Analysis of absolute nuclear DNA content reveals a small genome and intra-specific variation in Cashew (Anacardium occidentale L.), Anacardiaceae

Open access


There are scanty data on genome size of Anacardiaceae, and none has been reported for cashew, Anacardium occidentale till date. This study aimed at determining the absolute nuclear DNA content (genome size) that could facilitate research into bio-systematics, genomics and genetic improvement of this important tropical tree crop species. Here, isolated nuclei of preparations from 43 cashew accessions selected across five growing regions were flow cytometrically analyzed for genome size determination using Solanum lycopersicum var. Stupicke with a genome size of 1.96 pg/2C as an internal reference standard.

Mean genome size was significantly different (P<0.01) across the 43 cashew accessions suggesting intra-specific variation (about 3.6% coefficient of variation) for absolute nuclear DNA content in this species, but with no evidence of endopolyploidy or endoreduplication. Flow cytometric analysis data presented here showed that absolute genome size of cashew is about 0.857 pg/2C (419 Mb/1C). However, there was a slight gradual increment in genome size from south to north gradient across sampled populations. The data also showed significant correlation (r=0.368, P<0.01) between nuclear DNA content (genome size) and phenotypic trait, nut weight. The results obtained here confirmed relatively small genome size in this tree species, almost twice genome size of diploid Arabidopsis thaliana but slightly lower than mango, Mangifera indica, a close relative in Anacardiaceae. Similarity in genome size between Mangifera indica and Anacardium occidentale could be a further proof of genetic relatedness between these two important species of Anacardiaceae.

ALIYU, O. M. and J. A. AWOPETU (2007): Chromosome studies in cashew (Anacardium occidentale L.). African Journal of Biotechnology, 6 (2): 131-137.

ALIYU, O. M. and L. A. HAMMED (2008): Nigerian cashew economy: a review of the nut production sector. Peerreviewed Proceedings of the 9th Annual conference of International Academy of African Business and Development, The University of Florida, Gainesville, Florida, USA May 20-24, 2008. Edited By: Simon Sigué Athabasca University, Canada. 109-118.

ALIYU, O. M., O. O. ADEIGBE and O. O. LAWAL (2014): Phenotypic stability analysis of yield components in cashew (Anacardium occidentale L.) using additive main effect and multiplicative interaction (AMMI) and GGE biplot analyses. Plant Breeding and Biotechnology, 2 (4): 354-369.

ARUMUGANATHAN, K. and E. D. EARLE (1991): Nuclear DNA content of some important plant species. Plant Molecular Biology Reporter 9 (3): 208-219.

BENNETT, M. D. and I. J. LEITCH (2011): Nuclear DNA amounts in angiosperms: targets, trends and tomorrow. Annals of Botany, 107: 467-590.

BENNETT, M. D. and I. J. LEITCH (2012): Plant DNA C-values Database.

BENNETT, M. D., I. J. LEITCH, H. J. PRICE and J. S. JOHNSTON (2003): Comparison with Caenorhabditis (~100 Mb) and Drosophila (~175 Mb) using flow cytometry show genome size in Arabidopsis to be ~157 Mb and thus ~25% larger than the Arabidopsis Genome Initiative estimate of ~125 Mb. Annals of Botany, 91: 1-11.

BENNETZEN, J. L. and E. A. KELLOGG (1997): Do plants have a one-way ticket to genomic obesity? The Plant Cell, 9: 1509-1514.

BENNETZEN, J. L., J. MA and K. M. DEVOS (2005): Mechanisms of recent genome size variation in flowering plants. Annals of Botany, 95: 127-132.

BEAULIEU, J. M., A. T. MOLES, I. J. LEITCH, M. D. BENNETT, J. B. DICKIE and C. A. KNIGHT (2007): Correlated evolution of genome size and seed mass. New Phytologist, 173 (2): 422-437.

BHASKARA-RAO, E. V. V. and K. R. M. SWAMY (2005): Cashew. In: CHOPRA, V. L., PETER, K.V. (ed) Handbook of Industrial Crops. Food Products Press & The Haworth Reference Press, Binghamton, New York. Pp. 77-136.

CAVALIER-SMITH, T. (2005): Economy, speed and size matter: evolutionary forces driving nuclear genome miniaturation and expansion. Annals of Botany 95: 147-175

CHEN, S., C. H. CANNON, C. KUA, J. LIU and D. W. GALBRAITH (2014): Genome size variation in Fagaceae and its implications for trees. Tree Genetics & genomes 10: 977-988.

CHEVALIER C., M. NAFATI, E. MATHIEU-RIVET, M. BOURDON, N. FRANGNE, C. CHENICLET, J. RENAUDIN, F. GEVAUDANT and M. HERMOULD (2011): Elucidating the functional role of endoreduplication in tomato fruit development. Annals of Botany, 107 (7): 1159-1169.

