Evolution of Genome Size in Conifers

Open access

Abstract

Conifers are the most widely distributed group of gymnosperms in the world. They have large genome size (1C-value) compared with most animal and plant species. The genome size ranges from ~6,500 Mb to ~37,000 Mb in conifers. How and why conifers have evolved such large genomes is not understood. The conifer genome contains ~75% highly repetitive DNA. Most of the repetitive DNA is composed of non-coding DNA, including ubiquitous transposable elements. Conifers have relatively larger rDNA repeat units, larger gene families generated by gene duplications, larger nuclear volume, and perhaps larger genes, as compared to angiosperm plants. These genomic components may partially account for the large genome size, as well as variation in genome size, in conifers. One of the major mechanisms for genome size expansion and evolution of species is polyploidy, which is widespread in angiosperms, but it is rare in conifers. There are only a few natural polyploids in one family of conifers, Cupressaceae. Other conifers, including well-studied pines, are nearly all diploids. Whether ancient polyploidy has played a role in the evolution of genome size in conifers still remains an open question. The mechanisms that account for the variation and evolution of genome size in conifers are addressed in this review.

ADAMS, M. C., S. E. CELNIKER and R. A. HOLT et al. (2000): The genome sequence of Drosophila melanogaster. Science 287: 2185-2195.

AHUJA, M. R. (2001): Recent advances in molecular genetics of forest trees. Euphytica 121: 173-195.

AHUJA, M. R. (2005): Polyploidy in gymnosperms: Revisited. Silvae Genet. 54: 59-69.

AHUJA, M, R., M. E. DEVEY, A. T. GROVER, K. D. JERMSTAD and D. B. NEALE (1994): Mapped DNA probes from loblolly pine can be used for restriction fragment length polymorphism mapping in other conifers. Theor. Appl. Genet. 88: 279-282.

AHUJA, M. R. and D. B. NEALE (2002): Origins of polyploidy in coast redwood (Sequoia sempervirens (D. Don) Endl.) and relationship of coast redwood to other genera of Taxodiaceae. Silvae Genet. 51: 93-100.

AUKLAND, L. D., J. S. JOHNSTON, H. J. PRICE and F. E. BRIDGEWATER (2001): Stability of nuclear DNA content among divergent and isolated populations of Fraser fir. Can. J. Bot. 79: 1375-1378.

BALAKIREV, E. and F. J. AYALA (2003): Pseudogenes: Are they “junk” or functional DNA? Annu. Rev. Genet. 37: 123-151.

BENNETT, M. D. and I. J. LEITCH (2003): Angiosperm DNA C-values database. http://www.rbgkew.org.uk/cval/homepage.html.

BENNETT, M. D. and I. J. LEITCH (2005): Plant genome size research: A field in focus. Ann. Bot. 95: 1-6.

BENNETT, M. D. and J. B. SMITH (1991): Nuclear DNA amounts in angiosperms. Phil. Trans. R. Soc. Lond. B. 334: 309-345.

BENNETT, M. D., I. J. LEITCH and L. HANSON (1998): DNA amounts in two samples of angiosperm weeds. Ann. Bot. 82 (Supplement A): 121-134.

BENNETT, M. D., I. J. LEITCH, H. J. PRICE and J. S. JOHNSON (2003): Comparisons with Caenorhabditis (~100 Mb) and Drosophila (~175 Mb) using flow cytometry show genome size in Arabidopsis to be ~157 Mb and thus ~25 % larger than the Arabidopsis Genome Initiative estimate of ~125 MB, Ann. Bot. 91: 547-557.

BENNETZEN, J. L. (2002): Mechanisms and rates of genome expansion and contraction in flowering plants. Genetica 115: 29-36.

BENNETZEN, J. L. and E. A. KELLOGG (1997): Do plants have a one-way ticket to genomic obesity? Plant Cell 9: 1509-1514.

BENNETZEN, J. L., J. MA and K. M. DEVOS (2005): Mechanisms of recent genome size variation in flowering plants. Ann. Bot. 95: 127-132.

