Variation and Correlations Among Stem Growth and Wood Traits of Calycophyllum spruceanum Benth. from the Peruvian Amazon

Open access


Calycophyllum spruceanum Benth. is an important tree for timber and energy in the western Amazon, with expanding national and international markets for its wood. There is relatively little information, however, about geographic variation in tree growth and wood properties, and correlations among these traits. The first provenance trial was established with farming communities in the Peruvian Amazon. Seven provenances, sampled from regions near the equator, were tested in three planting zones located in one watershed. Variation and correlations were investigated in stem growth at 30 and 42 months, wood density (in the lower and upper parts of the stem) and mean heat content of stem wood at 32 months. Stem height varied significantly among provenances and planting zones, but zones accounted for much more variation than provenances. Stem wood traits did not vary significantly among provenances. Wood density was greater in the lower than in the upper stem. Wood density in the upper stem and the difference in density between the lower and upper stem varied significantly among planting zones: density in the upper stem was lowest, and the difference in density between the lower and upper stem was largest in the zone where trees grew most rapidly. Phenotypic correlations between stem growth and wood density differed in sign among planting zones, suggesting that selecting fastgrowing trees could indirectly reduce wood density in environments where trees grow slowly, and increase the difference in wood density between the lower and upper stem in environments where trees grow very rapidly. Correlations between stem growth and wood heat content were stable across zones, and indicated that larger trees tended to have wood with higher heat content. Stem-wood heat content varied with provenance latitude/ longitude in the sample region, but none of the other traits varied clinally. Results indicate that there is potential to select faster-growing provenances at an early age, but this could affect wood density in certain environments.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • ACEVEDO M. and Y. KIKATA (1994): Atlas de Maderas del Perú. Universidad de Nagoya Japón Universidad Nacional Agraria La Molina Lima Per.

  • ASTM (1976): Standard test method for gross calorific value of solid fuel by the adiabatic bomb calorimeter. In: Annual Book of ASTM Standards pp. 290-297. American Society for Testing and Materials Philadelphia PA USA.

  • ASTM (1997): Standard test methods for specific gravity of wood and wood-base materials. In: Annual book of ASTM Standards 4.10 pp. 348-355. Philadelphia USA.

  • BARAJAS-MORALES J. (1987): Wood specific gravity in species from two tropical forests in Mexico. IAWA Bulletin 8: 143-148.

  • BHAT K. M. (2000): Timber quality of teak from managed tropical plantations with special reference to Indian plantations. Bois et Forêt 263: 6-16.

  • BOIVIN-CHABOT S. H. A. MARGOLIS and J. C. WEBER (2004): Variation in coppice-shoot growth among provenances of Calycophyllum spruceanum Benth. in the Peruvian Amazon Basin. Forest Ecology and Management 198: 249-260.

  • DETIENNE P. and B. CHANSON (1996): L’éventail de la densité du bois des feuillus - comparaison entre différentes régions du monde. Bois et Forêts des Tropiques 250: 19-29.

  • DVORAK W. S. H. URUENA L. A. MORENO and H. GOFORTH (1998): Provenance and family variation in Sterculia apetala in Colombia. Forest Ecology and Management 111: 127-135.

  • ELVIRA L. M. and C. HERNANDO (1989): Inflamabilidad y energía de las especies de sotobosque. Instituto Nacional de Investigaciones Agrarias Madrid Spain. 99 p.

  • FALCONER D. S. and T. F. C. MACKAY (1996): Introduction to Quantitative Genetics. Addison Wesley Longman Limited Edinburgh UK.

  • JUNAC (1981): Descripción General y Anatómica de 105 Maderas del Grupo Andino. Junta del Acuerdo de Cartagena (JUNAC) Lima Perú. pp. 29-31.

  • KALLIOLA R. M. PUHAKKA and W. DANJOY (Eds.) (1993): Amazonía Peruana - Vegetación Húmeda Tropical en el Llano Subandino. Proyecto Amazonía Universidad de Turku Oficina Nacional de Evaluación de Recursos Naturales Lima Perú. 265 p.

  • KHASA P. D. P. LI G. VALLÉE S. MAGNUSSEN and J. BOUSQUET (1995): Early evaluation of Racosperma auriculiforme and R. mangium provenance trials on four sites in Zaire. Forest Ecology and Management 78: 99-113.

