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Abstract

Casuarina equisetifolia has the widest distribution of
all Casuarina species and is a nitrogen-fixing tree plant-
ed in tropical/subtropical littoral zones of Asia, the Pacif-
ic and Africa for coastal reclamation, charcoal making,
pulp and timber. Trichosporium vesiculosum, the causal
agent of blister bark disease, is a serious pathogen of
C. equisetifolia. The present study was undertaken to
understand the molecular mechanisms involved during
pathogen cell wall elicitation in this hardy tree species.
Transcript profiling during elicitation induced by cell
wall components of T. vesiculosum revealed expression of
resistance genes; cytochrome oxidase; trans membrane
proteins; genes involved in programmed cell death like
26S proteasome and ubiquitin activating enzyme; early
nodulin gene, wound inducible metallocarboxy peptidase
inhibitor, glucanase, metal binding protein and signal
recognition particle. The fold expression of selected tran-
scripts including glucanase, 26 S proteasome, signal
recognition particle, cytochrome oxidase and the metal
binding protein using RT-qPCR revealed 12-59 fold
increase in expression after 48 hours of elicitor treat-
ment. The expression of these transcripts during abiotic
stresses like heat, mechanical wounding, salt (NaCl) and
drought (PEG) was also analyzed. Glucanase was up-reg-
ulated significantly during wounding and heat stress
while proteasome was up-regulated 1-4 fold during NaCl,
PEG and wounding stress. The novel transcript CeHMA
was up-regulated under all the stress conditions.

This is the first report on molecular defense in C. equi-
setifolia and has provided a pool of candidate genes for
detailed molecular dissection to further broaden the
knowledge on the response of woody perennials during
pathogen cell wall elicitation. 

Key words: Abiotic stress; elicitor treatment; transcript profil-
ing; tree defense.

Introduction

The genus Casuarina is a member of the Casuari-
naceae family which is phylogenetically distinct, with no
close relatives and hence assigned to an order of its own,
the Casuarinales (BEADLE, 1981). C. equisetifolia, a
major species under this family is a nitrogen-fixing mul-
tipurpose tree used for landscaping, timber, medicine,
dye, pulp, tannin, wood fuel production, soil stabiliza-
tion, reforestation of marginal ecosystems, amenity
planting and land fertilization (PAN et al., 1996).

One of the major disease reported in C. equisetifolia is
the blister bark or wilt disease caused by the
hyphomycete fungus Trichosporium vesiculosum (syn-
onym Subramanianospora vesiculosa) (TITZE and VAN

DER PENNE, 1983; MOHANAN and SHARMA, 1993). The dis-
ease is characterized by foliage yellowing, rapid wilting
followed by desiccation, browning and dieback of trees
either singly or in groups. The disease incidence ranges
from 40 percent in India in pockets (SHARMA, 1995) to 90
percent in Binh Thuan provenance in Vietnam (SHARMA,
1994) and has been reported from India, China, Viet-
nam, Thailand, Mauritius and Sri Lanka (MOHANAN and
SHARMA, 1993; PONGPANICH et al., 1996; CHONGLU, 2000).
It is reported mostly from regions were the species has
been introduced. Until recently, T. vesiculosum was not
categorized based on the mechanism of infection, howev-
er the mode of infection indicates that the pathogen
behaves as an obligate biotroph with limited host range
(as the pathogen is reported to infect only Casuarina
sp.) and requires living cells to complete its life cycle
(VELUTHAKKAL and GHOSH DASGUPTA, 2012). 

Research on management of this disease has been lim-
ited to assessment of provenances for tolerant pheno-
types, etiology and epidemiological studies (NARAYANAN

et al., 1996; KARTHIKEYAN et al., 2011). 