CHUNG, J., J. H. LEE, K. ARUMUGANATHAN, G. L. GRAEF and J. E. SPECHT (1998): Relationships between nuclear DNA content and seed size and leaf size in soybean. Theoretical and Applied Genetics, 96: 1064-1068.

DECKERS, J., E. CUNDALL, S. H. SHOMARI, A. NGATUNGA and G. BASSI (2001): Nut crops. Raemaekers, R. H. In: Crop Production in Tropical Africa. pp. 691-715.

DOLEŽEL, J., S. SGORBATI and S. LUCRETTI (1992): Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiol. Plant. 85: 625-631.

DOLEŽEL, J., J. GREILHUBER, S. LUCRETTI, A. MEISTER, M. A. LYSÁK, L. NARDI and R. OBERMAYER (1998): Plant genome size estimation by flow cytometry: Inter-laboratory comparison. Annals of Botany, 82 (Suppl. A): 17-26.

DOLEŽEL, J., J. BARTOS˘, H. VOGLMAYR and J. GREILHUBER (2003): Nuclear DNA content and genome size of trout and human. Cytometry, 51A: 127-128.

DOLEŽEL, J. and J. BARTOS˘ (2005): Plant DNA flow cyto - metry and estimation of nuclear genome size. Annals of Botany, 95: 99-110.

DOLEŽEL, J., J. GREILHUBER and J. SUDA (2007): Flow cytometry with plants: An overview. In: DOLEZ˘EL, J., Greilhuber, J., SUDA, J. (ed) Flow Cytometry with Plant Cells. Analysis of Genes, Chromosomes and Genomes. Weinheim: Wiley-VCH; 2007. pp 41-65.

DUVAL, M., F. J. BUNEL, C. SITBON and A. M. RISTERUCCI (2005): Development of microsatellite markers for mango (Mangifera indica L.). Molecular Ecology Notes, 5, 823-826.

GALBRAITH, D. W., K. R. HARKINS, J. M. MADDOX, N. M. AYRES, D. P. SHARMA and E. FEROOZABADY (1983): Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science, 220: 1049-1051.

GALBRAITH, D. W., K. R. HARKINS and S. KNAPP (1991): Systemic endopolyploidy in Arabidopsis thaliana. Plant Physiology, 96: 985-989.

GREGORY, T. R. (2005): The C-value enigma in plants and animals: a review of parallels and an appeal for partnership. Annals of Botany, 95: 133-146.

GREILHUBER, J. (1998): Intraspecific variation in genome size: a critical reassessment. Annals of Botany, 82 (Suppl. A): 27-35.

GREILHUBER, J. (2005): Intraspecific variation in genome size in angiosperms: identifying its existence. Annals of Botany, 95: 91-98.

HAMMED, L. A. and E. A. ADEYEMI (2005): Effects of nutsowing orientation and cotyledon removal on germination of cashew nuts and performance of the seedlings in the nursery. Nigerian Journal of Horticulture Science. Vol. 10: 59-64.

HAMMED, L. A., O. M. ALIYU, K. E. DADA and S. EGBEWALE (2014): Cultivar type and nut sowing orientation influence germination and plant vigour in cashew (Anacardium occidentale L.). International Journal of Fruit Science, 14: 69-80.

HORJALES, M., N. REDONDO, A. BLANCO and M. A. RODRÍGUEZ (2003): Cantidades de DNA nuclear en Ãirboles y arbustos. Nova Acta Cientifica Compostelana (Bioloxía) 13: 23-33.

JOHNSTON, J. S., M. D. BENNETT, A. L. RAYBURN, D. W. GALBRAITH and H. J. PRICE (1999): Reference standards for determination of DNA content of plant nuclei. American Journal of Botany 86: 609-613.

KNIGHT, C. A., R. B. CLANCY, L. GOTZENBERGER, L. DANN, and J. M. BEAULIEU (2010): On the relationship between pollen size and genome size. Journal of Botany, ID612017, 7 pages.dio: 10.1155/201/612017

LIETCH, I. J. and M. D. BENNETT (2004): Genome down - sizing in polyploid plants. Biological Journal of the Linnean Society 82: 651-663.

LEITCH, A. R. and I. J. LEITCH (2008): Genomic plasticity and the diversity of polyploid plants. Science, 320: 481-483.

LOUREIRO, J., E. RODRIGUEZ, J. DOLEZ˘EL and C. SANTOS (2006): Flow cytometric and microscopic analysis of the effect of tannic acid on plant nuclei and estimation of DNA content. Annals of Botany, 98: 515-527.

