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Abstract: The aim of this paper is the biomechanical evaluation of the interaction between load forces to which 

a sitting man and the seat are exposed. All loads, which consider actual anthropometry histograms of human 

population (i.e. segmentation of human weight, height, centroids, gravity and shape of seat) are determined using 

the direct Monte Carlo Method. All inputs are based on the theory of probability (i.e. random/probabilistic inputs 

and outputs with respect their variabilities). A simple plane model (i.e. probabilistic normal forces and bending 

moments) shows a sufficient stochastic/probabilistic evaluation connected with biomechanics, ergonomics, 

medical engineering (implants, rehabilitation, traumatology, orthopaedics, surgery etc.) or industrial design. 

KEYWORDS: Biomechanics, sitting man, seat, anthropometry, human segmentation, loadings, stochastics, 
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1 Introduction 

Sitting can be source of medical problems, e.g. influencing or even causing injuries or 

deformities in spine or in dorsum in general (i.e. oedema, hyperplasia, dermatitis, Secretan's 

syndrome, Scheuermann's disease, scoliosis, etc.). Treatment of dorsal back pains or diseases 

is quite often and it is usually “optimally” directed toward a diagnosed or suspected specific 

cause (see Fig. 1). 

   

Fig. 1 X-ray snapshot of a human with lumbar dextroscoliosis and thoracic levoscoliosis (a) 

preoperative, (b) postoperative; (c) archeology – a middle ages women with severe scoliosis 

(Limburgs Museum, Venlo, The Nederlands). 
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Human scoliosis (i.e. abnormal sideways curve/curves of spine) generally firstly occurs in 

children, when they experience their growth spurt. However, it can occur at other ages if it's 

caused by something else like a muscle disease, such as muscular atrophy, cerebral palsy, old 

age etc. 

To analyze loads acting on a sitting human, a simple and easy to apply model was created. 

Stochastic (i.e. fully probabilistic) approach is used to take the real variety of human 

population into account. The probabilistic evaluation is done using direct Monte Carlo 

Method – random simulations (generated results) restricted by given variable inputs, where 

the inputs are chosen according to the real (measured or published) anthropometric 

parameters, different shapes of chair and location on Earth. 

Application of probabilistic approaches is a new and modern trend in science research and 

development; see reference 3 to 9, 12, 13. 

2 Model of Sitting Human – Normal/Reaction Forces and Bending Moments 

In mechanics and engineering approach, truss structures appear to be the easiest ways of 

introducing, explaining and solving geometrical and material linearities or nonlinearities; see 

Fig. 2 and reference 10 and 11. However, truss structures can be easy applied in 

biomechanics too; see the following text. 

 

Fig. 2 Example of truss structure loaded by vertical force F - (a) general description, (b) 

solution according to the theory of 1st order (Method of Joints), (c) solution according to the 

theory of 2nd order (Method of Joints) 

In the following text, the theory of 1st order is applied (i.e. fully linear model). 

Simple (2D, plane) model of a sitting human (see Fig. 3 and 4), similar to truss structure, is 

constructed from 4 segments (segment 1 – feet and legs, segment 2 – thighs, segment 3 – 

lower part of torso, segment 4 – upper part of torso and head with neck) and 5 joints (A – E) 

(see Fig. 3 and 4). Gravitational forces acting in centroids (see Fig. 4a) are distributed to 

adjacent joints too (see Fig. 4b and 5). Model was derived by using the Method of Joints. 
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Fig. 3 Sitting human 

  

  

Fig. 4 Model of a sitting man as a biomechanical truss structure 
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2.1 Normal and Reaction Forces 

Derivations of reaction forces and normal (internal) forces are very important for 

biomechanics of a sitting human or design of a seat. 

From equilibrium equations of each joint (see Fig. 5), the final formulae of reaction Rj [N] 

and normal forces 𝑁i [N] (in Fig. 5, the chosen orientations represent pressure) were derived; 

see eq. (1) to (10).  