Plant – microbe interactions are among the most
dynamic and complex biological phenomena as they
involve host contact with multiple microbes including
pathogens, myriad of symptoms and interaction with
unlimited number of pathogen molecules at every per-
ceivable cellular levels (SCHNEIDER and COLLMER, 2010).
Fungal plant pathogens are classified into two major
groups (biotrophs and necrotrophs) based on their mode
of infection. Hemibiotrophy has been defined by PERFECT

and GREEN (2001) including pathogens with initial peri-
od of biotrophy followed by nectrophic phase. Molecular
signaling to different classes of pathogens has been
widely studied and involves three major pathways, the
salicylic acid (SA) dependent pathway predominant in
biotrophs and the jasmonic acid (JA) and ethylene (ET)
dependent pathways operative during necrotrophy and
herbivory (THOMMA et al., 2001; KESSLER and BALDWIN,
2002; GLAZEBROOK, 2005). However, extensive cross-talk
between the signaling pathways involving antagonistic
and synergistic interactions has been reported (NORMAN-
SETTERBLAD et al., 2000; DE VOS et al., 2005). The
defense mechanisms triggered by both pathways are
usually overlapping but the outcome (resistance or sus-
ceptibility) depends on the nutritional preference of the
invading pathogen (FRIESEN et al., 2008; WOLPERT et al.,
2002).
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The SA-dependent pathways operative during
biotrophic interactions is widely documented during
host-pathogen interaction. The initial response to
pathogen invasion occur rapidly resulting in local gene
activation causing hypersensitive reaction (HR) and cell
death (SOMSSICH and HAHLBROCK, 1998). Subsequently,
signal transduction cascades through altered cytoplas-
matic Ca2+ levels, reactive oxygen species, nitric oxide
and post-translationally regulated mitogen-activated
protein kinase results in transcriptional activation of
genes involved in systemic acquired resistance (SAR)
(ZHANG and KLESSIG, 2001; MUR et al., 2006; FRAIRE-
VELÁZQUEZ et al., 2011). SAR is characterized by the
expression of pathogenesis-related (PR) proteins and
induction of the phenyl propanoid pathway. This results
in an extensive reprogramming from primary to sec-
ondary pathways with down-regulation of non-essential
cellular activities (SOMSSICH and HAHLBROCK, 1998). 

Recent studies have revealed that the physiological
and biochemical responses of trees in response to
 invading pathogens are homologous to the herbaceous
crops, but variations are likely to occur at gene regula-
tion and signaling pathways (VELUTHAKKAL and GHOSH

DASGUPTA, 2010). Studies on molecular responses of
trees to compatible/incompatible pathogens are reported
from Pinus spp. (ADOMAS et al., 2007; MORSE et al., 2004;
RICHARDSON et al., 2010), Castanea spp. (BARAKAT et al.,
2009), Populus trichocarpa (DUPLESSIS et al., 2009;
 HACQUARD et al., 2011), Douglar-fir (STURROCK et al.,
2007), Fagus sylvatica (SCHLINK, 2009; 2010; VALCU et
al., 2009), Eucalyptus spp. (FURTADO et al., 2007), hybrid
poplar (MIRANDA et al., 2007; RINALDI et al., 2007; AZAIEZ

et al., 2009) and Norway Spruce (NAGY et al., 2004).
However, there has been no systematic study in the
 family casuarinaceae on the molecular aspects of dis-
ease resistance. The only study on the molecular inter-
action is from C. glauca, phylogenetically close taxa to
C. equisetifolia, during symbiotic association with
Frankia (HOCHER et al., 2006; FRANCHE et al., 2011).
Thus, the molecular event during host-pathogen interac-
tion has not been addressed in this genus. Hence, the
present study was taken up to understand the defense
response during C. equisetifolia when challenged with
the cell wall elicitors derived from its pathogen,
T. vesiculosum.