BERLYN, G. P., J. L. ROYTE and A. O. ANOROU (1990): Cytophotometric differentiation of high elevation spruces: physiological and ecological implications. Stain Tech. 65: 1-14.

BLANC, G. and K. H. WOLFE (2004): Widespread paleopolyploidy in model plant species inferred from age distribution of duplicate genes. Plant Cell 16: 1667-1678.

BOBOLA, M. S., D. E. SMITH and A. S. KLEIN (1992): Five major nuclear ribosomal repeats represent a large and variable fraction of the genomic DNA of Picea rubens and P. mariana. Mol. Biol. Evol. 9: 125-137.

BOWE, L. M., G. COAT and C.W. DEPAMPHILIS (2000): Phylogeny of seed plants based on all three genomic compartments: Extant gymnosperms are monophyletic and Gnetales’ closest relatives are conifers. Proc. Nat. Acad. Sci. USA 97: 4092-4097.

BROWN, G. R., C. H. NEWTON and J. E. CARLSON (1998): Organization and distribution of a Sau3A tandem repeated DNA sequence in Picea (Pinaceae) species. Genome 41: 560-565.

BROWN, G. R., E. E. KADEL and D. I. BASSONI et al. (2001): Anchored reference loci in loblolly pine (Pinus taeda L.) for integrating pine genomics. Genetics 159: 799-809.

BURLEY, J. (1965): Karyotype analysis of Sitka spruce, Picea sitchensis (Bong.) Carr. Silvae Genet. 14: 127-132.

CAVALLINI, A., I. NATALI, G. CIONINI and D. GENNAI (1993): Nuclear DNA variability within Pisum sativum (Leguminoseae): nucleotypic effects on plant growth. Heredity 70: 561-565.

CAUSSE, M. A., T. M. FULTON and Y. G. CHO et al. (1994): Saturated molecular map of rice genome based on as interspecific backcross population. Genetics 138: 1251-1274.

CHAW, S.-M., C. L. PARKINSON, Y. CHENG, T. M. VINCENT and J. D. Palmer (2000): Seed plant phylogeny inferred from all three plant genomes: Morphology of extant gymnosperms and origin of Gnetales from conifers. Proc. Nat. Acad. Sci. USA 97: 4086-4091.

CULLIS, C. A., G. P. GRIESSEN, S. W. GORMAN and R. D. TEASDALE (1988): The 25S, 18S, and 5S ribosomal RNA genes from Pinus radiata D. Don. In: Molecular Genetics of Forest Trees. Proc. 2nd Workshop IUFRO Working Party s2.04.06. CHELIAK, W. M. and YAPA, A. C. (Eds). Canadian Forestry Service PNFI Inf. Rep. PI-X-80, pp. 34-40.

DELEVORYAS, T. (1980): Polyploidy in gymnosperms. In: Polyploidy - Biological Relevance. LEWIS, W. H. (Ed). Plenum Press, New York, pp. 215-218.

DE LUC, A., R. A. ADAMS and M. ZHANG (1999): Using random amplification of polymorphic DNA for taxonomic evaluation of Pfitzer Juniperus. HortScience 34: 1123-1125.

DEVEY, M. E., T. A. FIDDLER, B.-H. LIU, S. J. KNAPP and D. B. NEALE (1994): An RFLP linkage map for loblolly pine based on three generation outbred pedigree. Theor. Appl. Genet. 88: 273-278.

DEUTSCH, M. and M. LONG (1999): Intron-exon structure of eukaryotic model organisms. Nucleic Acid Res. 27: 3219-3228.

DHILLON, S. S. (1987): DNA in tree species. In: Cell and Tissue Culture in Forestry. Vol. 1. BONGA, J. M. and

DURZAN, D. J. (Eds). Martinus Nijhoff Publishers, Dordrecht, pp. 298-313.

DHIR, N. K. and J. P. MIKSCHE (1974): Intraspecific variation of nuclear DNA content in Pinus resinosa Ait. Can. J. Genet. Cytol. 16: 77-83.

DIETRICH, F. S., S. VOEGELI, S. BRACHAT et al. (2004): The Ashbya gossypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome. Science 304: 304-307.

