FS 0.84 -   - 0.86 0.86 5 FS 0.86  - -  0.87 0.86

6 FS 0.85 -   - 0.85 0.85 6 FS 0.71  - -  0.72 0.72

Average 0.85 0.58 0.59 0.67 0.68 Average 0.78 0.60 0.61 0.67 0.68



44Cappa et al. · Silvae Genetica (2016) 65-1, 38-48

likely that the incomplete block (Alpha) design used for the 
four GCA tests already may have accounted for much of the 
local environmental heterogeneity (Cappa et al. 2013). This 
could explain why, on average, spatial analyses in both series 
were not very effective.

 Overall, Spearman rank correlations between the non-
combined and combined non-spatial (GCA+FS model vs. GCA 
and FS models) and spatial (GCA+FS_sp model vs. GCA_sp 
model) models were high in both series for predicted breeding 
values of parents and offspring (from 0.83 to 0.98, results not 
shown), but for parents larger between the spatial models 

Figure 1  
Average of accuracies of breeding values for parents across the six complementary tests from the non-combined (GCA and FS 
models) and combined (GCA+FS model) analyses by the additional number of offspring by parents from the full-sib tests.

Figure 2 
Percentage of increment in the average of accuracy of breeding values for parents across the six complementary test from the 
non-combined (GCA and FS models) and combined analyses (i.e., for the addition of offspring from the full-sibs tests, GCA+FS 
Model) by the additional number of offspring by parents from the full-sib tests.
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(average 0.90) than between the non-spatial models (average 
0.88). Although Spearman rank correlations were high, there 
are some rank changes among the best 10 parents and 10 off-
spring across the mixed models studied in the two series 
(results not shown).

Discussion

Complementary mating designs allow the simultaneous rank-
ing of parents for their general combining ability and to pro-
duce the next generation from within-family forward selection. 

Figure 3 
Average of accuracies of breeding values for offspring across the two full-sib tests from the non-combined (FS model) and com-
bined (GCA+FS model) analyses by the additional number of half-sib offspring from the general combining ability tests.

Figure 4 
Percentage of increment in the average of accuracy of breeding values for full-sib offspring across the two full-sib test from the 
non-combined (FS model) and combined analyses (i.e., for the addition of offspring from the general combining ability progeny 
tests, GCA+FS model) and full-sib sites 5 and 6 by the number of half-sib offspring from the general combining ability tests.
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To do this, polymix or GCA tests are planted in well-replicated 
single-tree plots using polymix-pollinated families; meanwhile, 
FS tests are planted in essentially un-replicated large block 
plots (from 25 to 100 trees) using control pollinated crosses 
between two parents. Complementary mating designs have 
been employed by several tree improvement programs (e.g. 
White et al. 1993; White et al. 1999; Johnson 1998b). However, 
classical forward selections in complementary tests involve 
two steps (White et al. 2007, page 375): 1) the FS families are 
ranked based on the mid-parent BVs predicted from the poly-
mix tests, 2) the best individual tree selections will then be 
made from within full-sib blocks. In this research, we applied a 
combined analysis of the polymix and FS tests using the mixed 
model approach to predict simultaneously BVs of grandpar-
ents, parents, full-sib families and forward selected offspring 
on the same scale. Moreover, a first order autoregressive spatial 
mixed model for the GCA tests was also implemented in the 
combined analysis. Combined analysis using the mixed model 
approach benefited from combining information between two 
generations from several genetic tests with varying mating 
and field designs. These abilities, coupled with the possibility 
to handle the spatial heterogeneity within trials, and the avail-
ability of genetic-test specific computer software, makes com-
bined analysis a flexible tool for the analysis of complementary 
tests of forest trees. 

Combined analysis using mixed model approach allowed 
estimates at the same time the BVs for parents, full-sib families 
and offspring of the six complementary progeny tests of coas-
tal Douglas-fir program. Precise BV predictions are important 
in the GCA tests because these are used to select the appropri-
ate parents to be used in crosses for the next generation. In our 
two series of Douglas-fir studied, the addition of two FS tests 
using the proposed combined analysis to increase the accura-
cies of the GCA parents BVs, was of little value (Table 3). These 
results highlighted that the number of progenies (average of 
92) evaluated for parents in the four Douglas-fir GCA sites was 
adequate to obtain high accuracies (> 0.82). Add more infor-
mation from the two FS sites (i.e., more progenies with higher 
level of genetic relatedness) resulted only in slight increment 
on the accuracies of the parents BVs. We expect that the advan-
tage of using combined analysis to increase the accuracy of 
parental BVs will be greater if there are smaller numbers of pro-
genies available per parent from the GCA tests.

In the classical complementary tests, the FS tests are not 
used to rank parents (White et al. 1999). However, our empirical 
results show that the proposed combined analyses resulted in 
accuracies of the FS parents BVs comparable to the parents 
from the GCA sites (Table 3). While it is true that parental BV are 
generally obtained from GCA (polycross) tests, the added 
increase in accuracy derived from our combined analysis is still 
very important, as these parents are still producing seeds in 
seed orchards until they are replaced by their forward selected 
offspring. This can have immediate practical impacts as the 
best parents used in the GCA test under all likelihood are seed 
producing parents in current seed orchards. In Douglas-fir, it 
takes up to 15 years before new forward selections are mature 
enough to produce seed. In the meantime, the bulk of the seed 

produced is by the parents of these forward selections. Clearly, 
having more accurate parental BV is a large benefit especially 
in situations where orchard genetic gains are incorporated into 
annual allowable cut determinations as in British Columbia. 
These increases in the accuracies were higher for Series 2 than 
Series 1, suggesting that adding the four GCA sites have a hig-
her impact on the parent accuracies when the number of pro-
genies for parents was smaller in the FS sites (i.e., 5,566 vs. 
7,832 for Series 2 and Series 1, respectively). Similar trends 
have been observed in two simulation data set when the previ-
ous generation was added (Johnson et al. 1998b; Ye et al. 2007). 
Johnson et al. (1998b) observed that when the first-generation 
data were added (i.e., data of the half-sib family from the first-
generation tests from where the parents were selected), bree-
ding values estimates of the parents showed very little impro-
vement. Ye et al. (2007) evaluated the impact of using 
first-generation genetic information to increase selection 
efficiency in a second-generation breeding program. When 
parents were selected via forward selection, first-generation 
information provided little increase in the selection efficiency.

