Characterization of Juglans nigra (L.), Juglans regia (L.) and Juglans x intermedia (Carr.) by SSR markers: a case study in Italy

Open access


Juglans nigra and Juglans regia are economically important species in Europe, Asia and North America. Natural hybrids between the two species, known as Juglans x intermedia (Carr), are valued for timber production. We tested ten nuclear microsatellite markers to (1) identify new J. x intermedia hybrids and characterize their parentage species J. regia and J. nigra (2) detect J. nigra genotypes with a spontaneous crossing ability with J. regia in a mixed Italian population. This study was also designed to confirm the transferability of ten black walnut SSR loci to Persian walnut All ten microsatellites amplified in both species, producing fragments of variable size; eight (7.14%) were common, 68 (60.7%) amplified in J. nigra and 36 (32.1%) in J. regia only (private alleles). Indices of genetic diversity revealed high level of variability. The Principal Coordinate Analysis on the basis of total 112 alleles divided the total sample set into three main groups: J. nigra, J. regia and J. x intermedia hybrids. Performing the microsatellite fingerprinting, a triploid hybrid plant with two genome parts of J. nigra and one part of J. regia was identified. The cytological analysis proved this triploid state showing 48 somatic chromosomes. The mother testing analysis of the 7 diploid hybrids by exclusion method indicated one putative hybridogenic mother plants. The sequence analysis of amplified fragments confirmed the cross-species amplification of SSR. Inter-specific differences between alleles were due not only to simple changes in the number of repeats but also to mutations in the flanking regions.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • ANGER B. and L. BERNATCHEZ (1997): Complex evolution of a salmonid microsatellite locus and its consequences in inferring allelic divergence from size information. Molecular Biology and Evolution 14: 230-238.

  • BALLOUX F. and N. LUGON-MOULIN (2002): The estimation of population differentiation with microsatellite markers. Molecular Ecology 11: 155-165.

  • DANGL G. S. K. WOESTE M. K. ARDHYA A. KOEHMSTEDT and C. SIMON (2005): Characterization of 14 microsatellite markers for genetic analysis and cultivar identification of walnut. Journal of the American Society for Horticultural Science 130: 348-354.

  • EXCOFFIER L. P. E. SMOUSE and J. M. QUATTRO (1992): Analysis of molecular variance from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479-491.

  • FADY B. F. DUCCI N. ALETA J. BECQUEY R. DIAZ VAZQUEZ F. FERNANDEZ LOPEZ and C. JAY-ALLEMAND (2003): Walnut demonstrates strong genetic variability for adaptive and wood quality traits in a network of juvenile field tests across Europe. New Forests 25: 211-225.

  • FJELLSTROM R. G. and D. E. PARFITT (1994): Walnut (Juglans spp) genetic diversity determined by restriction- fragment length polymorphisms. Genome 37: 690-700.

  • FENAROLI L. and G. GAMBIT (1976): Alberi. Dendrofloraitalica. Museo trentino di scienze naturali. Trento.

  • FORNARI B. F. CANNATA M. SPADA and M. E. MALVOLTI (1999): Allozyme analysis of genetic diversity and differentiation in European and Asiatic walnut (Juglans regia L.) populations. Forest Genetics 6: 115-127.

  • FORONI I. R. RAO K. WOESTE and M. GALLITELLI (2005): Characterization of Juglans regia L. with SSR markers and evaluation of genetic relationships among cultivars and the ‘Sorrento’ landrace. Journal of Horticultural Science and Biotechnology 80: 49-53.

  • HEDRICK P. W. (2000): Genetics of populations. Second edition. Edited by JONES and BARTLETT (eds) Boston.

  • HUSSENDORFER E. (1999): Identification of natural hybrids Juglans x intermedia Carr. - using isoenzyme gene markers. Silvae Genetica 48: 50-52.

  • JAY ALLEMAND C. J. DUFOUR and E. GERMAIN (1990): Détection précoce et rapide des noyers hybrides interspécifiques (Juglans nigra x Juglans regia) au moyen de critères morphologiques. Revue Horticole 311: 39-41.

  • KIMURA M. and T. OTHA (1978): Stepwise mutation model and distribution of allelic frequencies in finite populations. Proceedings National Academy of Sciences USA 75: 2868-2872.

  • LUZA J. G. V. S. POLITO and S. A. WEINBAUM (1987). Staminate bloom date and temperature responses of pollen germination and tube growth in two walnut (Juglans) species. American Journal of Botany 74: 1898-1903.