DREWRY, A. (1988): The G-banded karyotype of Pinus resinosa Ait. Silvae Genet. 37: 218-221.

ECHT, C. S. and P. MAY-MARQUARDT (1997): Survey of microsatellite DNA in pine. Genome 40: 9-17.

ELSIK, C. G. and C. G. WILLIAMS (2000): Retroelements contribute to the excess of low-cop number DNA in pine. Mol. Genet. Genomics 264: 47-55.

ELSIK, C. G. and WILLIAMS, C. G. (2001): Families of clustered microsatellites in a conifer genome. Mol. Genet. Genomics 265: 535-542.

FARJON, A. (1998): World Checklist and Bibliography of Conifers. The Royal Botanic Garden, Kew.

FESCHOTTE, C., N. JIANG and S. R. Wessler (2002): Plant transposable elements: where genetics meets genomics. Nature Rev. Genet. 3: 329-341.

FINNEGAN, D. J. (1989): Eukaryotic transposable elements and genome evolution. Trends Genet. 5: 103-107.

FISHER, R. A. (1935): The sheltering of lethals. Am. Nat. 69: 446-455.

FLAVELL, R. (1986): The structure and control of expression of ribosomal RNA genes. Oxford Surv. Plant Mol. Biol. 3: 251-274.

FORCE, A., M. LYNCH, F. B. PICKETT, A. AMORES, Y. YAN and J. POSTLETHWAIT (1999): Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151: 1531-1545.

FRIESEN, N., A. BRANDES and J. S. HESLOP-HARRISON (2001): Diversity, origin and distribution of retrotransposons (gypy and copia) in conifers. Mol. Biol. Evol. 18: 1176-1188.

GAUT, B. S. (2001): Patterns of chromosomal duplication in maize and their implications for comparative maps of grasses. Genome Res. 11: 55-66.

GAUT, B. S. and J. F. DOEBLEY (1997): DNA sequence evidence for the segmental allotetraploid origin of maize. Proc. Natl. Acad. Sci. USA 94: 6809-6814.

GIBSON, T. J. and J. SPRING (2000): Evidence in favor of ancient octoploidy in the vertebrate genome. Biochem Soc. Tans. 28: 259-264.

GILL, G. P., G. R. BROWN and D. B. NEALE (2003): A sequence mutation in the cinamyl alcohol dehydrogenase gene associated with altered lignification in loblolly pine. Plant Biotech. J. 1: 253-258.

GOFF, S. A., D. RICKE and T.-H. LAN et al. (2002): A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296: 92-100.

GOVINDRAJU, D. R. and C. A. CULLIS (1992): Ribosomal DNA variation among populations of Pinus rigida Mill. (patch pine) ecosystem. I. Distribution of copy numbers. Heredity 69: 133-140.

GRAHAM, M. J., C. D. NICKELL and A. L. RAYBURN (1994): Relationship between genome size and maturity group in soybean. Theor. Appl. Genet. 88: 429-432.

GRANT, V. (1981): Plant Speciation. (Second Edition). Columbia University Press, New York.

GRATTAPAGLIA, D. and H. D. BRADSHAW (1994): Nuclear DNA amounts of commercially important Eucalyptus species. Can. J. For. Res. 24: 1074-1078.

GREGORY, T. R. (2001): Animal genome size database. http://www.genomesiz.com.

GREGORY, T. R. (2005): The C-value enigma in plants and animals: A review of parallels and an appeal for partenership. Ann. Bot. 95: 133-146.

GROTKOPP, E., M. REJÁNEK, M. J. SANDERSON and T. L. ROST (2004): Evolution of genome size in pines (Pinus) and its life-history correlates: supertree analyses. Evolution 58: 1705-1729.

GUGERLI, F., C. SPERISON and U. BÜCHLER et al. (2001): The evolutionary split of Pinaceae from other conifers: Evidence from an intron loss and a multigene phylogeny. Mol. Phylogenet. Evol. 21: 167-175.

