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Molecular Cloning and Characterization of a
c¢DNA Encoding Sedoheptulose-1,7-bisphosphatase from Mulberry
(Morus alba var. multicaulis)
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Abstract

A full-length ¢cDNA encoding sedoheptulose-1,7-bis-
phosphatase (SBPase; EC 3.1.3.37) was cloned from
mulberry (Morus alba var. multicaulis) by rapid amplifi-
cation of cDNA ends (RACE). The ¢cDNA consisted of
1,527 nucleotides with an open reading frame (ORF) of
1,179 nucleotides encoding a 393 amino acid protein of
approximately 42.6 kDa. Sequence comparison analysis
showed that mulberry SBPase (MSBPase) had high
homology to other plant counterparts. Phylogenetic and
molecular evolutionary analysis revealed that MSBPase
fell into plant SBPase group. Moreover, SBPase and
fructose-1,6-bisphosphatase (FBPase; EC 3.1.3.11)
shared 28-32% identical residues, suggesting that the
two enzymes originated from the same evolution branch.
Molecular modeling indicated that each subunit of MSB-
Pase was composed of a-helices and B-sheets joined by
turns and loops, and folded into a structure of hexahe-
dron shape which was very similar to FBPase.

Key words: sedoheptulose-1,7-bisphosphatase, fructose-1,6-bis-
phosphatase, cDNA cloning, mulberry.

Introduction

Sedoheptulose-1,7-bisphosphatase (SBPase) is a key
enzyme in the regenerative phase of Calvin cycle, which
is the primary pathway of carbon fixation in the chloro-
plast stroma (ANJA et al., 2002). SBPase catalyses the
irreversible dephosphorylation of sedoheptulose-1,7-bis-
phosphate to sedoheptulose-7-phosphate (CHRISTINE et
al., 1999). This reaction is essentially irreversible and
commits intermediates to the regenerative part of the
Calvin cycle, so as to it competes for the substrates with
the starch synthetic pathway. Two enzymes, SBPase and
FBPase, catalyse the irreversible reactions in the
branched region where the intermediates may leave the
cycle, and for this reason may have particular roles in
regulating carbon portioning to sucrose and starch
(Wooprow and BERRY, 1988; GEIGER and SERVAITES,
1995). It is proposed that SBPase plays an important
role in regulating the flow of intermediates through the
Calvin cycle (PETTERSON and RYDE-PETTERSON, 1989;
PooLmaN et al., 2000). SBPase is a nuclear-encoded
enzyme synthesized as a precursor of 393 amino acids
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with a transit peptide which directs the enzyme to the
chloroplast. Biochemical studies including the purifica-
tion of the SBPase protein from a number of species
show that the SBPase is dimeric and comprises two
identical subunits of molecular weight 35-38 kDa
(CADET et al., 1987; CHRISTINE et al., 1999).

Mulberry (Morus alba L.) is a perennial woody plant
of considerable economic importance because of its
foliage, which constitutes the chief food for the mulberry
silkworm (Bombyx mori L.) (JAIN et al., 2000). We are
interested in mulberry SBPase because of its pivotal
role in the photosynthesis which products are used to
synthesize a variety of metabolites beneficial to silk-
worm growth and development. Here, we described the
isolation and nucleotide sequence analysis of the MSB-
Pase ¢cDNA from mulberry and compared its structure
with SBPases from other plant species.

Materials and Methods
Plant materials and chemicals

Mulberry (Morus alba var. multicaulis) leaves were
frozen immediately in liquid nitrogen and stored at

Table 1. — Oligo nucleotide primers used for RT-PCR and
RACE-PCR.

Name Sequence(5'—--3)

T15 TACTCTAGACGACATCGA(T),s
ST GACTCTAGACGACATCGA

SBP-1 TTY GOGN GAY GAR CAR YTN GC

SBP-2 TG RTT NAC RTC NGOG NAC CAT
3I5W TCCTOGGAAACTTGAGAGCCACT
ISN CTTTOAGATACACTOGOAGOAAG
Gl5 GGCCACGUGTOGACTAGTAC (G,
GT GOUCACGUOTCGAUTAGTAC
S58W AGUCACACT GAATCC ACCTT
58N GOAACTTCC TCG GAA CAA GOA
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-80°C. Ex Taq™, pMD18-T vector, T4 DNA ligase, DNA
Gel Extraction Kit, 100 bp DNA Ladder, Reverse Tran-
scriptase M-MLV, and Terminal Deoxynucleotidyl Trans-
ferase were all from Takara Biotechnology Co., Ltd.
(Dalian, China). The degenerate and specific primers
used in PCR were synthesized by Shanghai Invitrogen
Biological Engineering Technology and Service Co., Ltd.
(Shanghai, China). The primers used in this study were
all listed in Table 1.