Materials and Methods

Fungal strain and elicitor preparation

Fungal isolate of Trichosporium vesiculosum was
obtained from the culture collection of the Division of
Plant Protection, Institute of Forest Genetics and Tree
Breeding, Coimbatore, India and maintained on potato
dextrose agar medium. Hyphal mass was grown in pota-
to dextrose broth for 30 days. The mycelial mat was har-
vested, rinsed with sterile water several times and re-
suspended in sterile water and homogenized. The slurry
was filtered and the residue was extracted thrice with
water followed by chloroform: methanol (1:1) and finally
with acetone. The preparation was air dried and consid-
ered as mycelial wall. The extract was suspended (1gm
in 10ml) in water and autoclaved twice. The autoclaved

suspension was clarified by centrifugation and used as
elicitor. One ml of elicitor was used for further studies. 

Plant material and Stress treatments

Single tree cuttings were collected from Casuarina
equisetifolia subsp. equisetifolia (CSIRO seed lot number
19129 from Lakei/sibur Bako, Malaysia) maintained by
the Institute of Forest Genetics and Tree Breeding,
Coimbatore at Panampally Research Station, Kerala,
India. The cuttings were rooted and maintained in the
vegetative propagation complex for bioassay studies.
One month old rooted cuttings were used for further
studies. 

Elicitor treatment was given to rooted cuttings based
on the protocol described by MOHAN and MANOKARAN

(2001) where in one month old rooted cuttings were sub-
jected to the cell wall elicitor treatment till 48 hours and
observations were made for appearance of wilting symp-
tom in the needles, characteristic of blister bark disease.
Needle tissues from each replication were harvested
after 24h and 48h post treatment. A water control was
also maintained for analysis.

Besides fungal elicitor, the temporal expression of
selected transcripts were evaluated in response to vari-

Table S1. – Primers used for transcript profiling.
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ous other environmental stimuli including mechanical
wounding, salinity stress, osmotic stress and heat stress
for 24h. Needles were cut into small pieces with sterile
razor blade and were kept in water for 24h for inducing
transcript expression during mechanical wounding
while salinity stress was imposed by transferring the
rooted cuttings to Hoagland solution containing 1.5M
NaCl. Osmotic stress was given by incubating the cut-
tings in solution of 40% (w/v) polyethylene glycol (PEG)
6000, while heat stress was given by incubating the
rooted cuttings at 50°C for 24 h. The control rooted cut-
tings were maintained in Hoagand solution at room
temperature and sampled at the same time as the
stressed plants. The needles were harvested at indicated
time intervals, frozen directly in liquid nitrogen and
used for RNA isolation. 

Transcript profiling during pathogen elicitation

Total RNA was isolated from the water treated
 (control) and elicitor treated needle tissues using an  in-
house protocol (patent pending). Subsequently, total
RNA was treated with RNase free DNase I (Fermentas,
USA) according to the manufacturer’s protocol and first
strand cDNA was synthesized from both control and

elicitor treated RNA using cDNA synthesis kit
 (Fermentas, USA). The cDNA pools were amplified
using nine arbitrary primers and nine Oligo d (T)
primers provided in the Delta Differential display kit
(Clontech Laboratories Inc., Palo Alto, CA) individually
and in pair – wise combination (Table S1). Further, gene
specific primers (both degenerate and non degenerate)
were designed and synthesized for chitinases, thau-
matin-like proteins, polygalacturonase inhibiting pro-
tein (PGIP), defensins and �-1,3-glucanases. They were
also amplified in the cDNA pools and amplicons were
resolved on a 4% denaturing PAGE and stained with
 silver nitrate (BASSAM et al., 1991). A 50bp DNA ladder
(Fermentas, Hanover, MD, USA) was used to determine
the size of the amplicons. Differentially expressed
 fragments were re-amplified and cloned in pDrive vector
(Qiagen, Hilden, Germany) following the manufacturer’s
procedure and sequenced using automated ABI PRISM
3100 Genetic Analyzer (Applied Biosystems, Foster
City, CA).

Sequence assembly and analysis

The sequences were edited and their similarity to
existing sequences was analyzed by BLASTn and

Table 1. – Primers synthesized for RT-qPCR of selected transcript.
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BLASTx (www.ncbi.nlm.nih.gov/blast/Blast.cgi) against
the GenBank non-redundant database for nucleotide
and translated sequences. 

