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Abstract

Spatial environmental heterogeneity are well known
characteristics of field forest genetic trials, even in small
experiments (<1ha) established under seemingly uni-
form conditions and intensive site management. In such
trials, it is commonly assumed that any simple type of
experimental field design based on randomization theo-
ry, as a completely randomized design (CRD), should
account for any of the minor site variability. However,
most published results indicate that in these types of
trials harbor a large component of the spatial variation
which commonly resides in the error term. Here we
applied a two-dimensional smoothed surface in an indi-
vidual-tree mixed model, using tensor product of linear,
quadratic and cubic B-spline bases with different and
equal number of knots for rows and columns, to account
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for the environmental spatial variability in two relative-
ly small (i.e., 576 m2 and 5,705 m2) forest genetic trials,
with large multiple-tree contiguous plot configurations.
In general, models accounting for site variability with a
two-dimensional surface displayed a lower value of the
deviance information criterion than the classical RCD.
Linear B-spline bases may yield a reasonable descrip-
tion of the environmental variability, when a relatively
small amount of information available. The mixed mod-
els fitting a smoothed surface resulted in a reduction in
the posterior means of the error variance (�2

e), an
increase in the posterior means of the additive genetic
variance (�2

a) and heritability (h2
HT), and an increase of

16.05% and 46.03% (for parents) or 11.86% and 44.68%
(for offspring) in the accuracy of breeding values, respec-
tively in the two experiments.

Key words: genetics trials, spatial variability, tensor product of
B-spline, error variance, genetic parameters, accuracy.

Introduction

Spatial environmental heterogeneity are well known
characteristics of field forest genetic trials (e.g.,
DUTKOWSKI et al., 2006; ZAS, 2006; CAPPA and CANTET,
2007; YE and JAYAWICKRAMA, 2008; FINLEY et al., 2009).
This is true even in small experiments (< 1ha) estab-
lished under seemingly uniform conditions and inten-
sive site management (WOODS et al., 1995; SAENZ-
ROMERO et al., 2001; JOYCE et al., 2002). In such trials, it
is commonly assumed that the amount (magnitude and
direction) of site variability is minimal, with only small
random micro-site variations being present among
experimental units (i.e., plots, trees or plants). Although
the completely randomized design (CRD) is generally
considered adequate for revealing important differences
among the studied sources of variation (LOO-DINKINS

1992), in most cases the amount of variation residing in
the “error term” could be rather high (e.g., EL-KASSABY

and PARK, 1993; REHFELDT, 1995; KRAKOWSKI et al.,
2005; ST. CLAIR, 2006). While the major advantage of the
CRD, aside from being the easier to establish, is the
simplicity of its analysis, such simple experimental
design is unlikely to account for the majority of environ-
mental variation. To reduce the impact of environmental
variability, statisticians, crop and tree breeders have
designed or adopted more efficient experimental layouts.
Randomized complete block (RCB) or incomplete blocks
designs, attempt an a priori to separate the site’s het-
erogeneity into homogeneous blocks. However, setting
such an assumption is often unrealistic or weak as well,
as two most-distant measurements taken within the
same block should in theory share the same variance,
while two close measurements of the neighboring trees
on the border of two blocks are assumed to vary by a dif-
ferent magnitude. The magnitude of this discrepancy
increases as the size of experiment increases. One strat-
egy to resolve this issue is to minimize the size of the
experiment, by considering the desired power of the
experiment, and limiting the size to a minimum. Unfor-
tunately, in most cases, even under the most efficient
experimental layout, the spatial heterogeneity is
unknown during the establishment phase and is only
revealed at the evaluation stage. Thus, it is necessary to

model such variability a posteriori within the model of
evaluation.

Spatial models permit modeling site heterogeneity by
including two main components; namely, the “local
trend” or small-scale and the “global trend” or large-
scale variations (GRONDONA et al., 1996). Several a pos-
teriori approaches have been developed and applied to
forest genetic trials to more accurately account for site
heterogeneity. The impact of small-scale spatial hetero-
geneity is classically accounted for through the inclusion
of a random spatially correlated structure into the
model. Such a residual matrix is expressed as a Kro-
necker product of the first order autoregressive residu-
als for rows and columns (GILMOUR et al., 1997). Addi-
tionally, in forest genetic and other trials, the small-
scale spatial variability has been modeled with either
the nearest neighbor techniques (MAGNUSSEN, 1990;
ANEKONDA and LIBBY, 1996; JOYCE et al., 2002; KROON et
al., 2008), or kriging (HAMANN et al., 2002; ZAS, 2006).
Some approaches that account for large-scale continuous
spatial variation have been modeled through post-block-
ing (ERICSSON, 1997; LOPEZ et al., 2002; GEZAN et al.,
2006; KROON et al., 2008), or the inclusion of spatial
coordinates expressed as either classification variables
such as polynomials (THOMSON and EL-KASSABY, 1988;
FEDERER, 1998; SAENZ-ROMERO et al., 2001) or covari-
ables or smoothing splines (GILMOUR et al., 1997; VERBY-
LA et al., 1999). GILMOUR at al. (1997), in agricultural tri-
als, and COSTA e SILVA et al. (2001) and DUTKOWSKI et al.
(2002) in forest tree field experiments, recommended
modeling the small-scale variation by fitting separable
two-dimensional autoregressive residuals and the large-
scale variation (global) in one dimension through fixed
or random classification variables (COSTA e SILVA et al.,
2001), or included fixed effects of spatial coordinates as
either polynomials or cubic smoothing splines
(DUTKOWSKI et al., 2002). However, the fit of a global
trend plus autoregressive residuals were not successful
or yielded little or no improvement, and thus DUTKOWSKI