The additional information from parents could increase 
the ability to rank offspring for the subsequent generation. 
However, contribution of historical information depends on 
the quantity but also on the quality of the related genetic infor-
mation (Ye et al. 2007). Then, the accuracy of breeding values, 
and hence the selection, can be influenced by the degree of 
genetic connectedness (Kennedy and Trus 1993), in our case, 
between the complementary tests. Combined analysis showed 
low increase of the accuracies of BVs for offspring (i.e., for for-
ward selections) from the two FS sites, but was slight higher for 
Series 2 (0.93 %) than for Series 1 (0.83 %) (Table 3; Figure 2). 
Albeit a lot of progenies from the GCA tests were added for the 
forward selections (7,779 from Series 1 and 9,036 from Series 
2), these progenies only add half-sib relationships. Thus, one 
reason for these results might be that the contribution of infor-
mation from the GCA tests is lower (genetic covariance among 
half-sibs, 0.25 of the additive variance) than those that there 
was already within the FS tests (genetic covariance among full-
sibs, 0.50 of the additive variance). Moreover, a large proporti-
on of hidden relatedness from polycross parents of the GCA 
tests may affect the resulting accuracies of BVs for offspring 
from the two FS sites when the combined analysis is perfor-
med (El-Kassaby et al. 2011). Likely, Series 2 had a higher incre-
ase given the lower number of the FS progenies (5,566) than 
Series 1 (7,832). Additionally, these results highlight that the 
number of offspring per cross generated and tested in the two 
FS tests (average by test 40.1) is adequate to obtain a high level 
of accuracies of these offspring (average within sites > 0.71) in 
these Douglas-fir data sets. It seems likely that the advantage 
of using the combined analysis to improve the accuracies of FS 
offspring will be greater in data sets with smaller number of 
offspring per cross. Therefore, the Douglas-fir breeding pro-
gram could reduce the testing population size in the future, or 
for the same number of test entries, use more sites.

The increase in accuracies also is dependent on the diffe-
rences between the genetic correlations between the sites: the 
larger the differences in these correlations, the greater the gain 
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in accuracy of evaluations (Mrode 2005). The correlation bet-
ween all the six sites using the GCA+FS model was 0.66 and 
0.69, for Series 1 and 2, respectively (see  in Table 2); however, 
when different additive genetic covariance between pairs of 
test were fitted within each series (i.e., using an unstructured 
GA matrix), the average additive genetic correlation between 
GCA and FS sites was slightly lower, 0.59 (from 0.37 to 0.83) for 
the Series 1 and 0.69 (from 0.38 to 0.99) for Series 2. These 
results also could explain the low to moderate increment in 
accuracies of breeding values for backward and forward selec-
tions of the proposed combined analysis.

Spatial analysis, partitioning the residual variance into an 
independent component and a two-dimensional spatially 
autocorrelated component, is now routinely applied in forest 
genetic trails (e.g., Costa e Silva et al. 2001; Dutkowski et al. 
2002; 2006). However, spatial MET analyses in data from forest 
genetic trial using this autoregressive covariance structure 
within of each trial is still limited (Ye and Jayawickrama 2008; 
Ding et al. 2008; Hardner et al. 2010). Consistent with these 
spatial MET studies, our empirical data set shows that com-
bined (and non-combined) analyses jointly with spatial models 
gave an improvement (i.e., lower values of AIC) over the non-
spatial combined (and non-combined) model, by accounting 
simultaneously for genotype by environment interaction and 
the presence of spatial heterogeneity within trials. However, 
these authors reported higher increases in accuracies of pre-
diction of breeding values from the spatial MET model (from 3 % 
to 17 %), than those found in our combined spatial GCA+FS_Sp 
model respect to the non-spatial GCA+FS model (averaging 
parents and offspring of 0.62 %), and non-combined spatial 
GCA_sp model respect to the non-spatial GCA model (avera-
ging parents and offspring of 0.75 %). 

Conclusion

Combined analysis using mixed model approach provides a 
flexible tool for the analysis of complementary tests. It can 
accommodate multiple generations of different genetic tests 
with different types of crosses, experimental and/or plot 
designs, and at the same time, account for the spatial hetero-
geneity within each trial by fitting spatial models through a 
first-order autoregressive residual covariance structure. Doug-
las-fir for a single variable shows that additional information 
provided by the proposed combined analysis produced an 
improvement in model fit when compared with the non-com-
bined analysis. The improvements in the accuracies of bree-
ding values for backward and forward selections were gene-
rally modest, but in general, in favour of the proposed 
combined analysis. Spatial combined analysis gave slightly 
better results than the non-spatial combined model. The com-
bined analysis approach will be most effective when the num-
ber of offspring per GCA parents and/or per full-sib cross be 
lower than those used for the analysis of this empirical Coastal 
Douglas-fir data set.
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