RT-qPCR analysis of gene transcripts during stress
 conditions

Total RNA was isolated from 1g of control and treated
needles after 24h and 48h as described earlier. The
quality of RNA was checked on a 1% agarose gel and
concentration was determined spectrophotometrically.
mRNA was isolated from ten microgram of both control
and treated total RNA and first strand cDNA was syn-
thesized using first strand cDNA synthesis kit (Fermen-
tas, Hanover, MD, USA) following the manufacturers’
protocol. The cDNA pools were quantified using Pico-
drop spectrophotometer (Picodrop Limited, Saffron
Walden, UK) and 100ng of each cDNA sample was used
for RT-qPCR amplification.

Primer pairs for RT- qPCR assays were designed from
the transcript sequence using PRIMER3 program
(ROZEN and SKALETSKY, 2000). Primers targeting ubiqui-

tin was used as internal reference for RT-qPCR analysis
based on earlier reports from its closely related taxa,
C. glauca (LAPLAZE et al., 2000; HOCHER et al., 2006;
SANTOS et al., 2010) (Table 1). All primer pairs were
amplified prior to RT-qPCR and validated in 1% agarose
gel.

RT-qPCR was carried out in Applied Biosystems ABI
7700 sequence detection system using the SYBR green
chemistry. The PCR efficiency was optimized for anneal-
ing temperature, cDNA concentration and primer con-
centration. Melting curve analyses were performed after
the 40 cycles of RT-qPCR program by a constant
increase in temperature between 60 and 95°C. RT-qPCR
was performed in a final volume of 10 µL containing
5 µL of 2X SYBR Green Jumpstart Taq Ready Mix
(Sigma Aldrich, USA), 500 nM each of forward and
reverse primers and 100 ng of cDNA template. After an
initial activation step of the DNA polymerase at 95°C
for 10 min, samples were subjected to 40 cycles of ampli-
fication (denature at 95°C for 15 s, annealing and exten-
sion together at 58°C for 1 min). Quantification of the
target gene expression was done with comparative CT
method (LIVAK and SCHMITTGEN, 2001). The relative
expression level of the gene of interest was computed
with respect to ubiquitin to account for any variance in
the amount of input cDNA. Average CT values from trip-
licate PCRs were normalized to average CT values for
ubiquitin from the same cDNA preparations.

Statistical analysis

The fold expression of transcripts under different
stress conditions were statistically analyzed using the  
T-Test using SPSS software (version 20.0) and difference
between treatments were considered statistically signifi-
cant when P<0.05. 

Results

Transcript profiling during pathogen cell wall elicitation

Expression profiling of the elicitor treated cDNA and
untreated cDNA was conducted using eighty one arbi-
trary/anchored primer pairs and nine gene specific
primer pairs (Figure 1). Most of the gene specific
primers did not amplify except for chitinase and glu-
canase specific primer pairs. Approximately, 125 ampli-
cons which differentially expressed in the elicitor treat-
ed sample were re-amplified, cloned and sequenced. The
sequences were trimmed and those below 100bp were
not considered for further analysis. Fifty two sequences
were submitted to the GenBank (Accession number
GR228669 to GR228718; GR312926 and GR312925).
Sequences which showed significant similarity to known
genes included disease resistance (CeR) genes involved
in HR; genes involved in aerobic metabolism like
cytochrome oxidase (CeCox); trans membrane proteins;
genes involved in programmed cell death like 26S
 proteasome (CeProt) and ubiquitin activating enzyme;
symbiosis related early nodulin gene (CeNod), tran-
scripts involved in signal transduction like protein
kinase; wound inducible metallocarboxy peptidase
inhibitor and PR genes like class I chitinase (CeChi1)
and glucanase (CeGlu). Two transcription factor includ-

Figure 1. – Transcript profiles of control and elicitor treated
samples using arbitrary/anchored primer pairs. Denaturing
PAGE (4%) showing differential amplification of transcripts
using P5 and T1–5 primers in control and elicitor treated cDNA
pools. The gels were visualized by silver staining.

