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Abstract: The problem of active vibration control of weakly damped mechanical structures is potentially 

unstable modes of vibrations due to the positive feedback for some vibration modes.  The paper will discuss the 

change of positive feedback on the negative one using all-pass discrete-time filters. These filters can be arranged 

in a cascade to stabilize many potentially unstable modes. The piezoelectric actuator as a source of force is used 

to damp vibration.  
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1 Introduction 

The problem of the active vibration control of weakly-damped mechanical structures 

consists of potentially unstable modes of vibrations. For the increase of the gain feedback, 

some of the poles of the transfer function in the complex plane recede the stability boundary 

which is the imaginary axis, while the other poles approach it. For a large feedback gain, these 

poles cross the stability boundary, and the system becomes unstable. In this case, the feedback 

becomes positive for these vibration modes. The paper will discuss the change of positive 

feedback on the negative one using all-pass discrete-time filters. Arranging these filters in a 

cascade is possible. The piezoelectric actuator as a source of force is used to damp vibration. 

The problem is that this actuator type has a hysteresis which has to be taken into account 

when analyzing the effect of active vibration control.  Simulation examples will illustrate the 

theory.  

2 Model of the flexible mechanical structure  

As assumed, the paper deal with the mechanical systems of 𝑁 degrees of freedom. The 

response of these mechanical systems to external forces describes the equation of motion in a 

matrix form 

𝐌𝐲̈ + 𝐂𝐲̇ + 𝐊𝐲 = 𝐅 (1) 

where 𝐌, 𝐂, and 𝐊 denote the mass, damping, and stiffness matrices, respectively, 𝐅, 𝐲, 𝐲̇, and 

𝐲̈ are the force, linear displacement, velocity and acceleration vectors, respectively. Note that 

matrices 𝐌, 𝐂, and 𝐊 are square symmetric of the size 𝑁 × 𝑁. The linear displacement can be 

considered as a coordinate and refers to a specific node of the mechanical system. An 

additional term on the left side of the equation of motion that is proportional to the velocity 

vector indicates the presence of viscous damping as a dissipative force. The damping matrix is 

assumed to be of the Rayleigh type 𝐂 = 𝛼𝐌 + 𝛽𝐊, where 𝛼, 𝛽 are the constants of 
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proportionality. The dependence of the damping ratio 𝜉 on frequency 𝑓 in hertz yields from 

the formula 𝜉 = 𝜋(𝛼 𝑓⁄ + 𝛽𝑓). The numerical value of the constants of proportionality is as 

follows = 0.159 [𝑠−1], 𝛽 = 0.0000411 [𝑠] . 

By solving the equation (𝐊 − 𝜔𝑘
2𝐌)𝐮𝑘 = 𝟎 where a vector 𝐮𝑘 is known in mathematics as 

an eigenvector, we obtain the vibration frequency 𝜔𝑘 of the undamped system. The number of 

solutions is equal to 𝑁, and all column eigenvectors form a matrix 𝐔. Since arbitrary nonzero 

factors scale the eigenvectors, we must normalize them to make them unique. The normalized 

eigenvectors form the modal matrix 𝐕 = [𝐯1, 𝐯2, … , 𝐯𝑁]. Normalization of the matrix of 

eigenvectors has to fulfill the equation 𝐕𝑇𝐌𝐕 = 𝐈, where 𝐈 is the matrix of identity. 

The external forces 𝐅 = [𝐹1, 𝐹2, … , 𝐹𝑁] are the inputs of the mechanical system and 

displacement 𝐲 = [𝑦1, 𝑦2, … , 𝑦𝑁]𝑇 are its outputs. The matrix 𝐇 which entries 𝐻𝑟,𝑞(𝜔) relate 

the force acting at the node indexed by 𝑞 to the displacement 𝑦𝑟 is a transfer matrix. The 

individual entries of the matrix 𝐇 as a function of the angular frequency 𝜔 are as follows 