𝑁1 =
(0.56 ∙ G1 + 0.43 ∙ G2) ∙ cos(𝛽)

sin(𝛼 + 𝛽)
 (1) 

𝑁2 =
(0.56 ∙ G1 + 0.43 ∙ G2) ∙ cos(𝛼)

sin(𝛼 + 𝛽)
 (2) 

𝑁3 =
[0.5 ∙ G3 + G4] ∙ sin(𝛿)

cos(𝛿 − 𝛾)
 (3) 

𝑁4 = 0.83 ∙ G4 ∙ sin(𝛿) (4) 

Rx1 = −
(0.56 ∙ G1 + 0.43 ∙ G2) ∙ cos(𝛽) ∙ cos(𝛼)

sin(𝛼 + 𝛽)
 (5) 

Ry1 = 0.43 ∙ G1 +
(0.56 ∙ G1 + 0.43 ∙ G2) ∙ cos(𝛽) ∙ sin(𝛼)

sin(𝛼 + 𝛽)
 (6) 

Rx3 = −
[0.5 ∙ G3 ∙ sin(𝛿) + G4 ∙ sin(𝛿)] ∙ cos(𝛾)

cos(𝛿 − 𝛾)
+ 

+
(0.56 ∙ G1 + 0.43 ∙ G2) ∙ cos(𝛼) ∙ cos(𝛽)

sin(𝛼 + 𝛽)
 

 

(7) 

Ry3 = 0.57 ∙ G2 + 0.5 ∙ G3 +
(0.56 ∙ G1 + 0.43 ∙ G2) ∙ cos(𝛼) ∙ sin(𝛽)

sin(𝛼 + 𝛽)
+ 

+
[0.5 ∙ G3 + G4] ∙ sin(𝛿) ∙ sin(𝛾)

cos(𝛿 − 𝛾)
 

(8) 

R4 = 0.5 ∙ G3 ∙ cos(𝛿) + 0.17 ∙ G4 ∙ cos(𝛿) +
[0.5 ∙ G3 + G4 ∙] ∙ sin(𝛿) ∙ sin(𝛿 − 𝛾)

cos(𝛿 − 𝛾)
 (9) 

R5 = 0.83 ∙ G4 ∙ cos(𝛿) (10) 

Coordinate system for 
joints A, B, C 

Coordinate system 
for joints D and E 

Fig. 5 Free body diagrams (application of Method of Joints) 
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2.2 Bending Moments 

Derivations of bending (internal) moments are very important for biomechanics of a sitting 

human or design of a seat. 

To determine bending moments, forces acting outside of joints must be considered – in this 

case we can calculate the moments the same way we would on an angled beam; see eq. (11) to 

(18). 

Segment 1: z1 ∈< 0; 0.56 ∙ L1 >, z2 ∈< 0; 0.44 ∙ L1 > 

 

Fig. 6 Segment 1 

 

𝑀o(z1) = Ry1 ∙ z1 ∙ cos(𝛼) + Rx1 ∙ z1 ∙ sin(𝛼) (11) 

𝑀o(z2) = Ry1 ∙ (z2 + 0.56 ∙ L1) ∙ cos(𝛼) + Rx1 ∙ (z2 + 0.56 ∙ L1) ∙ sin(𝛼) + 

−G1 ∙ z2 ∙ cos(𝛼) 
(12) 

 

Segment 2:  z3 ∈< 0; 0.57 ∙ L2 >, z4 ∈< 0; 0.43 ∙ L2 > 

 

Fig. 7 Segment 2 

 

𝑀o(z3) = Ry1 ∙ (L1 ∙ cos(𝛼) + z3 ∙ cos(𝛽)) + Rx1 ∙ (L1 ∙ sin(𝛼) − z3 ∙ sin(𝛽)) + 

                 −G1 ∙ (0.43 ∙ L1 ∙ cos( 𝛼) + z3 ∙ cos(β)) 
(13) 

𝑀o(z4) = Ry1 ∙ (L1 ∙ cos(𝛼) + (z4 + 0.57 ∙ L2) ∙ cos(𝛽)) + 

+Rx1 ∙ (L1 ∙ sin(𝛼) − (z4 + 0.57 ∙ L2) ∙ sin(𝛽)) + 

−G1 ∙ (0.44 ∙ L1 ∙ cos( 𝛼) + (z4 + 0.57 ∙ L2) ∙ cos(β)) − 𝐺2 ∙ z4 ∙ cos(𝛽) 

(14) 
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Segment 4: z5 ∈< 0; 0.17 ∙ L4 >, z6 ∈< 0; 0.83 ∙ L4 > 

 

Fig. 8 Segment 4 

 

𝑀o(z5) = R5 ∙ z5 (15) 

𝑀o(z6) = R5 ∙ (z6 + 0.17 ∙ L4) − G4 ∙ z6 ∙ cos(𝛿) (16) 