  • KOZLOWSKI T. T. P. J. KRAMER and S. G. PALLARDY (1991): The Physiological Ecology of Woody Plants. Academic Press Inc. New York USA. 657 p.

  • LABARTA R. A. and J. C. WEBER (1998): Valorización económica de bienes tangibles de cinco especies arbóreas agroforestales en la Cuenca Amazónica Peruana. Revista Forestal Centroamericana 23: 12-21.

  • LAURANCE W. F. (2001): The hyper-diverse flora of the central Amazon: an overview. In: BIERREGAARD R. O LOVEJOY T. E. GASCON C. MESQUITA R. WILSON E. O. and SALATI E. (Eds.): Lessons from Amazonia: Ecology and Conservation of a Fragmented Forest. Yale University Press. New Haven CO USA. pp. 47-53.

  • LAURIDSEN E. B and E. D. KJÆR (2002): Provenance research in Gmelina arborea Linn. Roxb. A summary of results from three decades of research and a discussion of how to use them. International Forestry Review 4: 20-29.

  • LINARES C. E. MENESES and J. DIAZ (1992): Monografia sobre capirona: Calycophyllum spruceanum. Proyecto Forestal ITTO PD 37/88 Utilización industrial de nuevas especies forestales en el Perú. Camara Nacional Forestal Dirección General de Forestal y Fauna Lima Perú. 32 p.

  • MALAN F. S. (1991): Variation association and inheritance of juvenile wood properties of Eucalyptus grandis Hill ex Maiden with special reference to the effect of growth. South African Forestry Journal 157: 16-23.

  • MEJIA N. E. and M. UCEDA (1992): Poder calorífico de cinco especies de Bombacaceas. Revista Forestal Perú 19: 93-97.

  • MIRANDA I. M. H. ALMEIDA and H. PEREIRA (2001): Influence of provenance subspecies and site on wood density in Eucalyptus globulus Labill. Wood and Fiber Science 33: 9-15.

  • MORGENSTERN E. K. (1996): Geographic Variation in Forest Trees - Genetic Basis and Application of Knowledge in Silviculture. University of British Columbia Press Vancouver BC Canada. 208 p.

  • MORI J. (1994): Influencia de la temperatura en los productos de destilación seca de seis maderas de la zona de Jenaro Herrera Loreto. Tesis de Ingeniero Forestal. Universidad Nacional Agraria La Molina Lima Perú. 131 p.

  • MOSBRUGGER V. (1990): The Tree Habit in Land Plants. Lecture Notes in Earth Sciences. Edited by BHATTACHARJI S. FRIEDMAN G. M. NEUGEBAUER H. J. and A. SEILACHER. Springer-Verlag Berlin. 158 p.

  • NIKLAS K. J. (1997): Size- and age-dependent variation in the properties of sap- and heartwood in Black Locust (Robinia pseudoacacia L.). Annals of Botany 79: 473-78.

  • PAROLIN P. and L.V. FERREIRA (1998): Are there differences in specific wood gravities between trees in várzea and igapó (Central Amazonia)? Ecotropica 4: 25-32.

  • PEREIRA J. C. D. and O. J. LAVORANTI (1986): Comparison of wood quality of three provenances of Mimosa scabrella Benth. for energy purposes. Boletim de Pesquisa Florestal 12: 30-34. Centro Nacional de Florestas Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) Brasilia Brasil.

  • PINEDO-VASQUEZ M. D. ZARIN K. COFFEY C. PADOCH and F. RABELO (2001): Post-boom timber production in Amazonia. Human Ecology 29: 219-239.

  • ROCHON C. (2004): Croissance et densité du bois de sept provenances de Guazuma crinita Mart. dans le bassin de l’Amazonie péruvienne. M.S. thesis Département des Sciences du Bois et de la Forêt Université Laval Québec Canada. 108 p.

  • SAS INSTITUTE INC. (1999): SAS/STAT Users’ Guide Version 8. SAS Institute Inc. Cary NC USA. 3884 p.

  • SEARS R. R. (2003): New forestry on the floodplain: the ecology and management of Calycophyllum spruceanum (Rubiaceae) on the Amazon landscape. PhD dissertation Graduate School of Arts and Sciences Columbia University Ithaca New York USA. 246 p.