𝐻𝑟,𝑞(𝜔) = ∑
𝑣𝑛,𝑟𝑣𝑛,𝑞

𝛺𝑛
2 − ω2 + 𝑗2𝜉𝑛𝛺𝑛ω

𝑁

𝑛=1

 ,   𝑟, 𝑞 = 1,2, … ,𝑁 (2) 

where 𝑣𝑛,𝑟𝑣𝑛,𝑞 , 𝑛, 𝑟, 𝑞 = 1,… , 𝑁 are the elements of the 𝑁-dimensional normalized 

eigenvector 𝐯𝑛 = [𝑣𝑛,1, 𝑣𝑛,2, … , 𝑣𝑛,𝑁]
𝑇
 which is associated with the natural frequency 𝛺𝑛 and 

the relative damping 𝜉𝑛. The coordinates 𝑣𝑛,1, 𝑣𝑛,2, … , 𝑣𝑛,𝑁 determine a vibration or mode 

shape. The transfer function (2) of the system is a sum of the transfer functions of the second 

order systems which correspond to the vibration mode indexed by 𝑛. The product 𝑘𝑛 =
𝑣𝑛,𝑟𝑣𝑛,𝑞 for the given value of indexes 𝑟 and 𝑞 is called a modal constant and depends on the 

modal shapes for the natural frequency 𝛺𝑛. The modal constant plays a critical role in the type 

of feedback. 

3 Model of the cantilever beam 

This paper deals with active vibration control of the cantilever beams. Fig. 1 defines the 

coordinates and dimensions of the vibrating structure. The beam is divided into 𝑁 elements. 

As the motion is assumed only in the direction of y, therefore the degree of freedom is equal 

to 𝑁. 

 

Fig. 1 Coordinates and elements of a cantilever beam, modal shapes 

 

The stiffness and mass matrices for the cantilever beam have been derived in the preceding 

publications [1, 2, 3, 4, 5, 6]. For calculation of the stiffness matrix, a bending stiffness of the 

beam plays an important role. This stiffness 𝐾𝛿 relates the applied bending moment 𝑄 to the 

resulting rotation Δ𝛿 of the elementary beam 

𝐾𝛿 = 𝑄 Δ𝛿⁄  (3) 
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where 𝐸 = 2.14 × 1011[𝑁/𝑚2]  is Young’s modulus of the beam material, 𝐼𝑧 = 𝑏ℎ3 12⁄  is 

the area moment of inertia of the beam cross-section concerning the axis which is 

perpendicular to the xy-plane. 

The stiffness and mass matrix has the following form 

𝐊 =
𝐾𝛿

Δ𝐿3

[
 
 
 
 
7 −4 1

⋮
1
⋮

⋮ ⋮ ⋮
−4 6 −4
⋮ ⋮ ⋮

⋮
1
⋮
1 −2 1]

 
 
 
 

,   𝐌 =

[
 
 
 
 
𝐵 𝐴

⋮

⋮

⋮ ⋮ ⋮
𝐴 𝐵 𝐴
⋮ ⋮ ⋮

⋮

⋮
𝐴 𝐵 2⁄ ]

 
 
 
 

 (4) 

where parameters 𝐴 and 𝐵 of the mass matrix are as follows 

𝐴 =
Δ𝑚

4
{1 −

1

3
[1 + (

ℎ

Δ𝐿
)

2

]} , 𝐵 =
Δ𝑚

2
{1 +

1

3
[1 + (

ℎ

Δ𝐿
)
2

]} (5) 

For simulation study a beam with the following parameters is used: length 𝐿 = 0.5 [m], 

width 𝑏 = 0.04 [m], and thickness ℎ = 0.005 [m]. In this case, the beam is divided into 𝑁 = 5 

elements. All the natural frequencies are shown in Table 1 and corresponding modal shapes 

on the right side of Fig. 1. 

Table 1 Modal frequencies 

Mode 1 2 3 4 5 

Frequency [Hz] 19.03 114.3 308.3 575.3 842.5 

As is apparent from the modal shapes in Fig. 2, the signs of the modal constants are as 

follows 

𝑣1,5𝑣1,1 > 0, 𝑣2,5𝑣2,1 < 0, 𝑣3,5𝑣3,1 > 0, 𝑣4,5𝑣4,1 < 0, 𝑣5,5𝑣5,1 > 0 

For vibration modes with the index equal to an odd integer, the modal constants are 

positive while for the even index the modal constant is negative.   

The equation of motion (1) is the second order ordinary differential equation. After the 

introduction of the substitution of 𝐮1 = 𝐲 and 𝐮2 = 𝐲̇, the second order equation represents 

two differential equations of the first order. An arrangement of the subsystem which models 

the beam for any number of elements in the Matlab-Simulink is shown in Fig. 2. Entering the 

simulation is complete to the initial conditions 𝐮1(0) = 𝐲(0), and 𝐮2(0) = 𝐲̇(0). The blocks 

of the Gain type contain the product of the matrix and the vector, and therefore the output is a 

vector as well. 