Segment 3: z7 ∈< 0; 0.5 ∙ L3 >, z8 ∈< 0; 0.5 ∙ L3 > 

 
Fig. 9 Segment 3 

 

𝑀o(z7) = R5 ∙ cos(𝛿) ∙ (L4 ∙ cos(𝛿) + z7 ∙ cos(𝛾)) + 

+R5 ∙ sin(𝛿) ∙ (L4 ∙ sin(𝛿) + z7 ∙ sin(𝛾)) + 

+R4 ∙ cos(𝛿) ∙ z7 ∙ cos(𝛾) + R4 ∙ sin(𝛿) ∙ z7 ∙ sin(𝛾) + 

−G4 ∙ (0.83 ∙ L4 ∙ cos(𝛿) + z7 ∙ cos(𝛾)) 

(17) 

𝑀o(z8) = R5 ∙ cos(𝛿) ∙ (L4 ∙ cos(𝛿) + (z8 + 0.5 ∙ L3) ∙ cos(𝛾)) + 

+R5 ∙ sin(𝛿) ∙ (L4 ∙ sin(𝛿) + (z8 + 0.5 ∙ L3) ∙ sin(𝛾)) + 

                 +R4 ∙ cos(𝛿) ∙ (z8 + 0.5 ∙ L3) ∙ cos(𝛾) + 

+R4 ∙ sin(𝛿) ∙ (z8 + 0.5 ∙ L3) ∙ sin(𝛾) + 

           −G4 ∙ (0.83 ∙ L4 ∙ cos(𝛿) + z8 ∙ cos(𝛾)) − G3 ∙ z8 ∙ cos(𝛾). 

(18) 

Maximum bending moments are in centroids of each segment; see eq. (19) to (22). 

𝑀omax1 = Ry1 ∙ 0.56 ∙ L1 ∙ cos(𝛼) + Rx1 ∙ 0.56 ∙ L1 ∙ sin(𝛼) (19) 

𝑀omax2 = Ry1 ∙ (L1 ∙ cos(𝛼) + 0.57 ∙ L2 ∙ cos(𝛽)) + 

+Rx1 ∙ (L1 ∙ sin(𝛼) − 0.57 ∙ L2 ∙ sin(𝛽)) − G1 ∙ (0.44 ∙ L1 ∙ cos( 𝛼)) + 

+0.57 ∙ L2 ∙ cos(β) 

(20) 

𝑀omax3 = −G4 ∙ (0.83 ∙ L4 ∙ cos(𝛿) + 0.5 ∙ 𝐿3 ∙ cos(𝛾)) + 

+R5 ∙ sin(𝛿) ∙ (L4 ∙ sin(δ) + 0.5 ∙ 𝐿3 ∙ sin(𝛾)) + 

+R4 ∙ cos(𝛿) ∙ 0.5 ∙ L3 ∙ cos(𝛾) + R4 ∙ sin(𝛿) ∙ 0.5 ∙ L3 ∙ sin(𝛾) + 

+R5 ∙ cos(𝛿) ∙ (L4 ∙ cos(𝛿) + 0.5 ∙ L3 ∙ cos(𝛾)) 

(21) 

𝑀omax4 = R5 ∙ 0.17 ∙ L4 (22) 
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3 Example of Normal Forces Diagram and Bending Moments Diagram 

Normal forces diagram is presented in Fig. 10 (a) and bending moment diagram is 

presented in Fig. 10 (b). 

 

 

 
Fig. 10 (a) Normal forces diagram – Example of sitting human evaluation, (b) Bending 

moments diagram – Example of sitting human evaluation 
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4 Stochastic/Probabilistic Inputs and Outputs 

All the data are described via histograms with truncated (bounded) normal distribution. 

Histograms of total height and weight are given by references [1] and [2], gravitational 

acceleration g is given by location on Earth. Segment angles 𝛼, 𝛽 and 𝛿 were chosen (depends 

on design of chair). Angle 𝛾 is related to 𝛿 (see Tab. 1) to avoid unrealistic results. Lengths 

and weights of segments are functions of total height/weight. 

Output data are calculated in Anthill software 2.6 Pro (direct Monte Carlo Method) using 

107 random simulations for very accurate results. 