et al. (2006) recommended retaining the design terms in
the spatial model. Additionally, a large portion of the
global trend is usually present in two dimensions and
non-stochastic functions as such as polynomials (FEDER-
ER, 1998) or cubic smoothing spline (VERBYLA et al.,
1999) in one dimension, may not completely account for
spatial covariance. Moreover, it is extremely rare that
large-scale continuous spatial variability is found only
in the direction of rows or of columns, and some sort of
interaction between rows and columns has to be consid-
ered in order to account for such variability (FEDERER,
1998). For such a purpose, FEDERER (1998) proposed fit-
ting interactions between polynomials for rows and
columns. However, polynomials do a poor job when fit-
ting observations in the extremes; i.e., extreme observa-
tions have a large effect in the estimated parameters,
and this is especially true for polynomials of higher
degree.

Splines, as an alternative approach to polynomials,
have also been used to deal with environmental hetero-
geneity (CAPPA and CANTET, 2007). Splines are piece-
wise polynomials functions from segments of lower
degree polynomials (GREEN and SILVERMAN, 1994). The
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positions where the segments join are called knots.
Splines are able to capture most of the sinuosity present
in the data with complex patterns of variation without
suffering from numerical instability. A particular type of
spline is the ‘basic spline’ (B-splines), which are local
basis functions, consisting of polynomial segments of
degree d, in general linear, quadratic or cubic, that has
d – 1 continuous derivatives at the joining points, or
knots. EILERS and MARX (1996) proposed penalized
splines (P-splines) in one dimension with equally spaced
knots, introducing a penalty that affects first or second
differences of B-spline parameters. The penalty controls
the degree of smoothness while fitting the function.
 EILERS and MARX (2003) extended their methodology to
estimate a surface in two dimensions, using the tensor
product of B-splines. Either applied to one or two dimen-
sions (EILERS and MARX, 1996; 2003), the parameters of
the B-spline function are treated as fixed effects; howev-
er, the splines are closely connected to mixed models
(RUPPERT et al., 2003; WAND, 2003). In a recent study,
CAPPA and CANTET (2007) proposed to use tensor prod-
ucts of cubic B-splines based on a mixed model frame-
work by treating the B-spline function parameters as
random variables (i.e., using a covariance structure for
the random knots effects) in a two-dimensional grid.
They demonstrated that the methodology could account
for large-scale continuous spatial variation in forest
genetic evaluation of individual trials, using Bayesian
techniques via Gibbs sampling, to make inferences in all
dispersion parameters of the model. CAPPA et al. (un -
published) extended the method of CAPPA and CANTET

(2007) demonstrating its utility in accommodating com-
plex patterns of spatial heterogeneity in several large
forest genetics trials of western hemlock (Tsuga hetero-
phylla (Raf.) Sarg.) with single-tree plots design. They
modeled different patterns of spatial variability having:
a) small-scale variations, b) small-scale variations
together with large-scale variation in one dimension
(i.e., across rows or columns) and c) small-scale varia-
tions together with large-scale variation in two dimen-
sions (i.e., across rows and columns). The new two-
dimensional surface reduced the posterior means of �2

e
across ten sites by 3.4 to 48.2% when compared with the
‘sets in replicates’ and incomplete block ‘a priori’ design.
This resulted in an increase of the posterior mean of h2 ’s
from 25.0 to 76.7% and an increase in accuracy up to
3.2% for parental and offspring breeding value esti-
mates.

Regardless of the implemented improvements in larg-
er trials, the performance of the tensor product of B-
spline bases to account for the spatial variability is
unknown with limited information (i.e., fewer number of
data points, in rows and columns from which the two-
dimensional surface can be estimated). The goal of the
present research, using two different experimental data
sets, is to study the utility of surface fitting using the
tensor product of B-spline to account for the spatial vari-
ation in relatively small (e.g., 576 m2 and 5,705 m2) for-
est genetic trials, with an a priori simple CRD and large
multiple-tree contiguous plot configuration. Additionally,
we extend the CAPPA and CANTET’s (2007) individual tree
mixed model that used tensor product of cubic B-spline

to an individual tree mixed model with tensor product of
linear, quadratic and cubic B-spline with different num-
ber of knots for rows and columns to model the spatial
heterogeneity. The resulting estimates of all dispersion
parameters for mixed models that include the fitted sur-
face are finally compared with corresponding estimates
from the classical CRD analysis with an individual-tree
model including a plot-to-plot environmental effect.