 

Fig. 2 Matlab-Simulink model of the beam 

4 Piezo-actuator in the closed-loop 

Piezo-actuators generate force or displacement (travel, stroke) which depends on the 

electrical supply voltage. The relationship between force and displacement describes the 

working graph which is shown on the left side of Fig. 3. The supply voltage determines each 

curve of this figure. The nominal displacement 𝐿𝑚𝑎𝑥 for the maximum supply voltage 𝑉𝑚𝑎𝑥 



68 2018 SjF STU Bratislava Volume 68, No. 4, (2018) 

 

and the blocking force 𝐹𝑚𝑎𝑥 specify the technical data of the actuator, or it can be found by 

measurements. The blocking force is the maximum force generated by the actuator at the 

maximum supply voltage and zero travel [7]. Because we use the stacked LVPZT (low 

voltage PZT type) piezoelectric actuator of the P-844.60 type originated from the PI 

Company, the catalogue specification of this piezo-actuator is used to plot the working graph 

in Fig. 3. 

The piezo-actuator generates the force 𝐹 of the magnitude according to the formula as 

follows 

𝐹 = 𝐹𝑚𝑎𝑥(𝑉 𝑉𝑚𝑎𝑥⁄ − 𝐿 𝐿𝑚𝑎𝑥⁄ ) (6) 

The travel of the piezo-actuator is equal to the deflection of the beam at the node where the 

piezo-actuator operates. The piezo-actuator travel equals the length 𝐿 = −𝑦𝑟 isThe piezo-

actuator has a finite stiffness which results from the nominal displacement and the blocking 

force as follows 

𝐾𝑃 = 𝐹𝑚𝑎𝑥 𝐿𝑉𝑚𝑎𝑥⁄ = 3000 [𝑁] 0.0000 [𝑚]⁄ = 33 [𝑀𝑁𝑚−1] (7) 

     

Fig. 3 Working graph for the P-844.60 piezo-actuator and hysteresis measurements 

The piezo-actuator exhibits significant hysteresis. The result of the hysteresis 

measurements is shown on the right side of Fig. 3. This data originates from doctoral theses of 

J. Los  [8]. Each loop corresponds to the constant loading force acting on the piezo-actuator in 

its rise and fall. There are several ways how to create a model of hysteresis. For example, a 

model according to Prandtl-Ishlinskii is based on a backlash in a mechanism. The Backlash 

block of Matlab-Simulink implements a system in which a change in input causes an equal 

change in output. However, when the input changes direction, an initial change in input does 

not affect the output which remains at the previous value. The principle of the piecewise 

approximation of the output displacement on the input control voltage is shown on the left 

side of Fig. 4. This diagram also explains the meaning of the parameters that are constant 

inputs for the other blocks of Matlab-Simulink while the diagram on the right side of this 

figure shows the result of simulation with the use of 11 Backlash blocks. The dissertation 

contains a detailed description of the calculation of parameters 𝑔 and 𝑤 [8, 9, 10]. 

 

 

Fig. 4 Prandtl-Ishlinskii model of hysteresis 
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Just as there are two ways of modelling electric power sources according to the Thévenin 

theorem and the dual Norton theorem also piezo-actuators can be modelled similarly, i.e. 

either as a source of force 𝐹∗ or as a source of displacement 𝑦∗ with the connection of the 

inner spring which simulates the piezo-actuator stiffness 𝐾𝑃 and is calculated according to (7). 

Both the solutions are shown in Fig. 5 [8]. In these diagrams, the force is equivalent to the 

electric current and displacement to the electric voltage. The force acting on the beam must be 

corrected taking into account the piezo-actuator stiffness in both cases as is shown in Fig. 5. 

 

Fig. 5 Two ways of connection of piezo-actuator and beam models 

Connecting the piezo-actuator to the beam changes the natural frequencies of the complete 

system in the same way. The effect of the piezo-actuator stiffness on the stiffness matrix for 

the left equivalent in Fig. 5 can be determined by the same procedure as was created the 

equation of motion of the beam with the use of the Lagrange's equations. The deflection of the 

piezo-actuator spring determines the potential energy, and after the partial derivative 

concerning the coordinate of the node 𝑞, we found the effect of its stiffness on the elements of 

the matrix 𝐊. The stiffness of the piezo-actuator increases the magnitude of the main diagonal 

elements of the stiffness matrix 𝐊 which is indexed by 𝑞. We add the piezo-actuator stiffness 

to one element on the main diagonal of the stiffness matrix. The actual resonant frequencies 

for the case where the piezo-actuator is a part of the beam structure shows Table 2. An 

example of the Frequency Response Function (FRF) 𝑗𝜔𝐻5,1(𝜔) for the input of the force 

acting at node #1 and the output which is a velocity (change rate of 𝑦5) at the node #5 is 

shown on the left side of in Fig. 6. The velocity signal 𝑦̇𝑆 is a feedback of the control loop for 

active vibration control. 