M: 50 bd Ladder (Fermentas).
C: Amplification in cDNA pool derived from needle tissues har-
vested from cuttings maintained in sterile water.
T: Amplification in cDNA pool derived from needle tissues har-
vested from pathogen cell wall elicitor treated cuttings.
Arrows indicate differentially amplified amplicons.
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ing class III homeodomian leucine zipper TF and CCR4-
NOT were documented in the study. A novel transcript
showing similarity to metal ion binding protein
(CeHMA) was also expressed during elicitation. The
study also revealed the expression of transcript showing
significant similarity to signal recognition particle
(CeSRP), a ribonucleoprotein involved in protein target-
ing (Table 2). 

Table 2. – Identification of pathogen elicitor-responsive transcripts from Casuarina equisetifolia.

RT-qPCR analysis of gene transcripts during pathogen
cell wall elicitation 

The expression pattern of selected transcripts was
analyzed using RT-qPCR and the transcripts included
CeGlu, CeCox, CeProt, CeSRP and CeHMA. PCR effi-
ciency was optimized and the specificity of the ampli-
cons was confirmed by the presence of a single peak
(data not shown). Electrophoretic separation of the
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Table 2. – Continued.
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amplicons produced a single fragment of the expected
size, with no visible primer-dimer products. The expres-
sion of CeChi1 under pathogen elicitation and abiotic
stress conditions have been reported elsewhere
(VELUTHAKKAL and GHOSH DASGUPTA, 2012). 

All the five transcripts showed up-regulation subse-
quent to elicitation, with CeGlu showing the maximum
expression of 18 fold and 59 fold increase after 24 hrs
and 48 hrs respectively. Similar expression pattern was
observed for CeProt (24 fold and 34 fold), CeSRP (13 fold
and 36 fold), CeCox (4 fold and 13 fold) and CeHMA (20
fold and 23 fold) during elicitation (Figure 2). The

expression patterns of most of the transcripts were sta-
tistically significant with p value <0.05.

RT-qPCR analysis of gene transcripts during abiotic
stress conditions 

The expression of the five transcripts during abiotic
conditions including NaCl, PEG, heat and mechanical
wounding was also studied. The glucanase transcript
was up-regulated significantly during wounding (18
fold) and moderately during heat stress (2 fold), while
the novel transcript CeHMA was up-regulated in all the
stress conditions. CeCox and CeSRP showed not signifi-

Figure 2. – Reverse transcriptase quantitative real-time PCR (RT-qPCR)
analysis of transcript accumulation in Casuarina needles in response to cell
wall elicitor from T. vesiculosum. Transcript levels of five genus (glucanase,
26S proteasome, cytochrome oxidase, signal recognition particle and tran-
script with metal binding domain) are expressed as fold increase normalized
to the transcript level of ubiquitin gene used as internal reference. Results
are means of triplicate data from independent replications.

* indicates P<0.05.

Figure 3. – Reverse transcriptase quantitative real-time PCR (RT-qPCR) analysis
of transcript accumulation in Casuarina needles in response to abiotic stresses
(heat, NaCl, PEG and mechanical wounding). Transcript levels of five genus (glu-
canase, 26S proteasome, cytochrome oxidase, signal recognition particle and tran-
script with metal binding domain) are expressed as fold increase normalized to the
transcript level of ubiquitin gene used as internal reference. Results are means of
triplicate data from independent replications.

* indicates P<0.05.
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cant variation in expression under any stress conditions,
while the transcript showing similarity to proteasome
(CeProt) was up-regulated 1-4 fold during NaCl, PEG
and wounding stress with no significant change in
expression upon heat stress (Figure 3). 