RNA isolation and cDNA synthesis

Mulberry leaves were ground to fine powder in liquid
nitrogen and total RNA was extracted by means of the
hexadecyltrimethylammonium bromide (CTAB) method
(CHANG et al.,, 1993). To synthesize the first strand
cDNA, 2 ng of total RNA mixed with 20 pmol oligo (dT),,
primer T15 was treated at 70°C for 10 min and then
cooled on ice for 2 min. After adding 2 ul of 10 x buffer,
20 nmol dNTP mixture, 0.2 umol DTT, 40 units placen-
tal RNase inhibitor, and 100 units reverse transcriptase
M-MLYV, the reaction system was made up to 20 ul vol-
ume in the end using DEPC-ddH,0. Then it was incu-
bated at 42°C for 1 h, and the reaction was terminated
by incubation at 95°C for 5 min.

Amplification of MSBPase cDNA fragments

The degenerated PCR primers (forward primer: SBP-
1, reverse primer: SBP-2) were designed according to
the high conserved domain of the amino acid sequences
of SBPases in GenBank. The total volume of the PCR
reaction mixture was 25 ul, containing 1 pl of the first
strand cDNA, 0.5 uM of each primer, 2.5 ul of 10 x PCR
buffer, 0.4 mM dNTPs and 1 unit of Taq DNA poly-
merase. The reaction was denatured at 94°C for 5 min,
and then followed by 35 cycles of 1 min at 94°C, 1 min
at 56°C and 1 min at 72°C, finally extended for 10 min
at 72°C. The PCR products were separated on a 1%
agarose gel. The bands of the expected size were puri-
fied using DNA Gel Extraction Kit.

Rapid amplification of the 3"-and 5 -end of MSBPase
cDNAs

RACE-PCR was used to amplify the 3-and 5"-end
SBPase cDNAs. On the basis of the obtained sequence
information, specific primers were designed and nested
PCR was performed for 3"-and 5-RACE. For 3-RACE,
the first strand ¢cDNA synthesized by primer T15 was
used as template. For 5-RACE, the first strand cDNA
synthesized by T15 was further tailed poly (C) at the
3-end with terminal deoxynucleotidyl transferase
according to the manufacturer instructions, and the poly
(C)-tailed cDNA was used as template. The first round
PCR was carried out using a forward specific primer
3SW designed against obtained sequence information by
RT-PCR and a reverse adapter primer T15 for 3-RACE,
and using primer G16 and the reverse specific primer
5SW for 5-RACE. The second round PCR was per-
formed using a forward specific primer 3SN and the
adapter primer ST for 3"-RACE, and using primer GT
and the reverse specific primer 5SN for 5-RACE, with
the first round PCR products as templates, respectively.
The two round amplification reactions were carried out
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as described in RT-PCR. The bands of the expected size
were purified using DNA Gel Extraction Kit.

Cloning and sequencing

All the DNA fragments obtained from RT-PCR and
RACE-PCR were subcloned individually into the
pMDI18-T vector. After transformation, the positive
clones were selected and further sequenced by Shanghai
Invitrogen Biological Engineering Technology and Ser-
vice Co., Ltd.

Deducing of the Full-length MSBPase cDNA

By comparing the overlapping sequences of the partial
cDNA fragments, the full-length ¢cDNA sequence was
deduced and cloned by RT-PCR.

Molecular information analysis

The deduced amino acid sequence of MSBPase was
aligned with other plant SBPases using DNAMAN mul-
tiple alignments program. Homology analysis was per-
formed with BLASTP programs on NCBI (http:/www.
ncbi.nlm.nih.gov/BLAST). The molecular weight and iso-
electric point were predicted with Compute pI/Mw tool
(http://www.expasy.org/tools/pi_tool.html). Prediction of
the structure of a N-terminal extension in MSBPase was
performed by using TargetP 1.1 Server (http:/www.cbs.
dtu.dk/services/TargetP). The structure of MSBPase
domain was analyzed with NCBI database (http:./www.
ncbi.nlm.nih.gov/Structure).