Material and Methods

Western larch trial

A very small common garden trial was established 
at the Totem Field Research Facility, University of
British Columbia, Vancouver, British Columbia (latitude
49°15’N, longitude 123°15’W, elevation 79m), using
wind-pollinated seed samples from 15 unrelated western
larch families along with an orchard “bulk” seedlot (con-
trol) provided by the British Columbia Ministry of
Forests and Range’s 2005 seed crop. The experimental
layout was a completely randomized design, with four
replications of each family and the control seedlot (N =
400 seedlings/genetic entry). The control #16 (replica-
tion 2) was the only genetic entry with missing
seedlings, due to seedling shortage. Seedlings were
planted in 10 x 10 contiguous square plots at a spacing
of 0.3 x 0.3 m, thus the plot size was 3 by 3 m. The plots
formed a rectangular grid of 11 rows and 6 columns with
two unplanted plots at the corner; giving an experimen-
tal area of 33 by 18 m. Rows have coordinates ri, i = 1,
2,…, r = 11 and columns coordinates cj, j = 1, 2,…, c = 6.
The first plot (r = 1, c = 1) was set to coordinates (0, 0).
During the winter of 2008 (4 years from germination),
individual tree total height was measured (HT, cm). In
order to fit the surface and for numerical purpose, row
(r) and column (c) spatial coordinates of each plot were
expressed in meters and all the trees of the same plot
had the same x and y coordinates.

Scots pine trial

The second and larger trial was planted in 1991 at the
western part of the Czech Republic, near the city Nepo-
muk by the Forests of the Czech Republic, State Enter-
prise (latitude 49°29’N, longitude 13°33’E, elevation
500 m). This site is one of a series of Scots pine (Pinus
sylvestris) trials that was initially established with the
goal to predict the general combining abilities of 40
parental clones in a local seed orchard (2.24 hectares,
established in 1975). The experiment consisted of half-
sib progenies planted in 50-tree contiguous plots at a
close spacing of 1.4 x 0.7 meters (5 x 10 plants planted
at a square plot of 7 x 7 meters). On average, 200
seedlings were planted per each half-sib family (on aver-
age, 4 replicates per family). Completely randomized
design was used as the layout with orchard’s bulk seed-
lot as a control. The experiment was arranged in a rec-
tangular scheme of 11 x 15 plots with two missing plots
at one corner (plots were damaged). Rows have coordi-
nates ri, i = 1, 2, …, r = 11 and columns coordinates
cj, j = 1, 2, …, c = 15. During the spring of 2008, individ-
ual tree total height was measured in centimeters (HT,
cm) on all surviving trees.
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Design information and descriptive statistics estimat-
ed using PROC MEANS of SAS for the western larch
and Scots pine data sets are summarized in Table 1.

Models of analysis

Several individual-tree additive models were evaluat-
ed for both data sets. All models, included a fixed effect
of overall mean, a normally distributed random additive
genetic effects (a, breeding values) with covariance
matrix A �2

a, were A is the additive relationship matrix
(HENDERSON, 1984) among all trees, the additive genetic
variance (�2

a), and a normally distributed random errors
(e) with mean zero and variance �2

e. The classical indi-
vidual-tree model also included a normally distributed
random plot effect term (p) with mean zero and variance
�2

p. In the other models, and to account for the spatial
variability, following CAPPA and CANTET (2007), we
extended the classical model to an individual-tree mixed
model with a two-dimensional surface using the tensor
product of linear, quadratic and cubic B-splines. Let Y
be a matrix of order of rows (R = 110) x columns (C = 60
or 75) containing the tree individual observations for HT
of the western larch and Scots pine trials, respectively.
To transform Y into a vector we used the ‘vec’ operator
(HARVILLE, 1997; page 339), in which the n (or R x C) x 1
vector y results from stacking the columns of Y: y =
vec(Y). Then, in matrix notations each individual-tree
mixed model, with a smoothed surface to account the
spatial variability, can be described as

y = X� + Bb + Zaa + e [1]

where B has dimension n x (nxr = number of knots for
rows x nxc = number of knots for columns) and is equal
to B = (Br � 1’nxc) #(1’nxr � Bc), Bi (i = r or c) are the
matrices of the order n x nxi that contains the d + 1
nonzero B-spline bases needed to express each row and
column in terms of a linear, quadratic or cubic B-spline
bases. Therefore, to express one row (or column) as a
function of B-spline bases in Bi (i = r or c), 2 linear B-
splines bases are needed, or 3 quadratic B-splines bases,
or 4 cubic B-splines bases. Calculations of the Bi (i = r
or c) coefficients were performed using the recursive
algorithm of DE BOOR (1993). The symbols � and # indi-
cate the Kronecker and Hadamard products of matrices,
respectively (HARVILLE, 1997). The parametric vector b
of order (nxr x nxc) x 1 contains the parameters of the
tensorial product of B-splines (i.e., the random knots

effects, RKE). The distribution of the random vector b is
such that b ~ N(0,U�2

b). The scalar �2
b is the variance of

the RKE for rows and columns and U of order (nxr x nxc)
x (nxr x nxc) is the covariance structure in two dimen-
sions for the B-spline knots. In the present study, we
select the tridiagonal matrix originally proposed by
GREEN and SILVERMAN (1994; page 13) and then used by
DURBAN et al. (2001) to fit a fertility trend. A more
detailed explanation of the two-dimensional surface
(Bb) using the tensor product of cubic B-splines with
equal number of knots for row and column, can be found
in CAPPA and CANTET (2007).

The sequence of individual-tree mixed models with a
smoothed surface (Model 1) fitted for the western larch
and Scots pine data sets, differ in the number of knots
for rows and columns and the degree of the basis func-
tions fitted. The minimum number of knots was chosen
approximately using the criterion suggested by M. WAND

(see RUPPERT, 2002) who choose to place a knot every t
observations, and t = min(r/4 (or c/4), 35). Thus, up to 3
and 4 knots for row and up to 2 and 4 knots for columns
were specified for the western larch and Scots pine data
sets, respectively. Linear (L), quadratic (Q) and cubic (C)
polynomial segments, i.e., basis functions of degree d =1,
2 and 3, were considerer. As in P-spline methodology,
knots were chosen equally spaced across rows and
columns.