Discussion

Distinct defense –related responses observed following
elicitor treatment in C. equisetifolia

The present study in C. equisetifolia identified the
expression of defense – related genes involved in HR
(R gene, 26S proteasome, and ubiquitin activating
enzyme); signatures of SAR (chitinase and glucanase);
defense genes like metallocarboxy peptidase inhibitor;
protein kinases involved in signal transduction during
pathogen defense and aerobic respiration related
cytochrome oxidase which are typical response against
biotrophic pathogens. Further, the induction of a class I
chitinase (CeChi1) in C. equisetifolia in response to SA
and Trichosporium elicitation supports the hypothesis
that Trichosporium vesiculosum is a probable biotrophic
pathogen eliciting SA – mediated defense responses
(VELUTHAKKAL and GHOSH DASGUPTA, 2012).

Similar studies in tree – pathosystem have also
revealed the up-regulation of 26S proteasome subunit,
polyubiquitin and metallothionin-like protein in Pinus
sylvestris infected with the root pathogen Heterobasid-
ion annosum. However, the study revealed the down-
regulation of protein kinase and resistance gene during
the infection (ADOMAS et al., 2007). In chestnut-Cry-
phonectria parasitica interaction, the expression of
kinases and CCR4-NOT transcription factor was report-
ed by BARAKAT et al. (2009). In another study conducted
on hybrid poplar (Populus trichocarpa � P. deltoides)
infected with the rust fungus Melampsora medusa, tran-
scripts including ADP-ribosylation factor 1 (ARF1), glu-
canase, 40S ribosomal protein, heavy metal transport/
detoxification protein, 26S proteasome and Polyubiqui-
tin were up-regulated after nine days post inoculation
(MIRANDA et al., 2007). In Populus nigra � P. maximow-
iczii, the leucine rich repeat family protein and glu-
canase were up-regulated during interaction with two
biotrophic pathogens Melampsora larici-populina and
M. medusae f. sp. deltoidae (AZAIEZ et al., 2009). Interac-
tion of Fagus sylvatica – Phytophthora citriocola result-
ed in over expression of two distinct defense-related
genes viz., glucanase and protein kinase (SCHLINK, 2009;
VALCU et al., 2009). 

Beta-1,3 glucanase classified under PR-2 play a direct
role in fungal defense by hydrolyzing fungal cell walls
and an indirect role by generating oligosaccharide elici-
tors (KLARZYNSKI et al., 2000). The expression profile of
CeGlu during elicitation was characteristic of PR pro-
teins with distinct up-regulation (18 fold and 59 fold)
suggestive of systemic defense reaction. The up-regula-
tion of the transcript during mechanical wounding to a
highly significant 18 fold is in agreement with studies in
Ziziphus jujube (TIAN et al., 2007) and Castanea sativa
(SCHAFLEITNER and WILHELM, 2001). This suggests that
casuarina glucanase can directly act on opportunistic
pathogens invading though the wounds and mount a

defense response either by directly hydrolyzing the
pathogen cell wall or indirectly by releasing oligosaccha-
ride elicitors which in turn would induce a cascade of
defense reactions (CHEONG et al., 2000). 

In the recent years the critical role of protein degrada-
tion by Ubiquitin-26S proteasome (UPS) pathway has
been recognized as a critical regulator in plant defense
response (DELAURÉ et al., 2008; DIELEN et al., 2010;
PAJEROWSKA-MUKHTAR and DONG, 2009). Detailed stud-
ies on the specific role of proteasome and ubiquitin com-
plex during pathogen interaction was reported from
crops like barley (AZEVEDO et al., 2002); Nicotiana
 benthamiana (PEART et al., 2002); Medicago sativa
(WRZACZEK et al., 2007); Arabidopsis thaliana (BOYES et
al., 1998; AUSTIN et al., 2002) and potato (BHASKAR et al.,
2008). In trees, the expression of proteasome during
pathogen interaction has been reported but their level of
expression was not validated. The present study con-
firmed the role of protein degradation by proteasome
unit in casuarina where in 24 fold and 34 fold increase
in expression was observed in 24 hrs and 48 hrs post
elicitation. The involvement of the UPS in regulation
during abiotic stress conditions is well documented in
crop plants and mutations in the regulatory particle
subunit of 26S proteasome are reported to reduce the
rate of ubiquitin-mediated proteolysis, thus altering the
stress response in plants (SMALLE et al., 2003; SMALLE