Results and Discussion

Cloning of the Full-length cDNA of MSBPase

Based on the primer designed for the amplification of
the partial ¢cDNA fragment of MSBPase, an expected
510 bp c¢cDNA fragment was amplified (Fig. 1 A). The

A B C

Figure 1 A. — PCR amplification of the fragment of MSBPase
c¢DNA; B: PCR amplification of 3’-terminal sequence of MSB-
Pase ¢cDNA; C: PCR amplification of 5°-terminal sequence of
MSBPase ¢cDNA; 1: DNA marker 100 bp; 2: PCR amplification
band.
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nucleotide sequence of this fragment showed a high sim-
ilarity with the previous cloned SBPase genes from
other plant species. By two rounds of nested PCR, a 540
bp DNA fragment of the 3-RACE (Fig. 1 B) and a 600
bp DNA fragment of the 5-RACE (Fig. 1 C) were ampli-
fied, respectively. By comparing the overlapping
sequences of the partial cDNA fragments, the full-length
cDNA sequence of MSBPase was obtained (GenBank
accession number DQ995346). The 1,527 bp full-length
c¢DNA contained a 1,179 bp ORF beginning with the ini-
tiation codon ATG at nucleotide 133 and terminating
with stop codon TAA at nucleotide 1309 (Fig. 2). The
ORF of MSBPase included 393 amino acids, whose pre-
dicted molecular weight was 42.6 kDa and isoelectric
point was 5.85 (Fig. 2).