HAIR, J. B. (1968): The chromosomes of the Cupressaceae. I. Tetraclineae and Actinostrobeae (Callitroideae). New Zealand J. Bot. 6: 277-284.

HALDANE, J. B. S. (1933): The part played by recurrent mutations in evolution. Am. Nat. 67: 5-9.

HANCOCK, J. M. (2002): Genome size and accumulation of simple sequence repeats: Implications of new data from genome sequencing projects. Genetica 115: 93-103.

HIZUME, M., T. KONDO, F. SHIBATA and R. ISHIZUKU (2001): Flow cytometric determination of genome size in the Taxodiaceae, Cupressaceae sensu stricto and Sciadopityaceae. Cytologia 66: 307-311.

HIZUME, M., F. SHIBATA, Y. MATSUSAKI and Z. GARAJOVA (2002): Chromosome identification and comparative karyotype analysis of four Pinus species. Theor. Appl. Genet. 105: 491-497.

HUGHES, A. L. (1999): Phylogenies of developmentally important proteins do not support the hypothesis of two rounds of duplication early in vertebrate history. J. Mol. Biol. 48: 565-578.

International Human Genome Sequencing Consortium. (2001): Initial sequencing and analysis of human genome. Nature 409: 860-921.

JOYNER, K. L., X.-R. WANG, J. S. JOHNSTON, H. J. PRICE and C. G. WILLIAMS (2001): DNA content for Asian pines parallels new world relatives. Can. J. Bot. 79: 192-196.

KALENDAR, R., J. TANKSKANEN, S. IMMONEN, E. NEVO and A. H. SCHULMAN (2000): Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc. Natl. Acad. Sci. USA 97: 6603-6607.

KAMM, A., R. L. DOUDRICK, J. S. HESLOP- ARRISON and T. SCHMIDT (1996): The genomic and physical organization of Ty1-Copia-like sequences as a component of large genomes in Pinus elliottii var. elliottii and other gymnosperms. Proc. Natl. Acad. Sci. USA 93: 2708-2713.

KARVONEN, P., M. KARJALAINEN and O. SOVOLAINEN (1993): Ribosomal RNA genes in Scots pine (Pinus sylvestris L.): chromosomal organization and structure. Genetica 88: 59-68.

KAVARNHEDEN, A., V. A. ALBERT and P. ENGSTROM (1998): Molecular evolution of cdc2 pseudogene in spruce (Picea). Plant Mol. Biol. 36: 767-774.

KHOSHOO, T. N. (1959): Polyploidy in gymnosperms. Evolution 13: 24-39.

KHOSHOO, T. N. (1961): Chromosome numbers in gymnosperms. Silvae Genet. 10: 1-9.

KIDWELL, M. G. (2002): Transposable elements and evolution of genome size in eukaryotes. Genetica 115: 49-63.

KIM, J. M., S. VANGURI, J. D. BOEKE and D. F. VOYTAS (1998): Transposable elements and genome organization: A comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. Genome Res. 8: 464-478.

KINLAW, C. S., D. E. HARRY and R. R. SEDEROFF (1990): Isolation and characterization of alcohol dehydrogenase cDNA from Pinus radiata. Can. J. For. Res. 20: 1343-1350.

KINLAW, C. S. and D. B. NEALE (1997): Complex gene families in pine genomes. Trends Plant Sci. 2: 356-359.

KNIGHT, C. A., N. A. MOLINARI and D. A. PETROV (2005): The large genome constraint hypothesis: Evolution, ecology and phenotype. Ann. Bot. 95: 177-190.

KOSSACK, D. S. and C. S. KINLAW (1999): IFG, a gypsy-like retrotransposon in Pinus (Pinaceae) has an extensive history in pines. Plant Mol. Biol. 39: 417-426.

KRIEBEL, H. B. (1985): DNA sequence components of the Pinus strobus nuclear genome. Can. J. For. Res. 15: 1-4.

KRIEBEL, H. B. (1993): Molecular structure of forest trees. In: Clonal Forestry I. Genetics and Biotechnology. AHUJA, M. R. and LIBBY, W. J. (Eds). Springer Verlag, Berlin, pp. 224-240.