Inputs: 

Tab. 1 Input data (human anthropometry, design of a seat and Earth's gravity) 

Variable name Symbol  
Min. 

value 

Mean 

value 

Median 

value 

Max.  

value 
Graph 

Total weight [kg] m 45 89.998 89.951 135 Graph 1 

Total height [m] h 1.2 1.8 1.8 2.4 Graph 2 

Angle of segment 1 [deg] 𝛼 60 74.998 74.991 90 Graph 3 

Angle of segment 2 [deg] 𝛽 0 9.998 9.981 20 Graph 4 

Angle of segment 3 [deg] 𝛾 =
14

15
∙ 𝛿 60.67 69.999 69.988 79.33 Graph 5 

Angle of segment 4 [deg] 𝛿 65 74.999 74.987 85 Graph 6 

Gravitational acc. [m/s2] g 9.78 9.806 9.806 9.832 Graph 7 

Length 

[m] 

Segment 1 L1 = 0.285 ∙ h 0.342 0.513 0.512 0.684 Graph 8 

Segment 2 L2 = 0.245 ∙ h 0.294 0.441 0.441 0.588 Graph 9 

Segment 3 L3 = 0.24 ∙ h 0.288 0.432 0.432 0.576 
Graph 

10 

Segment 4 L4 = 0.165 ∙ h 0.198 0.297 0.297 0.396 
Graph 

11 

Weight 

[kg] 

Segment 1 m1 = 0.124 ∙ m 5.58 11.158 11.138 16.74 
Graph 

12 

Segment 2 m2 = 0.248 ∙ m 11.16 22.317 22.275 33.48 
Graph 

13 

Segment 3 m3 = 0.4 ∙ m 18 35.996 35.928 54 
Graph 

14 

Segment 4 m4 = 0.228 ∙ m 10.26 20.518 20.479 30.78 
Graph 

15 

Gravit. 

force 

[N] 

Segment 1 G1 54.58 109.429 109.435 164.567 
Graph 

16 

Segment 2 G2 109.161 218.859 218.87 329.134 
Graph 

17 

Segment 3 G3 176.066 352.998 353.016 530.862 
Graph 

18 

Segment 4 G4 100.357 201.209 201.219 302.591 
Graph 

19 
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Graph 1 Total weight Graph 2 Total height Graph 3 Angle – segment 1 

 m ∈ 〈45; 135〉 kg h ∈ 〈1.2; 135〉 m 𝛼 ∈ 〈60; 90〉 deg  

 
Graph 4 Angle –segment 2 Graph 5 Angle – segment 3   Graph 6 Angle – segment 4 

 β ∈ 〈0; 20〉 deg γ ∈ 〈60.67; 79.33〉 deg 𝛿 ∈ 〈65; 85〉 deg 

 
Graph 7 Gravitational acc. Graph 8 Length – segment 1  Graph 9 Length – segment 2 

 g ∈ 〈9.78; 9.832〉 m/s2 L1 ∈ 〈0.342; 0.684〉 m L2 ∈ 〈0.294; 0.588〉 m 

 
Graph 10 Length – segment 3  Graph 11 Length – segment 4  Graph 12 Weight – segment 1 

 L3 ∈ 〈0.288; 0.576〉 m L4 ∈ 〈0.198; 0.396〉 m m1 ∈ 〈5.58; 16.74〉 kg 

 
Graph 13 Weight – segment 2  Graph 14 Weight – segment 3 Graph 15 Weight – segment 4 

 m2 ∈ 〈11.16; 33.48〉 kg m3 ∈ 〈18; 54〉 kg m4 ∈ 〈10.26; 30.78〉 kg 

 
Graph 16 G. force – segment 1 Graph 17 G. force – segment 2 Graph 18 G. force – segment 3 

 G1 ∈ 〈54.58; 164.567〉 N G2 ∈ 〈109.161; 329.134〉 N G3 ∈ 〈176.066; 530.862〉 N 
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Graph 19 G. force – segment 4 

G4 ∈ 〈100.357; 302.591〉 N 

 

Note: The sum of all lengths of segments is smaller than total height (i.e. ∑ Li
4
1 < h). The 

reason is, the head is propped on chair in half of its length; see Fig. 3 and 4. 