Spatial analysis of residuals

To identify spatial patterns in the both data sets, we
examined the spatial distribution of the residuals for
the plot means (i.e., the average of all trees from a given
family plot) using a model with a fixed overall mean and
random family effects. It should be noted that in this sit-
uation the resulting residuals still contain 3/4 of the
additive genetic variance, due to the half-sibling struc-
ture of the families in both tests (excluding the bulk
orchard lots). The spatial distributions of the HT residu-
als are illustrated in the Figure 1a, where the color
intensity represents the magnitude of the residuals in
the plot: the darker the spot, the larger the residual
(note that the plot residuals are not randomly distrib-
uted in both experimental fields). Furthermore, there is
clear evidence of some different residuals patterns
across rows or columns, which indicate the presence of
interaction between row and column position and the
need for a two-dimensional smoothing.

Table 1. – Design information, mean with standard deviation, value minimum and maximum for
the Total Height (HT, cm) in the western larch and Scots pine data sets.

CR = Completely randomized; SD = Standard deviation; Min. = Minimum; Max. = Maximum.
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Bayesian inference and models comparison

The Bayesian approach via Gibbs sampling was used
to estimate the parameters in the classical individual-
tree model and in all models with a smoothed surface [1]
following CAPPA and CANTET (2007). Conjugate prior
densities were chosen for all parameters. To reflect a
prior state of uncertainty for the fixed effects while
keeping the posterior distribution proper, we selected
� ~ Np (0, K) with K a diagonal matrix with large ele-
ments (kii > 108). For the prior distributions of �2

p, �2
b,

�2
a and �2

e, we used a scaled inverted chi-square with
hipervariances �2

p, �2
b, �2

a and �2
e and degrees of free-

dom �p, �b, �a, and �e, respectively. Therefore, the joint
and conditional posterior densities are Gaussian for �,
p, b and a and scaled chi-square for �2

p, �
2
b, �

2
a and �2

e.
At the end of each iteration, for the classical individual-
tree model, the individual tree narrow-sense heritability
of HT was calculated as h2

HT, �̃2
a /�̃2

a + �̃2
p + �̃2

e, where
�̃2

a, �̃
2
p, �̃

2
e are the values of the additive, plot, and error

variances sampled at a given iteration. For each individ-
ual-tree mixed model with a smoothed surface (model 1),
h2

HT was calculated as h2
HT = �̃2

a /�̃2
a + �̃2

e.

A single Gibbs chain of 1,010,000 samples was drawn,
and the first 10,000 iterates were discarded as burn-in.
The 1,000,000 additional samples were used for comput-
ing the summary from the marginal posterior distribu-
tion. Marginal posterior densities for all parameters
were estimated by the Gaussian kernel method (SILVER-
MAN, 1986; Chap. 2). Autocorrelations were calculated
with “Bayesian Output Análisis” (BOA version 1.0.1;
SMITH, 2003) for all lags from 1 to 50. Mean, mode,
median, standard deviation, and 95% high posterior
density interval (95% HPD), were then calculated with

BOA for all parameters from the individual marginal
posteriors, under the free-software R (http://www.r-
project.org/).

The Deviance Information Criterion (DIC; SPIEGEL-
HALTER et al., 2002) was computed to compare the fit of
each model. The DIC criterion is defined as

where D
–

(�M) is the posterior mean of the deviance and
pD the “effective number of parameters”. Hence, the DIC
combines a measure of model fit (D

–
(�M)), with a mea-

sure of model complexity (pD). A smaller DIC value indi-
cates a better fit and lower degree of model complexity.
Numerical details for the calculation of DIC in a multi-
ple trait individual tree model are presented in CAPPA

and CANTET (2006). Additional models comparison was
provided by a visual comparison between the spatial
patterns of the residuals and the resulting estimates
surfaces. Finally, the accuracy of the predicted of breed-
ing values was computed using the following expression:

where PEV stands for ‘prediction error variance’ (HEN-
DERSON, 1984) of predicted breeding values using the
“Best Linear Unbiased Predictors” (BLUP’s) of parent
and offspring. Spearman-rank correlations using PROC
CORR of SAS were also calculated to compare whether
the ranking of predicted breeding values differed
between the classical individual-tree model with plot-to-
plot environmental effects and the best individual-tree
model with a two-dimensional surface.

Figure 1. – First column: a) Spatial patterns of the residuals of the tree height in the western larch (top) and Scots pine (bottom)
data sets. The shade intensity represents the magnitude of the residuals in the plot: the darker the spot, the larger the residual.
Empty squares (upper left and lower left corner for the top and bottom plots, respectively) represent areas with no trees present.
Second, third and fourth columns: b) best linear B-spline surface with 4 × 3 knots (L4×3, top) and 6 × 7 knots (L6×7, bottom); 
c) best quadratic B-spline surface with 7 × 4 knots (Q7×4, top) and 6 × 6 knots (Q6×6, bottom); d) best cubic B-spline surface with
4 × 3 knots (C4×3, top) and 4 × 6 knots (C4×6, bottom) in the western larch common garden experiment and Scots pine data set,
respectively.
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Computer programs employed to carry out the
Bayesian inference, as well as to solve the mixed models
equations and to obtain corresponding accuracies of all
models analyses were developed in FORTRAN (the
FORTRAN program is available upon request).