and VIERSTRA, 2004; KUREPA et al., 2008). Several abiotic
stresses like heat and oxidative stress inhibit 26S pro-
teasome activity due to increase in substrate load of
mis-folded proteins (KUREPA et al., 2009), while the
process of ubiquitinization is rapidly induced during
desiccation, cold and mechanical wounding (CHO et al.,
2006; 2008). Contrarily, in the present study 24 hrs of
abiotic stress induction revealed up-regulation of protea-
some expression with maximum of 4 fold during
mechanical wounding. This variance could be due to
high abiotic stress tolerance exhibited by casuarina with
efficient protein degradation mechanism against stress
conditions. This is the first comprehensive report on
expression of proteasome during abiotic stress tolerance
from tree species. 

The expression of metal detoxifying proteins including
metallothionins during biotic stress in trees has been
reported in Pinus sylvestris (ADOMAS et al., 2007) and
hybrid poplar (RINALDI et al., 2007). In Casuarina equi-
setifolia, the novel CeHMA was up-regulated to the level
of 20 and 23 fold post elicitation for 24 hrs and 48 hrs
respectively. The role of metallothionin during infection
is its involvement in regulating available metal ions,
which subsequently affect the intracellular active oxy-
gen species (AOS) produced in stressed plants and also
as scavengers of AOS during oxidative burst (CHUBATSU

and MENEGHINI, 1993; CHOI et al., 1996). Metal detoxify-
ing gene up-regulated during pathogenesis was reported
from Nicotiana glutinosa during TMV infection (CHOI et
al., 1996); Arabidopsis (BUTT et al., 1998) and Abutilon
theophrasti (DAUCH and JABAJI-HARE, 2006). In plants,
these genes are also known to confer abiotic stress toler-
ance by detoxifying AOS. They also expressed during
PEG induced osmotic stress (SINGH et al., 2011). Salt
and drought stress are reported to induce expression of
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metal binding/ metallothionin like proteins in barley
(OZTURK et al., 2002), rice (YANG et al., 2009), maize
(ANDJELKOVIC and Thompson, 2006), Mesembryanthe-
mum crystallinum (KORE-EDA et al., 2004) and Tamarix
hispida (LI et al., 2009). The CeHMA identified in the
present study was up-regulated under all the stress
treatments confirming the significant role of AOS scav-
enging during both biotic and abiotic stress conditions. 

The CCR4-NOT complex is involved in the control of
diverse aspects of transcription and mRNA metabolism,
including mRNA deadenylation and its subsequent
degradation (DENIS and CHEN, 2003; COLLART et al.,
2004). AtCAF1a and AtCAF1b which encodes CAF1 pro-
tein, a subunit of the CCR4-NOT were identified as JA
induced in Arabidopsis and was also induced by
mechanical wounding and pathogen infection (LIANG et
al., 2009). The deadenylation of mRNA during stress
response has been reported and its role in defense
response was studied in tomato (SAROWAR et al., 2007)
and Cocoa (LOPES et al., 2010). In C. equisetifolia, a
transcript (accession number GR228683) with signifi-
cant similarity to CCR4-NOT was identified from elici-
tor induced needle tissues. Further, the present study
also identified the expression of homeodomain leucine
zipper class III transcription factor in elicitor treated
tissues (accession number GR228713). Homeobox pro-
teins are ubiquitous in higher organisms and represent
master control switches involved in developmental
processes and cellular adaptation to changes in the envi-
ronment. Functional characterization of some members
of the homeobox family supports a role as key regulators
of hormone signaling (HIMMELBACH et al., 2002), adap-
tive responses to environmental cues (STEINDLER et al.,
1999; ZHU et al., 2004), and pathogen-derived signaling
processes (MAYDA et al., 1999). In Arabidopsis, a mutant
ocp3 (for overexpressor of cationic peroxidase 3) with
impaired hoemodomain TF activity showed increased
resistance to necrotrophic pathogens (COEGO et al.,
2005). A similar report from transgenic tomato lines
revealed that the HD Zip TF was involved in cellular
protection by limiting PCD in infected plants (MAYDA et
al., 1999). 