KRUTOVSKY, K.V., M. TROGGIO, G. R. BROWN, K. D. JERMSTAD and D. B. NEALE (2004): Comparative mapping in Pinaceae. Genetics 168: 447-461.

KUMAR, A. and J. L. BENNETZEN (1999): Plant retrotransposons. Annu. Rev. Genet. 33: 479-532.

EL-LAKANY, M. H. and O. SZIKLAI (1971): Intraspecific variation in nuclear characteristics of Douglas-fir. Advan. Front. Plant Sci. 28: 363-378.

LEITCH, I. J. and M. D. BENNETT (2002): New insights into patterns of nuclear genome size evolution in plants. Current Genomics 3: 551-562.

LEITCH, I. J. and M. D. BENNETT (2004): Genome downsizing in polyploid plants. Biol. J. Linnean Soc. 82: 651-663.

LEITCH, I. J., L. HANSON, M. WINFIELD, J. PARKER and M. D. BENNETT (2001): Nuclear DNA C-values complete familial representation in gymnosperms. Ann. Bot. 88: 843-849.

LEITCH, I. J., D. E. SOLTIS, P. S. SOLTIS and M. D. BENNETT (2005): Evolution of DNA amounts across land plants (Embryophyta). Ann. Bot. 95: 207-217.

L’HOMME, Y., A. SÉGUIN and F. M. TREMBLAY (2000): Different classes of retrotransposons in coniferous spruce species. Genome 43: 1084-1089.

LONG, E. O. and I. B. DAWID (1980): Repeated genes in eukaryotes. Annu. Rev. Biochem. 49: 727-764.

LYNCH, M. (2002): Gene duplication and evolution. Science 297: 945-947.

LYNCH, M. and J. S. CONERY (2000): The evolutionary fate and consequences of duplicate genes. Science 290: 1151-1155.

MAKALOWSKI, W. (2001): Are we polyploids? A brief history of one hypothesis. Genome Research 11: 667-670.

MARTIN, A. P. (1999): Increasing genomic complexity by gene duplication and origin of vertebrates. Am. Nat. 154: 111-128.

MARTIN, A. (2001): Is tetralogy true? Lack of support for the ‘one-to-four’ rule. Mol. Biol. Evol. 18: 89-93.

MASTERSON, J. (1994): Stomatal size in fossil plants: Evidence for polyploidy in majority of angiosperms. Science 264: 421-423.

MCCLURE, M. A. (1999): The retroid agents: disease, function and evolution. In: Origin and Evolution of Viruses.

DOMINGO, E., WEBSTER, R. and HOLLAND, J. (Eds). Academic Press, London, pp. 163-195.

MCLYSAGHT, A., L. ENRIGHT, L. SKRABANEK and K. H. WOLFE (2000): Estimation of synteny conservation and genome compaction between pufferfish (Fugu) and human. Yeast 17: 22-36.

MCLYSAGHT, A., K. HOKAMP and K. H. WOLFE (2002): Extensive genomic duplication during early chordate evolution. Nature Genetics 31: 200-204.

MERGEN, F. and B. A. THIELGES (1967): Intraspecific variation in nuclear volume in four conifers. Evolution 21: 720-724.

MIKSCHE, J. P. (1968): Quantitative study of intraspecific variation of DNA per cell in Picea glauca and Pinus banksiana. Can. J. Genet. Cytol. 10: 590-600.

MIKSCHE, J. P. (1971): Intraspecific variation of DNA per cell between Picea sitchensis (Bong.) Carr. provenances. Chromosoma 32: 343-352.

MIKSCHE, J. P. and Y. HOTTA (1973): DNA base composition and repetitious DNA in several conifers. Chromosoma 41: 29-36.

MILLAR, C. I. (1998): Early evolution of pines. In: Ecology and Biogeography of Pinus. RICHARDSON, D. M. (Ed). Cambridge University Press, Cambridge, pp. 69-91.

MILLER, C. N. (1977): Mesozoic conifers. Bot. Rev. 43: 217-280.

MIROV, N. T. (1967): The Genus Pinus. Ronald Press, New York.