Results

The values of DIC and marginal posterior means with
the respective 95% high posterior density interval of �2

a,
�2

p, �2
b, �2

e and h2
HT for the mixed models that include

the fitted surface, together with corresponding esti-
mates for the classical individual-tree model (that
included plots effects), are summarized for the two data
sets in Tables 2 and 3. Note that models accounting for
site variability with a two-dimensional surface had a
smaller DIC (i.e., better fit) than the classical RCD
model that included random plot environmental effects,
with the exception of the model Q3x3, and all models
that fit a cubic two-dimensional B-spline in the western
larch experiment (Table 2). This was likely due to the
higher degree (cubic) of the B-spline and the relatively
small amount of spatial data points for columns (i.e.,
only 6 data points) for estimating the two-dimensional
surface. These results are consistent with those
obtained by CAPPA and CANTET (2007), who observed
lower values of DIC for models including tensor prod-
ucts of cubic B-splines, as compared to the DIC of a
model with an a priori design, in a much larger progeny
test. In the western larch experiment, model Q7x4
showed the smallest DIC, followed by the model L4x3.
In the Scots pine trial, model L6x7 showed the smallest
DIC, followed by models L6x6 and Q6x6 (Table 3). In
general, spatial models with larger fit order required the
lowest number of knots for row and column for the best

fits (i.e., smaller DIC), so there was an offsetting
between the order of fit and the number of knots. For
example, in the Scots pine data set, the best model for
the linear B-splines utilized 6 knots for row and 7 for
column (L6x7), whereas the best model in the cubic B-
spline was the model with 4 knots for row and 6 for col-
umn (C4x6) (Table 3). The presence of spatial effects
could be observed in Figure 1b–d, which displays the
estimated smoothest surface for the mixed model with
best fit (i.e., smaller DIC) for each of the three different
orders of the B-spline fitted in the western larch experi-
ment (Figure 1b–d, first row) and in the Scots pine trial
(Figure 1b–d, second row). When we compared the
smoothest surface estimated for the best model in each
order of fit (Figure 1b–d), models Q7x4 and L6x7
showed the highest degree of smoothing for the western
larch and Scots pine data sets, respectively. Models
Q7x4 and L6x7 were the best in capturing the spatial
variability of the two data sets, observed in the respec-
tive residual spatial pattern plots (Figure 1a). That is,
visual comparison between the estimated smoother
 surfaces of models Q7x4 and L6x7 (Figure 1c-top and
Figure 1b-bottom, respectively) and the corresponding
spatial patterns of the residuals (Figure 1a) highlights
only slight differences.

The fit of smoothed surfaces produced a reduction of
the posterior means of �2

e in both data sets, again except
for the model Q3x3 and all the models utilizing a cubic
two-dimensional B-spline in the western larch experi-
ment (Tables 2 and 3). In addition, increasing the num-
ber of knots for row and column tended to reduce the
variance error estimates. The �2

e estimate in the west-
ern larch trial for the classical RCD model was 150.28,
which was, respectively, only 3.99 and 3.62% higher
than those estimates from the best models for the qua-

Table 2. – Deviance Information Criterion (DIC) and posterior means (95% high posterior density interval) for the additive genetic
variances (�2

A), the plot variance (�2
p), the variance of the RKE (�2

b), the error variance (�2
e), and the individual narrow-sense heri-

tability of height (h2
HT) in the western larch common garden experiment. Models with smaller DIC (i.e., better fits) in each order of

B-splines are given in bold type.

NOTE: a Model Classical: non-spatial individual-tree model including a plot-to-plot environmental effect.
Model Lnxr×nxc: individual-tree mixed model including a linear (L) B-splines with nxr number of knots for row and nxc

number of knots for column.
Model Qnxr×nxc: individual-tree mixed model including a quadratic (Q) B-splines with nxr number of knots for row and

nxc number of knots for column.
Model Cnxr×nxc: individual-tree mixed model including a cubic (C) B-splines with nxr number of knots for row and nxc

number of knots for column.
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dratic (Q7x4) and linear (L4x3) B-splines (Table 2). For
the Scots pine site, �2

e were substantially reduced to
15.97, 14.74 and 14.43% with fitting the best linear
(L6x7), quadratic (Q6x6), and cubic (C4x6) B-splines,
respectively, over the classic individual-tree model.
Clearly, these reductions of the error variances in both
data sets confirm that there are spatial variations larger
than the plot sizes that are not adequately accounted for
by a plot-to-plot environmental variance term. Con-
versely, smoothing surfaces fit in both data sets resulted
in higher posterior means of �2

a for all models (Tables 2
and 3). The estimated posterior means of h2

HT for the
models that fitted a two-dimensional surface for the
western larch (from 0.29 to 0.35) and Scots pine (from
0.35 to 0.40) data sets were consistently higher than
those estimated from the classic model (0.26 and 0.15,
respectively). As expected, the estimated posterior
means for �2

b increased from the linear to cubic order of
fit of the B-splines and tended to decrease as the num-
ber of knots increased in both data sets. The 95% HPD
for �2

a, �
2
p, �

2
b, �

2
e and h2

HT were shifted away from the
zero value for all parameters.