Outputs: 

Tab. 2 Output data (calculated normal and reaction forces and bending moments) 

 

Variable name Symbol 
Min. 

value 

Mean 

value 

Median 

value 

Max. 

value 
Graph 

Internal 

normal 

force 

[N] 

Segment 1 𝑁1 73.367 154.2 154.145 262.296 
Graph 

20 

Segment 2 𝑁2 0 40.535 39.554 128.811 
Graph 

21 

Segment 3 𝑁3 172.652 365.611 365.535 566.686 
Graph 

22 

Segment 4 𝑁4 76.115 161.038 161.006 249.36 
Graph 

23 

Reaction 

force 

[N] 

Feet – X 

direction 
Rx1 -128.809 -39.856 -38.879 0 

Graph 

24 

Feet – Y 

direction 
Ry1 91.425 196.529 196.475 305.431 

Graph 

25 

Buttock – X 

direction 
Rx3 -240.59 -84.724 -83.425 12.204 

Graph 

26 

Buttock – Y 

direction 
Ry3 305.726 651.419 651.192 1029.748 

Graph 

27 

Dorsum R4 28.091 86.332 85.601 172.559 
Graph 

28 

Head R5 7.546 43.15 42.456 105.244 
Graph 

29 

Max. 

internal 

bending 

moment 

[Nm] 

Segment 1 𝑀OMAX1 0 3.566 3.464 12.567 
Graph 

30 

Segment 2 𝑀OMAX2 7.796 23.257 23.058 46.975 
Graph 

31 

Segment 3 𝑀OMAX3 3.011 13.02 12.771 34.983 
Graph 

32 

Segment 4 𝑀OMAX4 0.324 2.179 2.126 6.63 
Graph 

33 
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Graph 20 N. force – segment 1 Graph 21 N. force – segment 2 Graph 22 N. force – segment 3 

 𝑁1 ∈ 〈73.367; 262.296〉 N 𝑁2 ∈ 〈0; 128.811〉 N 𝑁3 ∈ 〈172.652; 566.683〉 N 

 
Graph 23 N. force – segment 4 Graph 24 R. force – foot (X)   Graph 25 R. force – foot (Y) 

 𝑁4 ∈ 〈76.115; 249.36〉 N Ry1 ∈ 〈91.425; 305.431〉 N Rx1 ∈ 〈−128.809; 0〉 N 

 
Graph 26 R. force – buttock (X) Graph 27 R. force – buttock (Y)  Graph 28 R. force – dorsum 

 Rx3 ∈ 〈−240.59; 12.204〉 N Ry3 ∈ 〈305.726; 1029.748〉 N R4 ∈ 〈28.091; 172.559〉 N 

 
Graph 29 R. force – head  Graph 30 Moment – segment 1 Graph 31 Moment – segment 2 

 R5 ∈ 〈7.546; 105.244〉 N 𝑀OMAX1 ∈ 〈0; 12.567〉 Nm 𝑀OMAX2 ∈ 〈7.796; 46.975〉 Nm 

   
Graph 32 Moment – segment 3  Graph 33 Moment – segment 4 

 𝑀OMAX3 ∈ 〈3.011; 34.983〉 Nm 𝑀OMAX4 ∈ 〈0.324; 6.63〉 Nm 

In some output histograms we can see skewness/kurtosis of histograms. This is OK and it 

is caused by combination of mathematical and statistical operations. 

5 Probabilistic Diagram of Normal Forces and Bending Moments 

By putting the histograms of normal forces and bending moments into diagrams we can 

better visualize the range of normal forces and bending moments that are acting in segments. 



108 2019 SjF STU Bratislava Volume 69, No. 2, (2019) 

 

 

Fig. 11 Normal forces diagram with histograms 
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Fig. 12 Bending moments diagram with histograms 

CONCLUSION 

The aim of this paper is a biomechanical evaluation of the interaction between load forces 

to which a sitting man and the seat are exposed. All loads and dimensions given by real 

anthropometry (histograms with normal distribution) and are determined by direct Monte 

Carlo method (software Anthill). Hence, the stochastic/probabilistic approach is used. 

Plane model for the stochastic solution of seat and seating man interaction was applied. 

This model shows sufficient biomechanical evaluation. The output data show the biggest 

normal force 𝑁MAX = 𝑁3MAX = 566.7 N in dorsum (see Graph 22 or Tab. 2). Maximum 

bending moment 𝑀OMAX = 𝑀OMAX2 = 46.975 Nm is in thighs (see Graph 31 or Tab. 2), but 

those are not as susceptible to injury as dorsum is. 

For the further calculations, shear forces and dynamic effects (e.g. by dynamic factor) 

could be added and finally a curvilinear or spatial (3D) model can be applied. This analysis 

can serve e.g. as an initial part in designing or improving chairs or as a good support for 

ergonomics, rehabilitation, implant design etc. 
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