MORIYAMA, E. N., D. A. PETROV and D. L. HARTL (1998): Genome size and intron size in Drosophila. Mol. Biol. Evol. 15: 770-773.

MURRAY, B. G. (1998): Nuclear DNA amounts in gymnosperms. Ann. Bot. 82 (Supplement A): 3-15.

MURRAY, B. G., N. FRIESEN and J. S. HESLOP-HARRISSON (2002): Molecular cytogenetic analysis of Podocarpus and comparison with other gymnosperm species. Ann. Bot. 89: 483-489.

NEALE, D. B. and K.V. KRUTOVSKY (2004): Comparative genome mapping in trees: The group of conifers. In: Biotechnology in Agriculture and Forestry. Vol. 55. Molecular Marker Systems. LÖRZ, H. and WENZEL, G. (Eds). Springer Verlag, Berlin, pp. 267-277.

NEWTON, R. J., M. G. MESSINA, H. J. PRICE and I. WAKAMIYA-NOBORI (1999): DNA content, water relations, and environmental stress in gymnosperms. In: Handbook of Plant and Crop Stress. Second Edition. PRESSARAKLI, M. (Ed). Marcel Decker, New York, pp. 659-673.

OBERMAYER, R., I. J. LEITCH, L. HANSON and M. D. BENNETT (2002): Nuclear DNA C-values in 30 species double the estimated familial representation in pteridophytes. Ann. Bot. 90: 209-217.

OHNO, S. (1970): Evolution by Gene Duplication. Springer Verlag, Berlin.

OHRI, D. (1998): Genome size variation and plant systematic. Ann. Bot. 82 (Supplement A): 75-83.

OHRI, D. and M. R. AHUJA (1990): Giemsa C-banded karyotype in Quercus L. (oak). Silvae Genet. 39: 216-219.

OHRI, D., and T. N. KHOSHOO (1986): Genome size in gymnosperms. Pl. Syst. Evol. 153: 119-132.

OHTA, T. (1990): How gene families evolve. Theor. Pop. Biol. 37: 213-219.

OTTO, S. P. and WHITTON, J. (2000): Polyploidy incidence and evolution. Annu. Rev. Genet. 34: 401-437.

PATERSON, A. H., J. E. BOWERS and B. A. CHAPMAN (2004): Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc. Nat. Acad. Sci. USA 101: 903-998.

PERRY, D. L. and G. R. FURNIER (1996): Pinus banksiana has at least seven expressed alcohol dehydrogenase genes in two linked groups. Proc. Natl, Acad. Sci. USA 93: 13020-13023.

PETROV, D. A. (2001): Evolution of genome size: Newapproaches to an old problem. Trends Genet. 17: 23-28.

PREMOLI, A. C., T. KITZBERGER and T. T. VEBELEN (2000): Conservation genetics of the endangered conifer Fitzroya cupressoides in Chile and Argentina. Conservation Genet. 1: 57-66.

PRICE, H. J. (1988): DNA content variation among higher plants. Ann. Missouri Bot. Garden 75: 1248-1257.

PRINCE, V. E. and F. B. PICKETT (2002): Splitting pairs: The diverging fates of duplicate genes. Nature Rev. Genet. 3: 827-837.

PROKOPOWICH, C. D., T. R. GREGORY and T. J. CREASE (2003): The correlation between rDNA copy number and genome size in eukaryotes. Genome 46: 48-50.

RAKE, A.V., J. P. MIKSCHE, R. B. HALL and K. M. HANSEN (1980): DNA reassocitation kinetics of four conifers. Can. J. Genet. Cytol. 22: 69-79.

RAMSEY, J. and D. W. SCHEMSKE (2002): Neoplolyploidy in flowering plants. Annu. Rev. Ecol. Syst. 33: 589-639.

RAYBURN, A. L., H. J. PRICE, J. D. SMITH and J. R. GOLD (1985): C-band heterochromatin and DNA content in Zea mays. Am. J. Bot. 72: 1610-1617.

