Provenance by Site Interaction of Pinus densiflora in Korea

Open access

Abstract

Thirty-six provenances of Pinus densiflora were evaluated for stability and adaptability for height growth at 11 test sites in Korea. The data were obtained from measurements at age 6 and analyzed using linear regression model and AMMI (additive main effect and multiplicative interaction) model. There was significant provenance by site interaction effect (p < 0.011). The interaction term explained 7.1% of total variation. While the regression model accounted for 15.8% of GxE interaction term, the AMMI model accounted for 74.9% with four PCA values. Most of the provenances were not significantly different from the unity (b =1.0), except for Inje (1), Jungsun (4), Bongwha (5), Koryung (26), Hamyang (30) and Seoguipo (36). Adaptability of provenances to the test sites was estimated with mean height growth and first AMMI component scores (IPCA 1). Inje (1), Bongwha (5), Taean (20) and Seoguipo (36) were specifically adapted to the high yielding environments. Considering the first and second AMMI components (IPCA 1 and IPCA 2, respectively) scores, Whachun (2), Samchuk (10), Joongwon (14) and Buan (29) provenances were more stable than others. The implication of GxE interaction was discussed in view of seed transfer and delineation of seed zones.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • ALBERTS M. J. A. (2004): A comparison of statistical method to describe genotype x environment interaction and yield stability in multi-location maize trials. M. S. Dissertation. University of the Free State. South Africa. 96pp.

  • CARSON S. D. (1991): Genotype x environment interaction and optimal number of progeny test sites for improving Pinus radiata in New Zealand. N. Z. J. For. Sci. 21: 32-49.

  • CHAHAL G. S. and S. S. GOSAL (2002): Principles and Procedures of Plant Breeding. Alpha Science International Ltd. London.

  • CHOI W. Y. W. S. TAK K. B. YIM and S. S. JANG (1999): Delineation of provenance regions of forests based on climate factors in Korea. J. Kor. For. Soc. 88: 379-388.

  • DICKERSON G. E. (1962): Implications of genetic-environment interactions in animal breeding. Animal Production 4: 47-63.

  • FINLAY K. W. and G. N. WILKINSON (1963): The analysis of adaptation in a plant-breeding programme. Aust. J. Agric. Res. 14: 742-754.

  • FOX P. N. J. CROSSA and I. RAMAGOSA (1997): Multi-environmental testing and genotype x environment interaction pp. 117-138 in Statistical methods for plant variety evaluation edited by R. A. KEMPTON and P. N. FOX Chapman and Hall London.

  • GAUCH Jr. H. G. (1988): Model selection and validation for yield trials with interaction. Biometrics 44: 705-715.

  • GAUCH H. G. and R. W. ZOBEL (1988): Predictive and postdictive success of statistical analyses of yield trials. Theor. Appl. Genet. 75: 1-10.

  • GWAZE D. P. J. A. WOLLIAMS P. J. KANOWSKI and F. E. BRIDGWATER (2001): Interactions of genotype with site for height and stem straightness in Pinus taeda in Zimbabwe. Silvae Genetica 50: 135-140.

  • HAYWARD M. D. N. O. BOSEMARK and I. ROMAGOSA (1993): Plant Breeding - Principles and prospects. Chapman & Hall Cambridge.

  • HÜHN M. (1996): Non-parametric analysis of genotype x environment interactions by ranks. pp. 213-228 in Genotype by environment interaction edited by M. S.

  • KANG and H. G. GAUCH JR. CRC Press Boca Raton New York. HYUN J. O. and S. U. HAN (1994): A strategy for maximizing genetic variability in selection breeding program of Pinus densiflora S. et Z. pp. 101-115 in Conservation and manipulation of genetic resources in forestry edited by Z. S. KIM and H. H. HATTEMER Kwang Moon Kag Suwon.

  • INTERNATIONAL RICE RESEARCH INSTITUTE (2004): IRRISTAT ver. 4.4.

  • JOHNSON G. R. and R. D. BURDON (1989): Family-site interaction in Pinus radiata: implications for progeny testing strategy and regionalized breeding in New Zealand. Silvae Genet. 39: 55-62.