The average prediction accuracy of breeding values,
calculated from model Q7x4 (the one with the smallest
DIC) in western larch, was higher for parents (0.94) and
progeny (0.66), than corresponding values (0.81 and
0.59) calculated from the classical CRD model. In Scots
pine, the average accuracy of prediction of breeding val-
ues, calculated from model L6x7 (the smallest DIC), was

also higher for parents (0.92) and progeny (0.68), than
their corresponding values (0.63 and 0.47) calculated
from the CRD classical model. Large improvements in
prediction accuracy for parents (16.05 versus 46.03%)
and offspring (11.86 versus 44.68%) in the Scots pine
over the western larch are also in line with the larger
increment of the values of the h2

HT. The Spearman-rank
correlation between predicted breeding values from the
best spatial model in the western larch (Q7x4) and Scots
pine (L6x7) and the classical RCD model were 0.89 and
0.92 for parents and 0.92 and 0.94 for offspring, respec-
tively, indicating that there was some rank change
among parents and progenies in both data sets.

Discussion

Forest genetics trials of typically small size (< 1 ha)
with close plantings and under intensive site manage-
ment can provide the illusion of a corresponding small
environmental variability. In that instance, any simple
type of a priori experimental field design based on ran-
domization theory should account for any of the minor
site variability (SCHABENBERGER and GOTWAY, 2005; page
301). However, most published results indicate that in
these types of trials a large component of the spatial
variation still resides in the error term (e.g., EL-KASSABY

and PARK, 1993; REHFELDT, 1995; KRAKOWSKI et al., 2005;
ST. CLAIR, 2006). Thus, the application of appropriate a
posteriori statistical techniques for removing the “unac-

Table 3. – Deviance Information Criterion (DIC) and posterior means (95% high posterior density interval) for the additive genetic
variances (�2

A), the plot variance (�2
p), the variance of the RKE (�2

b) the error variance (�2
e), and the individual narrow-sense heri-

tability of height (h2
HT) in the Scots pine data set. Models with smaller DIC (i.e., better fits) in each order of B-splines are given in

bold type.

NOTE: a Model Classical: non-spatial individual-tree model including a plot-to-plot environmental effect.
Model Lnxr×nxc: individual-tree mixed model including a linear (L) B-splines with nxr number of knots for row and nxc

number of knots for column.
Model Lnxr×nxc: individual-tree mixed model including a quadratic (Q) B-splines with nxr number of knots for row and

nxc number of knots for column.
Model Lnxr×nxc: individual-tree mixed model including a cubic (C) B-splines with nxr number of knots for row and nxc

number of knots for column.
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counted for” spatial variability that cannot be dealt with
through randomization of the experimental unit (i.e.,
plots) is necessary. Here we applied B-splines in a two-
dimensional surface, using tensor product of linear, qua-
dratic and cubic B-spline bases with different and equal
number of knots for rows and columns in an individual-
tree mixed model, to remove the environmental spatial
variability larger than 9 m2 in the relatively small
576 m2 western larch common garden and larger than
35 m2 in the 5,705 m2 Scots pine progeny trial. Our
results showed that the best model which included a ten-
sor product of B-splines reduced the posterior means of
the error variance (�2

e) in the two experiments by 3.99
and 15.97%. The fit of a smoothed surface to both data
sets, instead of the a priori RCD, consistently increased
the estimated posterior mean of the additive genetic
variance (�2

a, Tables 2 and 3). In the Scots pine data set
the increase in �2

a approximately doubled, over the non-
spatial analysis (as were the heritabilities); however, the
change in the �2

a using different a posteriori spatial
approaches showed diverse results. JOYCE et al. (2002)
reported a consistent decrease in the �2

a in a farm-field
test of black spruce, using a two-step approach: first,
they examined the large-scale variation with median
polishing methods, followed by detecting small-scale
variations with a nearest neighbour technique. Includ-
ing a spatial correlated error, increases or decreases in
the values of �2

a were reported when compared with dif-
ferent estimates of the a priori experimental (field)
design (YE and JAYAWICKRAMA, 2008; COSTA e SILVA, 2001;
DUTKOWSKI et al., 2002, 2006; KUSNANDAR and GALWEY,
2000; ANEKONDA and LIBBY, 1996). CAPPA et al. (unpub-
lished), using the method applied in this present study,
showed small but also inconsistent effect on the �2

a from
10 large progeny trials of western hemlock with a priori
“sets in replicates” and an incomplete block design with
single-tree plots configuration. However, MAGNUSSEN

(1993), using simulated data, showed that the estimate
�2

a may be overestimated, even with modified nearest-
neighbour spatial adjustments, in forest genetic trials
with multiple-tree and contiguous plot configuration.

In the present study, large square and rectangular
multiple-tree and contiguous plots of 10x10 (9 m2) and
10x5 (35 m2) trees made it difficult to definitively sepa-
rate the genetic and environmental effects within exper-
imental units (i.e., plots). In multiple-tree and contigu-
ous plots designs, substantial environmental covariance
among member of a family is confounded with genetic
covariance in a given plot (LOO-DINKINS, 1992). The
degree of confounding depends on the size of the plots
and the patterns of environment variability. In general,
the larger the plot, the more difficult it is to cleanly sep-
arate genetic from environmental effects. On the other
hand, single-tree plots maximize the variety of the envi-
ronmental variations sampled more than multiple-tree
contiguous plots (e.g. LOO-DINKINS and TAUER, 1987;
GEZAN et al., 2006). Therefore, the fit of any model with
spatial components in relatively small forest genetic tri-
als, with large multiple-tree contiguous plots design
where all trees within each plot have the same x and y
coordinates, will tend to be less efficient to account for
the spatial variation as compared with single-tree plots
configuration. Single-tree plots maximize the number of

data points from which the two-dimensional surface will
be estimated (as every tree contributes its own x and y
coordinates), and should result in the most accurate
modeling of spatial variability.