ROGERS, S. O. and A. J. BENDICH (1987): Ribosomal RNA genes in plants: variability in copy number and in the intergenic spacers. Plant Mol. Biol. 9: 509-520.

RUBIN, G. M., M. D. YANDELL and J. R. WORTMAN et al. (2000): Comparative genomic of the eukaryotes. Science 287: 2204-2215.

SANKOFF, D. (2001): Gene and genome duplication. Curr. Opin. Genet. Dev. 11: 681-684.

SANMIGUEL, P., A. TIKHONOV and Y.-K. JIN et al. (1996): Nested retrotransposons in the intergenic regions of the maize genome. Science 274: 765-768.

SANMIGUEL, P. and J. L. BENNETZEN (1998): Evidence that a recent increase in maize genome size was caused by the massive amplification of intergenic retrotransposons. Ann. Bot. 82 (Supplement A): 37-44.

SAX, K. and H. J. SAX (1933): Chromosome number and morphology in the conifers. J. Arnold Arboretum 14: 356-375.

SAYLOR, L. C. and H. A. SIMONS (1970): Karyology of Sequoia sempervirens; karyotype and accessory chromosomes. Cytologia 35: 294-303.

SCHLARBAUM, S. E. and T. TSUCHIYA (1984): A chromosome study of coast redwood, Sequoia sempervirens (D. Don.) Endl.). Silvae Genet. 33: 56-62.

SCHMIDT, A., R. L. DOUDRICK, J. S. HESLOP-HARRISON and T. SCHMIDT (2000): The contribution of short repeats of low sequence complexity to large conifer genomes. Theor. Appl. Genet. 101: 7-14.

SEDEROFF, R. R., A.-M. STOMP and B. GWYNN et al. (1987): Application of DNA recombinant techniques in pines: Amolecular approach to genetic engineering in forestry. In: Cell and Tissue Culture in Forestry. Vol. 1. BONGA, J. M. and DURZAN, D. J. (Eds). Martinus Nijhoff Publishers, Dordrecht, pp. 314-329.

SEWELL, M. M., B. K. SHERMAN and D. B. NEALE (199): A consensus map for loblolly pine (Pinus taeda L.). I. Construction and integration of individual linkage maps from two outbred three-generation pedigrees. Genetics 151: 321-330.

SHEN, B., N. CARNEIRO and L. TORRES-JEREZ et al. (1994): Partial sequencing and mapping of clones from two maize cDNA libraries. Plant Mol. Biol. 26: 1085-1101.

SILJAK-YAKOVIEV, S., M. CERBAH and J. COULAUD et al. (2002): Nuclear DNA content, base composition, heterochromatin and rDNA in Picea amorica and Picea abies. Theor. Appl. Genet. 104: 505-512.

SKRABANEK, L. and K. H. WOLFE (1998): Eukaryote genome duplication - where’s the evidence? Curr. Opin. Genet. Dev. 8: 694-700.

SMITH, D. N. and M. E. DEVEY (1994): Occurrence andinheritance of microsatellite loci in Pinus radiata. Genome 37: 977-983.

SOLTIS, D. E. and P. S. SOLTIS (1999): Polyploidy: recurrent formation and genome evolution. Trends Ecol. Evol. 14: 348-352.

SOLTIS, D. E., P. S. SOLTIS, M. D. BENNETT and I. J. LEITCH (2003a): Evolution of genome size in angiosperms. Am. J. Bot. 90: 1596-1603.

SOLTIS, D. E., P. S. SOLTIS and J. TATE (2003b): Advances in the study of polyploidy since plant speciation. New Pytologist 161: 173-191.

STUART-ROGERS, C. and A. J. FLAVELL (2001): The evolution of Ty1-copia group retrotransposons in gymnosperms. Mol. Biol. Evol. 18: 155-163.

STEBBINS, G. L. (1948): The chromosomes and relationship of Metasequoia and Sequoia. Science 108: 95-98.

STEBBINS, G. L. (1950): Variation and Evolution in Plants. Columbia University Press, New York.

STEBBINS, G. L. (1966): Chromosomal variation and evolution. Science 152: 1463-1469.