Table 2 Modal frequencies of the complex system 

Mode 1 2 3 4 5 

Frequency [Hz] 24.1 155.3 437.8 790.1 2976.7 

 

Fig. 6 Frequency response function 𝑗𝜔𝐻5,1(𝜔) and the AVC system of the cantilever beam 

The magnitude of FRF shows the resonant frequency peaks corresponding to the vibration 

modes. The resonant amplification for the first and second mode is achieved hundredfold 

greater compared to the gain in the background of FRF. The modal constants for these natural 

frequencies have approximately the same absolute value but the opposite sign. The feedback 



70 2018 SjF STU Bratislava Volume 68, No. 4, (2018) 

 

effects are contradictory on the stability. It is important that the resonant peaks are well 

separated, i.e., between them is the gap between the amplification of oscillations and the 

second frequency is nearly a hundred times greater. 

5 Active vibration control 

The purpose of the system for the active vibration control (AVC) is to compensate the 

effect of a disturbing external force on the vibration of the mechanical structure. The 

assessment of the damping effect of AVC specifies changes in displacement, velocity or 

acceleration of the selected node of the structure. It can be the free end of the cantilever beam 

which models a cutting tool or boring bar of the lathe for instance. The result of the active 

dumping is the minimum motion around the steady-state position and the minimum velocity 

or acceleration of vibrations.  

There are two possible solutions, the collocated and non-collocated active vibration 

control. For the collocated system, the correcting force acts at the same node where we detect 

the response of the mechanical structure. For the non-collocated system, we assume that the 

correcting force acts at the node indexed by 𝑞 and we detect the vibrations at the node 

indexed by 𝑟 ≠ 𝑞. An example of the non-collocated system is shown on the right side of Fig. 

6. We sense the vibration of the free end element of this cantilever beam at the node 𝑟 = 5, 

and the correcting force acts at the element just next to the clamped end, therefore 𝑞 = 1. 

Mechanical structures are weakly damped. Theoretical analysis shows that for undamped 

systems there are absent terms of the odd powers of the complex variables s in the Laplace 

transfer function. The undamped system is at the margin of stability. It has been shown that 

the most appropriate controller for such systems uses proportional feedback based on the 

velocity change of the controlled displacement as is shown on the right side of Fig. 6. The 

controller is a derivative type regarding displacement as a controlled variable. The setpoint 

(SP) for such a closed-loop system is equal to zero. The gain of the velocity feedback is 

designated by 𝑇. The stability of the feedback system determines the position of the pole of 

the closed-loop transfer function. The beam is a stable system without control due to the 

natural damping; it does not start to vibrate by itself. The increase of the feedback gain causes 

that one of the poles associated with the two lowest resonant frequencies moves away from 

the instability margin in the complex plane in the left direction while the other pole is 

approaching or exceeding the stability margin. For the given beam, which is divided into five 

elements, and the assumption of the Rayleigh’s damping, the locus of the closed-loop transfer 

function poles are shown in Fig. 7. The root locus demonstrates the effect of the derivative 

controller time constant 𝑇 change on the system stability. The time constant varies from 0 to 

1E6. The location of the poles of the transfer function calculates the Matlab function called 

root as the roots of the polynomial 1 + 𝑇𝑠𝐻5,1(𝑠).  

Because the degree of polynomial equals ten in the complex variable s, the number of 

roots, i.e., the number of poles is ten as well. Five pairs of poles are complex conjugate. The 

stability margin crosses the pole for the mode 𝑛 = 2 and the pole for the mode 𝑛 = 4 

approaches this margin. 

 

Fig. 7 Root locus to demonstrate the effect of the time constant 𝑇 change 
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The analysis shows that the opposite sign of the modal constants reduces the damping effect 

of velocity feedback. There are two possible ways how to improve the efficiency of the active 

vibration control of weakly damped systems  

• either control each vibration mode separately 

• or change the positive feedback to the negative one. 

Both the methods indicate the transition of the controller design from the frequency range 

from zero to infinity to the control in a narrow frequency band. 