MANCHESTER, S. R., V. WILDE and M. E. COLLINSON (2007): Fossil Cashew Nuts from the Eocene of Europe: Biogeographic links between Africa and South America. International Journal of Plant Science, 168 (8): 1199-1206.

MARTIN, P. J., C. P. TOPPER, R. A. BASHIRU, F. BOMA, D. DE WALL, H. C. HARRIES, L. J. KASUGA, N. KATANILA, L. P. KIKOKA, R. LAMBOLL, A. C. MADDISON, A. E. MAJULE, P. A. MASAWE, K. J. MILLANZI, N. Q. NATHANIELS, S. H. SHOMARI, M. E. SIJAONA and T. STATHERS (1997): Cashew nut production in Tanzania: constraints and progress through integrated crop management. Crop Protection, 16: 5-14.

MITCHELL, J. D. and S. A. MORI (1987): The cashew and its relatives (Anacardium, Anacardiaceae). Memoirs of New York Botanical Gardens English 42: 1-76.

MUKHERJEE, S. K. (1950): Mango: its allopolyploid nature. Nature 166, 196-197.

NOIROT, M., V. PONCET, P. BARRE, P. HAMON, S. HAMON and A. DE KOCHKO (2003): Genome size variation in diploid African Coffea Species. Annals of Botany, 92: 709-714.

OHRI, D., A. BHARGAVA and A. CHATTERJEE (2004): Nuclear NA amounts in 112 species of tropical hardwoods - New estimates. Plant Biology, 6: 555-561.

PARAMSHIVAPPA, R., P. PHANI-KUMAR, P. J. VITHAYATHIL and A. SRINIVASA-RAO (2001): Novel method for isolation of major phenolic components from cashew (Anacardium occidentale L.) nut shell liquid. J. Agric. Food Chem., 49, 2548-2551.

PELL, S. K. (2004): Molecular Systematics of the Cashew family (Anacardiaceae). Ph.D Dissertation in the Department of Biological Sciences, Louisiana State University of Agricultural and Mechanical College, USA. pp 207. webpage visited 10th November, 2014.

RICKSON, F. R. and M. M. RICKSON (1998): The cashew nut, Anacardium occidentale (Anacardiaceae), and its perennial association with ants: extra-floral nectary location and the potential for ant defense. American Journal of Botany, 85 (6): 835-849.

SCHMUTHS, H., A. MEISTER, R. HORRES and K. BACHMANN (2004): Genome Size Variation among Accessions of Arabidopsis thaliana. Annals of Botany, 93: 317-321.

SCHNELL, R. J., J. S. BROWN, C. T. OLANO, A. W. MEEROW, R. J. CAMPBELL and D. N. KUHN (2006): Mango genetic diversity analysis and pedigree inferences for Florida cultivars using microsatellite markers. Journal of the American Society for Horticultural Science, 131: 214-224.

SILJAK-YAKOVLEV, S., F. PUSTAHIJA, E. M. Åolic, F. BOGUNIC, E. MURATOVIC, N. BAÅIIC, O. CATRICE and S. C. BROWN (2010): Towards a genome size and chromosome number database of Balkan flora: C-values in 343 taxa with novel values for 242. Advanced Science Letter, 3: 190-213.

SOLTIS, D. E., P. S. SOLTIS, M. D. BENNETT and I. J. LEITCH (2003): Evolution of genome size in Angiosperm. American J. Botany 90: 1596-1603.

STRASBURGER, E., F. NOLL, H. SCHENK and A. F. W. SCHIMPER (1991): Lehrbuch der Botanik für Hochschulen, 33. Auflage. Stuggart: Gustav Fischer.

VIRUEL, M. A., P. ESCRIBANO, M. FERRI and J. I. HORMAZA (2005): Fingerprinting, embryo type and geographic differentiation in mango (Mangifera indica L., Anacardiaceae) with microsatellites. Molecular Breeding 15: 383-393.

XIE, L., Z. YANG, J. WEN, D. LI and T. YI (2014): Biogeography history of Pistacia (Anacardiaceae), emphasizing the evolution of the Madrean - Tethyan and the eastern Asian-Tethyan disjunctions. Molecular Phylogenetics and Evolution, 77: 136-146.

ZONNEVELD, B. J. M., I. J. LEITCH and M. D. BENNETT (2005): First nuclear DNA amounts in more than 300 angiosperms. Annals of Botany, 6 (2): 229-244.

Journal Information

IMPACT FACTOR 2018: 0,741
5-year IMPACT FACTOR: 0,651

CiteScore 2018: 0.77

SCImago Journal Rank (SJR) 2018: 0.345
Source Normalized Impact per Paper (SNIP) 2018: 0.362

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 190 149 20
PDF Downloads 104 93 10