  • SOTELO MONTES C. and J. C. WEBER (1997): Priorización de especies arbóreas para sistemas agroforestales en la selva baja del Perú. Agroforestería en las Américas 4: 12-17.

  • SOTELO MONTES C. H. VIDAURRE J. C. WEBER A. J. SIMONS and I. DAWSON (2000): Producción de semillas a partir de la domesticación participativa de árboles agroforestales en la amazonía peruana. In: SALAZAR R. (Ed.): Memorias del Segundo Symposio sobre Avances en la Producción de Semillas Forestales en América Latina. Proyecto de Semillas Forestales (PROSEFOR) Centro de Agricultura Tropical y de Enseñanza (CATIE) International Union of Forest Research Organizations (IUFRO) Santo Domingo República Domínica. pp. 65-72.

  • SOTELO MONTES C. and J. C. WEBER (2001): Variation in growth and wood traits among provenances of Calycophyllum spruceanum Benth. from the Peruvian Amazon. Research Report for the International Tropical Timber Organization Fellowship Programme Reference 090/99A. International Centre for Research in Agroforestry Lima Peru. 73 p.

  • SOTELO MONTES C. H. VIDAURRE and J. C. WEBER (2003): Variation in stem-growth and branch-wood traits among provenances of Calycophyllum spruceanum Benth. from the Peruvian Amazon. New Forests 26: 1-16.

  • STEARNS S. C. (1989): The evolutionary significance of phenotypic plasticity. Biological Science 39: 436-45.

  • STERN R. D. R. COE E. F. ALLAN and I. C. DALE (Eds.) (2004): Good Statistical Practice for Natural Resources Research. CABI Publishing CAB International Wallingford U.K. 388 p.

  • TARANCO MARABOTTO M. A. CABUDIVO MOENA and M. P. SOCORRO C. DE CUNHA (1991): Poder calorífico y pirólisis de cinco especies forestales. In: Alternativas energéticas de veinticinco especies forestales de la amazonía peruana- brasileña. Serie Sécnica N° 2 pp. 25-27. Red de Información Forestal Lima Perú.

  • TOLEDO E. and C. RINCÓN (1996): Utilización industrial de nuevas especies forestales en el Perú. Camara Nacional Forestal Instituto Nacional de Recursos Naturales Organización Internacional de las Maderas Tropicales Lima Perú. 240 p. UCEDA M. (1984): Determinación del poder calorífico de 20 especies forestales de la amazonía peruana. Revista Forestal Perú 12: 98-112.

  • WIEMANN M. C. and G. B. WILLIAMSON (2002): Geographic ariation in wood specific gravity: effects of latitude temperature and precipitation. Wood and Fiber Science 34: 96-107.

  • WINER B. J. (1971): Statistical Principles in Experimental Design 2nd Edition. McGraw-Hill Book Company New York USA. 906 p.

  • WOODCOCK D.W. (2000): Wood specific gravity of trees and forest types in the southern Peruvian amazon. Acta Amazônica 30: 589-599.

  • WOODCOCK D.W. G. DOS SANTOS and C. REYNEL (2000): Wood characteristics of Amazon forest types. IAWA Journal 21: 277-292.

  • ZANGERL A. R. and F. A. BAZZAZ (1992): Theory and pattern in plant defense allocation. In: FRITZ R. S. and SIMMS E. L. (Eds.): Plant Resistance to Herbivores and Pathogens - Ecology Evolution and Genetics. University of Chicago Press Chicago USA. pp. 363-391.

  • ZOBEL B. J. and J. P. VAN BUIJTENEN (1989): Wood Variation - Its Causes and Control. Springer-Verlag New York USA.

  • ZOBEL B. J. and J. B. JETT (1995): Genetics of Wood Production. Springer-Verlag New York USA.

Journal information
Impact Factor

IMPACT FACTOR 2018: 0,741
5-year IMPACT FACTOR: 0,651

CiteScore 2018: 0.77

SCImago Journal Rank (SJR) 2018: 0.345
Source Normalized Impact per Paper (SNIP) 2018: 0.362

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 147 81 3
PDF Downloads 89 68 2