Nucleotide and deduced amino acid sequence analysis of

MSBPase

To obtain more information about the nucleotide and
deduced amino acid sequence of MSBPase, the sequence
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comparisons as well as the multiple alignment analysis
were carried out via blast search in GenBank data-
base (http:/www.ncbi.nlm.nih.gov/BLAST). The results
revealed that there was high homology between the
MSBPase and SBPases in many other plant species.
MSBPase deduced amino acid sequence shared 83%,
81%, 75% and 77% identity with its counterparts from
Arabidopsis thaliana, Spinacia oleracea, Triticum aes-
tivum and Oryza sativa, respectively (Fig. 3). The highly
conserved amino acid region of SBPase implies that
these amino acids may play an important role. Though
limited homology exists in the N-terminal, the general
features of chloroplast transit peptide could be observed
based on rich Ser and absent acidic residues (FUJIMORI
et al., 1998; VON-HEJINE et al., 1989). Moreover, the
structure prediction of the N-terminal of MSBPase also
indicated that it contained the putative chloroplast tran-
sit peptide of 55 amino acids, which directs the protein
translocation from cytosol to chloroplast. Therefore,
after the putative transit peptide removed, the molecu-
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ARACCAATTACTAGTAGTCTAGTAGTACAAGUCAAAGTAAGCAAATAGAGCTTTT GAAGAA
ATCAARGCTCTTCCTTGGTGTTTTTTTTTTTTGGTGTTAAT TTGAGGARARARATTTTCGA
CATARTTTCATTATGCAGACAAGTATCACTTIGCTACACTCGTGGAGCTTTICCTTICCTAAT
M E T & I T ¢ ¥ T R G A F L P N
ATCTCGTCTTCGCATTCCATGTCTTTTGTGTCTCCCTCATCCATCTCTCCATCTTTCAAC
I = s B H =3 M s F v =) =4 s 5 r = F =} F N
TCCAAGATTCTGAMATCGAGCTCGCTGTTCGGGGAATCATTACGCACGGTGCCAARATCT
5 K I L K 8 &8 8 L *F G B 85 L R T ¥V F K S8
TCTCTARRGSTTTCAAARATCEAAGAACGC TTITECCAGTGACGARATGCGAGATAGGCGAL
5 L K ¥v 8§ K 8 K N A L P ¥ T K C E I G B
AGCTTGGAGGAATTCCTTATAAAGGUGACGCUTGATAAAGGACTGAGGGCAT TGCTGATC
3 L B B P L I K & T P D K G L R A L L I
TCGATGGGAGRAGCATTGAGGACCATTGCCTTTAAAGCTGAGAACAGCTTCTTGTGGTGCGA
5 M 5 B A L R T I A F K ¥ R T A S8 C G &
ACGGECTITGTIGTCAATTCCTTTGETCACCAACAGCTGCCAGTTCGATATGCTTGCAAACARC
T A ¢ vV N 3 F 66 D E ¢ L A VvV D M L A N N
CTTCTTTTTGAGGCCCTAAGGTACTCCCATTTCTGCAAGTATGUTTGTTCCGAGGAAGTT
L L F E A L R ¥ 8 H F C K Y A C § E E V
CCTGAGCTCCRAAGACATGGGAGGCCCAGTTGAAGGTGGATTCAGTGTGGCTTTCGATCCC
F E L @ D M G G P ¥V E G G F 8 ¥V A F D P
CTCEACSETTCTAGCATCGTCGACACARATTTCACGETEEGGEACAATTTTTGGAGTGTGG
L D G 8 ] I v »p T N F T Vv 6 T I F G ¥V W
CCAGEAGATARGTTGACTGGAGTARCAGGRAGAGACCAAGTTGUTGUTGUCATGGGGATT
P 6 D K L T ¢ ¥V T 6 R D @ ¥V A A A M G I
TATGGCCCTAGAACTACATATGTTCTTGCTCTTAAACGACGTTCCCGEGACACACGAATTC
Yy ¢ ¢ R T T ¥ ¥ L A L K D ¥ P G T H E F
CTTCTTTTGGATSAAGGAARATGGCAGCACGTCAAGGAGACAACAGARATTGGTGAGGCGA
L L L D BE G EKE W ¢ H Vv K E T T E I G E G
AAGCTTITTCTCTCCTGGAAACT TGAGAGUCACTTTTGATAATCCGGCAATACAACAAGTTA
K L F § P 6 N L R A T F D N P E ¥ N K L
ATTGATTACTATGTGAAAGAGAAGTACACTTTGAGATACACTGGAGGARGGGTACCCGAC
I D Y ¥ ¥V K E K Y T L R Y T & G R ¥ P D
GTCAARCCAGATTATTGTGAAAGAGAAGGGTATTTTCACCAATGTCTTATCCCCATCAGCA
Vv N Q¢ I I v K BE K ¢ I F T N ¥V L. 8 F S A
ARGGCCAAGC TAAGARC TG TTGTTTEASGGTEGCCCCACTTGGTTTCTTGATTGAGARGGCA
K A K L R L L F E VvV A P L G F L I E K &
GGAGGGTTCAGTAGTGATGGCCATCAGTCTGTGCTAGAARAGGTGAT TGAGAACCTTGAT
Z G ¥ I 3 b & H £ S5 VvV L B K Vv I T N L D
GATAGAACTCAGGTTGUCGTACGGATCGARAARCGAGATTATCCGATTCGAAGAAACTCTA
rp R T R v A Y ¢ 5§ K N B I I R F E E T L
TACGGATCTTCCAGGOTCAAGGGAGCAGTGCCTGTTGGAGCTGC TGCATARATATTACAG
¥y & 8 8§ R L K ¢ A V FP VvV G A A A *
ARCTACATGTGATTICTTACTTATGTTTGTAGCTCCTTTCTITTGTTTTTGTTTTCACTTG
GTTTTCTCCTCAACGTAAAAATT TABAARATGCTTGATATTCATAGTCTGGCGAGCTGTGT
ATCATAGTGCATAATGGGAGGCTTGAARTTAAGACTTTTGAATCATCACAAGGTTGAATC
TTTCTCTGCTCTARDAARAARALDALD

Figure 2. — Nucleotide sequence of MSBPase cDNA clone and deduced amino acid sequence. The amino
acid sequence of the polypeptide is given in a three-letter code for each residue. Potential codons for
initiation (ATG) and termination (TAA) of translation are boxed.
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Figure 3. — Alignment of the amino acid sequence of MSBPase with that of Arabidopsis
thaliana (AAM91137), spinach (Spinacia oleracea) (AAB81104), wheat (Triticum aestivum)
(CAA46507) and rice (Oryza sativa) (AA022559) SBPases. Amino acid sequences were down-
loaded from the NCBI database and the alignments were performed using the DNAMAN pro-
gram. Identical amino acids were black shaded and similar amino acids were gray shaded.

lar weight of predicted mature protein is in the range of
35-36 kDa which is in good agreement with earlier bio-
chemical studies about SBPase (NisHIZAWA and
BUCHANAN, 1981; CADET et al., 1987).