 

Fig. 8 Principle of Positive Position Feedback (PPF) 

The first possible solution with the filter of the band-pass type is shown in Fig. 8. This 

arrangement of the AVC system is called a Positive Position Feedback (PPF) controller [11]. 

In the mentioned figure, the method of PPF solves the problem of two resonant frequencies, 

one of them corresponds to the negative feedback and the second one corresponds to the 

positive feedback. The input signal of the filter is a signal of the velocity type. The 

proportional controller connected to the filter output only amplifies this signal. We obtain the 

velocity signal to connect it to the filter input by integrating the acceleration signal with 

respect to time. We consider the acceleration on the free end of the beam as the controlled 

variable. The integration and band-pass filtering together form a low-pass filter, whose 

transfer function has been designed previously by many authors and it was a topic of the 

doctoral theses defended by P. Šuránek [12]. The filter is of the second order and therefore 

causes the least possible delay in the control loop. The properties of the closed loop can be 

adjusted by the gain of the proportional controller which operates in the narrow frequency 

band around the resonant frequency.  

The second method for controlling the weakly damped systems is converting the positive 

feedback to negative with the use of an all-pass filter. This type of the frequency filter 

modifies the phase of the harmonic signal at the output compared to the input without 

changing the amplitude of the signal frequency components. The filter of this type of the first-

order type changes the phase from 0 to 𝜋 radians in the frequency range from 0 to infinity. 

The all-pass filter of the second order shown on the left and middle of Fig. 9 doubles the 

phase change. For the possibly unstable modes, it is necessary to change the phase by 𝜋 at the 

resonant frequency of this vibration mode whose modal constant is to be changed from the 

negative to positive value. The advantage of this filter is the controllable rate of the change of 

phase concerning the change of the frequency by setting the value of the relative damping 

parameter 𝜉𝐴𝑃𝐹. 
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Fig. 9 All-pass filter frequency response (ksi = 𝜉𝐴𝑃𝐹). 

Since |𝐺𝐴𝑃𝐹 𝑛(𝑗𝜔)| = 1 only a phase frequency response for two values of the damping 

parameter 𝜉𝐴𝑃𝐹 is shown in the middle of Fig. 9. The all-pass filters are connected in series 

(cascade) with the controller as it is shown on the right of Fig. 9. The count of these filters is 

as many as the count of the negative modal constants. 

6 Simulation results 

The effect of the all-pass filter on the damping of the beam vibration demonstrates the control 

system responses with the use of the two all-pass filters in the closed loop and without them 

as is shown on the right of Fig. 9. The first all-pass filter is tuned to the frequency of the 

second vibration mode, and the second one to the frequency of the fourth vibration mode. The 

beam is excited by a short pulse after 1 second from the beginning of the simulation. During 1 

second, the piezo-actuator is gradually prestressed by the force of 1500 N. The decaying 

vibration response without any active vibration control (AVC OFF) is shown on the left of 

Fig. 10. The effect of ACV without using the all-pass filter (ALL-PASS FILTER OFF) is 

shown in Fig. 6. Due to the stability, the open-loop gain can be set less or equal to 4. The 

serial connection of two all-pass filters in the cascade allows increasing the gain of the open-

loop in such a way that the time constant 𝑇 may be increased up to the value of 25 but less 

than 30 with correspondingly increasing the damping effect as is shown on the right of Fig. 

10. The result of the experiment for the acceleration of the beam free end is shown in Fig. 11. 

The beam has the same dimensions as in the simulation study. 

  

Fig. 10 Decaying vibration without any active control and two 

ways of the active vibration controls 

Fig. 11 Experiment 

7 CONCLUSION 

The Matlab-Simulink model of the cantilever beam was designed using the method based 

on the modal analysis. In addition to the beam model, an active vibration control model using 
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piezo-actuators was created. Because piezo-actuators have considerable hysteresis, the 

Prandtl-Ishlinskii model of hysteresis based on a backlash in a mechanism complements the 

model of the complex control system. Mechanical systems are usually weakly damped. 

Conventional methods of controller synthesis are not suitable for the design of active damping 

of weakly-damped systems. Some modes for these systems become potentially unstable when 

increasing the gain of the closed loop. The paper describes the method that converts the 

positive feedback to the negative feedback using the all-pass filter. For comparison, the PPF 

method is also described. The effect of the all-pass filter method on increasing the damping 

by shortening the impulse response has been verified by simulation and experimental 

approach. 
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