  • KEMPTON R. A. (1984): The use of biplots in interpreting variety by environment interactions. Journal of Agricultural Sciences 103: 123-135.

  • KIM I. S. K. O. RYU J. H. SONG and T. S. KIM (2005): Geographic variation in survival rate and height growth of Pinus densiflora S. et Z. in Korea. J. Kor. For. Soc. 94: 73-81.

  • KIM J. H. I. S. JUNG W. H. LEE and S. C. HONG (2002): Studies on the fundamental properties of the wood of Gumgangsong (Pinus densiflora for. erecta Uyki) (Part 2). J. Kor. For. Soc. 91: 241-246.

  • KIM K. S. and Y. C. HAN (1997): Variation in growth characteristics of Pinus densiflora S. et Z. at eight experimental plantations of Korea. J. Kor. For. Soc. 86: 119-127.

  • KIM Y. Y. J. O. HYUN K. N. HONG T. B. CHOI and K. S. KIM (1995): Genetic variation of natural populations of Pinus densiflora in Korea based on RAPD marker analysis. Kor. J. Breed. 27: 23-48.

  • LEE C. Y. and B. H. CHO (2001): Pine Pine Forest. Korea Forest Research Institute Seoul.

  • LEE S. W. Y. Y. KIM J. O. HYUN and Z. S. KIM (1997): Comparison of genetic variation in Pinus densiflora natural populations by allozyme and RAPD analysis. Kor. J. Breed. 29: 72-83.

  • PARK I. H. and S. M. LEE (1990): Biomass and net production of Pinus densiflora natural forests of four local forms in Korea. J. Kor. For. Soc. 79: 196-204.

  • PERSSON B. and E. G. STAHL (1993): Effects of provenance transfer in an experiment series of Scots pine (Pinus sylvestris L.) in northern Sweden. Swed. Univ. Agric. Sci. Dep. For. Yield Res. Rep. 35pp.

  • PSWARAYI I. Z. R. D. BARNES J. S. BIRKS and P. J. KANOWSKI (1997): Genotype-environment interaction in a population of Pinus elliottii Engelm. var. elliottii. Silvae Genetica 46: 35-40.

  • REHFELDT G. E. N. M. TCHEBAKOVA and L. K. BARNHARDT (1999): Efficacy of climate transfer functions: introduction of Eurasian populations of Larix into Alberta. Can. J. For. Res. 29: 1660-1668.

  • SCHMIDTLING R. C. (2001): Southern pine seed sources. Gen. Tech. Rep. SRS-XX. Asheville NC: USDA Forest Service Southern Research Station. 25pp.

  • UYEKI H. (1928): On the physiognomy of Pinus densiflora growing in Korea and silvicultural treatment for its improvement. Bull. of the Agr. and For. Coll. Suwon. Korea. 263pp.

  • VIANA J. M. S. and C. D. CRUZ (2002): Analysis of stability and adaptability through different models of line regression. Cienc. agrotec. Lavras 26: 455-462.

  • XU P. C. C. YING and Y. A. EL-KASSABY (2000): Multivariance analyses of causal correlation between growth and climate in Sitka spruce. Silvae Genetica 49: 257-263.

  • YEISER J. L. J. P. VAN BUITENEN and W. LOWE (1981): Genotype x environment interactions and seed movements for loblolly pine in the western gulf region. Silvae Genetica 30: 196-200.

  • YEISER J. L. W. LOWE and J. P. VAN BUIJTENEN (2001): Stability and seed movement for loblolly pine in the western gulf region. Silvae Genetica 50: 81-88.

  • YIM K. B. and K. J. LEE (1979): The variation of natural population of Pinus densiflora S. et Z. in Korea (IX) - needle and wood characteristics of six populations. J. Kor. For. Soc. 44: 1-25.

Search
Journal information
Impact Factor


IMPACT FACTOR 2018: 0,741
5-year IMPACT FACTOR: 0,651

CiteScore 2018: 0.77

SCImago Journal Rank (SJR) 2018: 0.345
Source Normalized Impact per Paper (SNIP) 2018: 0.362

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 122 68 0
PDF Downloads 90 73 1