STEWART, W. N. and G.W. ROTHWELL (1993): Paleobotany and the Evolution of Plants. Second Edition. Cambridge University Press, Cambridge. The Arabidopsis Genome Initiative (2000): Analysis of thegenome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796-815.

THOMAS, C. A. (1970): The genetic organization of chromosomes. Annu. Rev. Genet. 5: 237-256.

THOMSON, W. F. and M. G. MURRAY (1981): The nuclear genome: structure and function. In: The Histochemistry of Plants. Vol. 6. STUMPF, P. K. and CONN, E. E. (Eds). Academic Press, London, pp. 1-81.

TURCOTTE, K., S. SRINIVASAN and T. BUREAU (2001): Survey of transposable elements from rice genome sequences. Plant J. 25: 169-179.

VAN DE PEER, Y., J. S. TATLOR and A. MEYER (2003): Are all fishes ancient polyploids? J. Structural and Functional Genomics 2: 65-73.

VANDERPOELE, K., C. SIMILLION and Y. VAN DE PEER (2003): Evidence that rice and other cereals are ancient aneuploids. Plant Cell 15: 2192-2202.

VICIENT, C. M., A. SUONIEMI, ANAMTHAWAT-JÓNSSON, J. TANSKANEN, A. BEHARAV, E. NEVO and A. H. SCHULMAN (1999): Retrotransposon BARE-1 and its role in genome evolution in the genus Horduem. Plant Cell 11: 1769-1784.

VOYTAS, D. F., M. P. CUMMINGS, A. KONIECZNY, F. M. ASUBEL and S. RODERMEL (1992): Copia-like retrotransposons are ubiquitous among plants. Proc. Natl. Acad. Sci. USA 89: 7124-7128.

VIEIRA, C., D. LEPETIT, S. DUMONT and C. BIEMONT (1999): Make up of transposable elements following Drosophila simulans worldwide colonization. Mol. Biol. Evol. 16: 1251-1255.

VINOGRADOV, A. E. (1999): Intron-genome size relationship on a large evolutionary scale. J. Mol. Evol. 49: 376-384.

WAKAMIYA, I., R. J. NEWTON, J. S. JOHNSTON and H. J. PRICE (1993): Genome size and environmental factors in the genus Pinus. Am. J. Bot. 80: 1235-1241.

WALBOT, V. and D. A. PETROV (200): Gene galaxies in the maize genome. Proc. Natl. Acad. Sci. USA 98: 8163-8164.

WALSH, B. (2003): Population-genetic models of the fates of duplicate genes. Genetica 118: 279-294.

WATERSTON, R. and J. SULSTON (1995): The genome of Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 92: 10836-10840.

WENDEL, J. F. (2000): Genome evolution in polyploids. Plant Mol. Biol. 42: 225-249.

WENDEL, J. F., R. C. CRONN, I. ALVAREZ, B. LIU, R. L. SMALL and D. S. SENCHINA (2002): Intron size and genome size in plants. Mol. Biol. Evol. 19: 2346-2352.

WENDEL, J. F. and S. R. WESSLER (2000): Retrotransposonmediated genome evolution on a local ecological scale. Proc. Natl. Acad. Sci. USA 97: 6250-6252.

WOLFE, K. H. (2001): Yesterday’s polyploids and the mystery of diploidization. Nature Rev. Genet. 2: 333-341.

WRIGHT, J.W. (1976): Introduction to Forest Genetics. Academic Press, New York.

YU, Z., S. J. WRIGHT and T. E. BUREAU (2000): Mutatorlike elements in Arabidopsis thaliana. Structure, diversity and evolution. Genetics 156: 2019-2031.

ZHANG, J. (2003): Evolution by gene duplication: An update. Trends Ecol. Evol. 18: 292-298.

Journal Information


IMPACT FACTOR 2018: 0,741
5-year IMPACT FACTOR: 0,651

CiteScore 2018: 0.77

SCImago Journal Rank (SJR) 2018: 0.345
Source Normalized Impact per Paper (SNIP) 2018: 0.362

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 333 236 15
PDF Downloads 186 147 3