The average accuracy of breeding values from parents
and offspring estimated with the best spatial model
were higher than the corresponding values estimated
with the classical RCD due to the increase in the esti-
mated additive variance and decrease of estimated error
variance (Tables 2 and 3). The larger increases in heri-
tabilities in the Scots pine trial were associated with
larger increase in the estimated additive variance and
larger decrease of estimated error variance, relative to
that of western larch. These results are in agreement
with several studies that compared spatial models with
different a priori designs (COSTA e SILVA et al., 2001;
DUTKOWSKI et al., 2002, 2006; ZAS, 2006; YE and JAYA -
WICKRAMA, 2008). For example, compared to the random-
ized complete block designs, increases in accuracy from
spatial models were reported by COSTA e SILVA et al.
(2001) for tree height and ZAS (2006) for tree diameter.
COSTA e SILVA et al. (2001) analyzed twelve trials and
found up to 71% increases in accuracy of predicted addi-
tive effects of the parents and offspring. Similarly, ZAS

(2006) reported substantial increases in the accuracy of
BLUPs of family effects, ranging from 0.40–0.63 up to
0.72–0.79 after correcting for spatially correlated varia-
tion. YE and JAYAWICKRAMA (2008) found that the accura-
cy of breeding value prediction increased by up to 20%
in comparison with the “sets in replicates” and “repli-
cates in sets” a priori designs in 275 large Douglas-fir
(Pseudotsuga menziesii (Mirb.) Franco) progeny trials. A
smaller gain in accuracy was found by DUTKOWSKI et al.
(2002; 2006), but still in the direction of the spatial
model being superior to the a priori traditional design-
based model. A substantial fraction of the gain in accu-
racy is due to the fact that not all environmental spatial
variability (i.e., larger than 9 m2 in the 576 m2 western
larch common garden and larger than 35 m2 in the
5,705 m2 in Scots pine progeny trial) is accounted for in
the plot-to-plot variability; i.e., variation that otherwise
would go to the error variance. Therefore, analysis of
data displaying spatial variations larger to plot size
with spatial models will most likely improve the accura-
cy of selection as compared with an analysis using the
CRD model.

Following CAPPA and CANTET (2007), we used B-splines
with equally spaced knots to account for the spatial
variation in forest genetic trials. In this approach, the
crucial parameter is the penalty or smoothing factor �
(equation [5] in CAPPA and CANTET, 2007), and the num-
ber of knots in the spline is not as critical to the fit as
long as they are “sufficiently” present (EILERS and MARX,
1996). In the mixed model approach to P-splines, � is
the ratio �2

e /�2
b (CAPPA and CANTET, 2007). Looking at

Tables 2 and 3, one may infer that the magnitude of �2
b

(the denominator of �) was sensitive to the number of
knots, as compared to the other variance components,
tend to decrease when the number of knots fitted
increased. It is known that the fit of very few knots pro-
duces bias, which rapidly decreases as the number of
knots increases (RUPPERT, 2002). In other words, choos-
ing a small number of knots would lead to a smoother
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surface that is not flexible enough to capture the spatial
variability in the data. Once the minimum number is
reached, increasing the number of knots often gives
 satisfactory fits (RUPPERT, 2002), as long as the general
pattern of environmental variation is adequately
addressed. For example, CAPPA and CANTET (2007)
showed that the change in the DIC and the estimated
genetic parameters between the models with 12x12
knots (a better fit) and 18x18 knots for row and column
were minimal. Similarly, in the present study, once the
best number of knots was reached, increasing the num-
ber of knots increased the DIC (i.e., a worse fit). How -
ever, in all cases this change was relatively minor. For
example, when we fitted a two-dimensional quadratic B-
splines in the western larch experiment, the model with
7x4 knots (model Q7x4) displayed the lowest DIC value
(22,687.85), the addition of one knot in the row (model
Q8x4) increased the DIC value (to 22,758.46) and
decreased the heritability from 0.34 to 0.31. When we
fitted a two-dimensional linear B-splines in the Scots
pine trial, increasing the number of knots in row from 6
to 7 (i.e., models L6x7 vs. L7x7) also increased the DIC
value (i.e., DIC values of 20,681.74 vs. 20,714.90, respec-
tively) and decreased the h2 estimates (0.37 and 0.35,
respectively). Moreover, with only a few number of data
points for the rows and columns definitions for the west-
ern larch (i.e., 11 rows and 6 columns) and for the Scots
pine (i.e., 11 rows and 15 columns), a large number of
knots results in an excessively “wiggly” estimates sur-
faces, tending to overfit the data (data no shown).