Phylogenetic and molecular evolutionary analysis

To investigate the molecular evolutionary relation-
ships among different species, a phylogenetic tree was
constructed based on the amino acid sequences of MSB-
Pase, SBPase and FBPase from various organisms
including plants, fungi, insects and animals by perform-
ing blast search in GenBank database (http:/www.ncbi.
nlm.nih.gov/BLAST/). As expected, the result showed
that the MSBPase gene fell into the plant group (Fig. 4).
Interestingly, all the SBPase genes were derived from a
common ancestor in evolution, suggesting that they
shared a common evolutionary origin. In addition, the
amino acid sequences of SBPases and FBPases from
various species shared 28-32% identical residues, indi-
cating that the two enzymes may share a common cat-
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alytic mechanism and evolution origin, and acquire sub-
strate specificity following divergence from a bifunction-
al enzyme (CHRISTINE et al., 1992; HANNAERT et al.,
2003). Recently, it is reported that the evolutionary his-
tories of the SBPase and FBPase gene families are very
complex, including extensive paralogy, lateral transfer,
and retargeting between cellular compartments (ROGERS
and KEELING, 2004)

The 3-D structure of MSBPase

The 3-D structure of MSBPase was determined by
aligning the amino acid sequences obtained from the
NCBI database. It was clear from initial sequence com-
parisons of SBPases and FBPases from various sources
that these two enzymes were structurally related. The
structural similarities between SBPase and FBPase
highlighted by these amino acid sequence comparisons
made it possible to gain an insight into the structure of
SBPase by the 3-D structure model of FBPase (HAN-
NAERT et al., 2003). The model (Fig. 5) showed that
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Figure 4. — Neighbor-joining tree of SBPases and FBPases. The SBPase and FBPase sequences
were compared by performing blast search in GenBank database (http:/www.ncbi.nlm.nih.gov/

BLAST).

MSBPase contained two subunits and each subunit was
composed of four o-helices and six B-sheets joined by
turns and loops and folded into a hexahedron shape.
There are four cysteine residues apart in a predicted
loop between two a-helices, two of which probably form
a disulphide bond when oxidized analogous to the
allosteric regulation of FBPase by adenosine monophos-
phate in terms of the resulting structural changes.
Active sites are located at the interface between pairs of

~al————. -sheet

aspmpmpmw o -helix

Figure 5. — Predicted tridimensional structure of MSBPase.
The homodimer pair of subunits which constitute MSBPase are
marked in red and blur colors.
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subunits, with each subunit contributing to the active
site of its partner (DUNFORD et al., 1998).

In conclusion, we have isolated and characterized a
new SBPase cDNA clone from mulberry. Evolution
analysis revealed that the MSBPase gene had high
homology with other plant SBPases. SBPases and
FBPases share a common evolution origin and are struc-
turally related. To our knowledge, this is the first report
of the molecular studies of SBPase from mulberry. Fur-
ther investigation should be carried out focusing on the
biochemical and physiological function of MSBPase.
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Genetic Diversity and Population Structure of Apricot (Prunus
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Abstract

A collection of 44 P. armeniaca accessions and three
related species, from diverse geographic areas, covering
the entire Northern hemisphere with emphasis on Pak-
istani apricots, was screened with 10 SSR primer pairs
developed in apricot, to characterize the cultivars and
establish their genetic relationship. Given the fact that
the Central Asian region is considered a center of origin
of apricot, particular attention was devoted to accessions
from the Hunza region of Pakistan. The primers correct-
ly amplified a repeatable polymorphic pattern, which
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unequivocally distinguished all genotypes under study.
Altogether 123 alleles were identified with an average of
12.30 alleles per locus. The observed heterozygosity for
individual loci ranged from 0.28 to 0.77 with an average
of 0.64. A neighbour joining method identified four
groups from: (A) Central Asia, (B) Irano-Caucasia, (C)
Continental Europe and (D) North America. The dendro-
gram confirms the historic dissemination pathways of
apricot from its centre of origin in Asia to the West.
Apricot cultivars from the Hunza region (Northern Pak-
istan) revealed a high variability, as genetic diversity is
still conserved due to the traditional practice of planting
seeds from the best trees.

Key words: Genetic variation, microsatellites, eco-geographic
groups, Hunza, center of origin.

Introduction

Botanists distinguish the following apricot species:
P. ansu, P. armeniaca, P. brigantina, P. mandshurica,
P. x dasycarpa, P. holosericea, P. mume and P. siberica
(OECD, 2002). Most cultivated apricots, belong to the
species P. armeniaca L., are native to Asia and Caucasus
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