In plants, mictochondria are a major site for AOS pro-
duction and the generation of AOS by the respiratory
chain is a physiological and continuous process (TIWARI

et al., 2002). Abiotic stress is also demonstrated to sig-
nificantly shift the cytochrome pathway to alternate res-
piratory pathway with the induction of alternate oxi-
dase to scavenge the AOS (LAMBERS et al., 2005; RIBAS-
CARBO et al., 2005). Salinity induced CAM transition
resulted in increased COX activity in Mesembryanthe-
mum crystallinum, which was suggested as an efficient
energy conserving strategy in the halophyte
(NIEWIADOMSKA et al., 2004). However, the study in
casuarina revealed no marked change in the CeCox
expression in response to any of the abiotic stresses
posed on the needle tissues. However, pathogen elicita-
tion up-regulated the transcript expression by 4 fold and
13 fold subsequent to 24 hr and 48 hr post treatment.
There are limited reports on the expression pattern of
Cox during pathogen infection. An earlier study in sweet
potato showed an increase in cytochrome oxidase activi-

ty during wounding and infection by Ceatocystis fimbri-
ata (ASAHI et al., 1965). Recently, up-regulation of COX
from tomato infected with tomato bushy top virus was
reported. The differential expression of the transcript
was demonstrated where in higher levels of expression
was observed in resistant cultivars in comparison to the
susceptible cultivar (HAFEZ and MOUSTAFA, 2011).
Increased level of expression of CeCox in casuarina may
be indicative of a basic tolerant nature of the species to
pathogenic microbes. The limited disease incidences of
the species under natural habitat would suggest a high-
ly proficient innate immune system of the species. 

Up-regulation of unique transcripts during defense
 reaction

Signal recognition particle (SRP) is ubiquitous and
abundant small cytoplasmic ribonucleoprotein particle
(RNP) involved in targeting the translation of specific
pre-secretary proteins to the endoplasmic reticulum.
They play a critical role in the sorting of nascent secre-
tory and membrane proteins. In E. coli they are report-
ed to maintain protein homeostasis and general fitness
of the cell (WICKSTRÖM et al., 2011). SRPs are also asso-
ciated with degradation of mis-targeted cytoplasmic
membrane proteins. SRP mediated degradation of secre-
tary proteins like amylase and defense-related proteins
like endochitinase and proteases were demonstrated in
barley (BRODL and HO, 1991) and heat shock inhibited
the release of SRP from ER in aleurone layers of barley
(CHU et al., 1997). Direct evidence on role of SRP during
pathogen defense is not reported to our knowledge.
However, the present work revealed a distinct up-regu-
lation 13 and 36 fold post 24 hrs and 48 hrs elicitation.
Abiotic stresses did not show any significant change in
expression. The probable up-regulation of the SRPs dur-
ing elicitation could be associated with degradation of
secretary proteins during localized apoptosis associated
with HR. 

In the present study, the molecular response of
C. equisetifolia to cell wall elicitors derived from Tri-
chosporium has provided an insight into the molecular
mechanisms involved in host immunity in this tropical
tree species. The induction of transcripts involved in
HR, SAR and signal transduction highlights that the
basic response to pathogen infection in trees could be
similar to their annual counterparts. However, the sig-
nificantly high level of induction of transcripts like pro-
teasome, glucanase, cytochrome oxidase and metal bind-
ing proteins support a highly plastic immune system
evolved to reduce the tissue damage by delimiting the
pathogen movement. Further, the expression of SRP
during pathogen elicitation adds a new realm to host-
pathogen interaction, indicating the probable role of pro-
tein targeting and their subsequent degradation during
immune responses. 
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