  • MARINONI D. A. AKKAK G. BOUNOUS K. J. EDWARDS and R. BOTTA (2003): Development and characterization of microsatellite markers in Castanea sativa (Mill.). Molecular Breeding 11: 127-136.

  • MCGRANAHAN G. H. and C. LESLIE (1991): Walnuts (Juglans) In: MOORE J. N. and BALLINGTON J. R. (eds) Genetic Resources of Temperate Fruit and Nut Crops. Florence Italy August 1990. ISHS Acta Horticulturae 290: 907-974.

  • MORGANTE M. M. HANAFEY and W. POWELL (2002): Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nature Genetics 30: 194-200.

  • NANDAKUMAR N. A. K. SINGH R. K. SHARMA T. MOHAPATRA K. V. PRABHU and F. U. ZAMAN (2004): Molecular fingerprinting of hybrids and assessment of genetic purity of hybrid seeds in rice using microsatellite markers. Euphytica 136: 257-264.

  • PEAKALL R. and P. E. SMOUSE (2005): GenAlEx V6: Genetic Analysis in Excel. Population genetic software for teaching and research. The Australian National University Canberra Australia.

  • PEAKALL R. S. GILMORE W. KEYS M. MORGANTE and A. RAFALSKI (1998): Cross-species amplification of Soybean (Glycine max) simple-sequence-repeats (SSRs) within the genus and other legume genera: implications for the transferability of SSRs in plants. Molecular Biology and Evolution 15: 1275-1287.

  • POLLEGIONI P. A. MAJOR S. BARTOLI F. DUCCI R. PROIETTI and M. E. MALVOLTI (2006): Application of microsatellite and dominant molecular markers for the discrimination of species and interspecific hybrids in genus Juglans. Sorrento Italy November 2004. ISHS Acta Horticulturae 705: 191-197.

  • ROBICHAUD R. L. J. C. GLAUBITZ O. E. JR RHODES and K. WOESTE (2006): A robust set of black walnut microsatellites for parentage and clonal identification. New Forest 32: 179-196.

  • ROHLF F. J. (2001): NTSYS-pc. Numerical Taxonomy and Multivariate Analysis System. Version 2.1. Exeter Software. East Setauket New York.

  • SLATKIN M. (1995): A measure of population subdivision based on microsatellite allele frequencies. Genetics 139: 457-462.

  • SOKAL R. R. and P. H. A. SNEATH (1963): Principles of numerical taxonomy. Freeman San Francisco.

  • STANFORD A. M. R. HARDEN and C. R. PARKS (2000): Phylogeny and biogeography of Juglans (Juglandaceae) based on matK and ITS sequence data. American Journal of Botany 87: 872-882.

  • STREIFF R. A. DUCOUSSO C. LEXER H. STEINKELLNER J. GLOESSL and A. KREMER (1999): Pollen dispersal inferred from paternity analysis in a mixed oak stand of Quercus robur L. and Q. petraea (Matt.) Liebl. Molecular Ecology 8: 831-841.

  • TAYLOR J. S. J. M. H. DURKIN and F. BREDEN (1999): The death of a microsatellite: a phylogenetic perspective onmicrosatellite interruptions. Molecular Biology and Evolution 16: 567-572.

  • THOMPSON J. D. D. G. HIGGINS and T. J. GIBSON (1994): CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting positions-specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 4673-4680.

  • VAN DER SCHOOT J. M. POSPÍS˘KOVÁ B. VOSMAN and M. J. M. SMULDERS (2000): Development and characterization of microsatellite markers in black poplar (Populus nigraL.). Theoretical and Applied Genetics 101: 317-322.

  • VICTORY E. J. C. GLAUBITZ O. E. JR RHODES and K. WOESTE (2006): Genetic homogeneity in Juglans nigra (Juglandaceae) at nuclear microsatellites. American Journal of Botany 93: 118-126.

  • WOESTE K. R. BURNS O. RHODES and C. MICHLER (2002): Thirty polymorphic nuclear microsatellite loci from black walnut. Journal of Heredity 93: 58-60.

  • WRIGHT S. (1951): The genetical structure of populations. Annals of Eugenics 15: 323-354.

Journal information
Impact Factor

IMPACT FACTOR 2018: 0,741
5-year IMPACT FACTOR: 0,651

CiteScore 2018: 0.77

SCImago Journal Rank (SJR) 2018: 0.345
Source Normalized Impact per Paper (SNIP) 2018: 0.362

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 160 82 4
PDF Downloads 103 78 3