The number of knots chosen affects the amount of
smoothing applied to the data by controlling the number
of piecewise fits. Additionally, the the amount of smooth-
ing of the surface between knots also depends on the
degree of the individual polynomial segments (EILERS

and MARX, 1996). The polynomial segments are com-
monly of degrees less or equal to three: i.e., linear, qua-
dratic or cubic. The cubic B-spline bases are used
instead of linear or quadratic bases, to allow for more
flexibility in fitting peaks and valleys (i.e., to model flex-
ible surfaces) of complex and different patterns of spa-
tial variability, when a large number of data points for
rows and columns are available (CAPPA and CANTET,
2007; CAPPA et al. (unpublished)). In the present study,
we extended the cubic two-dimensional B-spline pro-
posed by CAPPA and CANTET (2007) to linear, quadratic,
and cubic B-splines with different number of knots for
row and column, but due to the relatively small sizes of
the tests we examined, the cubic bases model did not
yield the lowest DIC. However, there are several exam-
ples of the use of spline functions with different degree
only in one dimension when analyzing breeding data.
Thus, animal breeders have used linear splines to model
growth in beef cattle (BOHMANOVA et al., 2005; IWAISAKI

et al., 2005) or cubic B-spline to smoothing of lactation
curves (WHITE et al., 1999) and to model the effects of
management unit and time (CANTET et al., 2005). MEYER

(2005) used linear to cubic B-splines to model growth of
Australian Angus cattle. In forest tree breeding, CORNIL-
LON et al. (2003) used quadratic B-splines to model time
functional breeding values of clones in Eucalyptus using
a fixed effects model. MAGNUSSEN and YANCHUK (1994)
fitted spline functions to observed data so as to estimate

the individual heights at non-recorded times from Dou-
glas-fir trees. The resulting data were then used to pre-
dict breeding values at non-recorded ages and genetic
dispersion parameters. 

In general, if the number of knots for row and column
is large with respect to the number of available data
points, linear B-spline bases may yield a reasonable
description of the environmental variability. In the Scots
pine data, the highest DIC values (i.e., the worst fits) for
a linear B-spline with a few knots for row (i.e., 4) and
less than 6 knots for columns, suggested that spatial
variability might not have been modeled adequately by
linear polynomials segments compared with quadratic
B-spline. On the other hand, if the number of knots for
row is up to 4 it may well be that those polynomial seg-
ments between the knots of degree 1, are acceptable and
then a linear B-spline bases will suffice. Meanwhile,
cubic B-spline with up to 4 knots for row and column
introduces ‘more flexibility’ than needed and resulted in
higher values of DIC than linear and quadratic B-
splines. In the western larch data set, all the models
with linear B-spline yielded better fit (i.e., smaller DIC)
than quadratic and cubic B-spline, which again suggests
that linear B-splines are sufficient to model reasonably
the spatial variability, when a relatively small amount
of information available (i.e., fewest data points).

Conclusions

The tensor product of basis functions of B-spline for
rows and columns does provide a useful new alternative
to model patterns of spatial variability a posteriori even
in small forest genetics trials. It was found to be well
suited to adjust for spatial variation for tree height data
than the simple completely randomized design that
attempts to reduce the spatial heterogeneity through
randomization of experimental units (i.e., plots). How -
ever, the results varied between the two data sets we
examined. This is expected as improvements to the
model fit are determined by several factors, including
the size of the trials, the original a priori design in
place, and the underlying spatial variation present in
the test sites. This approach will be most effective when
a single-tree plots design is employed, in order that
maximizes the number of spatial data points from which
the two-dimensional surface will be estimated. However,
there are still many forest genetics trials with complete-
ly randomized design and large multiple-tree and con-
tiguous plots configurations that must be evaluated
with plausible accuracy. In relatively small forest genet-
ic trials (< 1 ha) with large multiple-tree plots design,
this methodology should be used particularly when
there is strong evidence of spatial correlations between
plots, as present in the two data sets examined here.
Further research to compare our methods with other
spatial techniques by computer simulation would cer-
tainly be interesting, but this task is beyond the scope of
the present study.
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Abstract

Successful establishment and productivity of Populus
depends upon adventitious rooting from: 1) lateral roots
that develop from either preformed or induced primor-
dia and 2) basal roots that differentiate from callus at
the base of the cutting in response to wounding. Infor-
mation is needed for phytotechnologies about the degree
to which Populus adventitious rooting is controlled by
effects of individual genotypes, waste waters used as
alternative fertigation sources, and their interactions.
Our objective was to irrigate twelve Populus clones with
well water (control) or municipal solid waste landfill
leachate and to test for differences between initiation of
lateral versus basal roots, as well as root growth rate
and distributional trends for both root types. We evalu-

ated number and length of lateral roots initiated from
upper, middle, and lower thirds of the cutting, as well as
basal callus roots. Overall, leachate irrigation affected
lateral roots but not basal roots, and there was broad
clonal variation between and within root types. On aver-
age, there were 129% more lateral than basal roots,
which ranged from 3 to 27 (lateral) and 2 to 10 roots
(basal). The percent advantage of number of roots from
the middle portion of the cutting relative to other sec-
tions was 120% (upper), 193% (lower), and 24% (basal).
Clones, treatments, and their interaction did not affect
root growth rate, which ranged from 1.5 ± 0.6 to
3.4 ± 0.3 cm d–1, with a mean of 2.3 ± 0.2 cm d–1. These
results contribute baseline information for clonal selec-
tion needed to establish Populus for phytotechnologies,
energy, and fiber.

Key words: forest genetics, tree improvement, phytotechnolo-
gies, hybrid poplar, root types, Populus deltoides, P. tri-
chocarpa, P. suaveolens subsp. maximowiczii, P. nigra.
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