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Abstract: Based on the theory laid down in the Part 1 [1] in this paper we are going to display applications in 

physics and especially in mechanics. After a short summary on coupled fields in mechanics, we generally analyze 

the analogies in mechanics. As the most important, the electrical analogy is discussed in details. By the electrical 

analogy based analytical solution we display the results of the coupled thermo-hygro problem with second sound. 

Finally, a few experiments are discussed, eg. experiments by electrical analogy, experiment on diffusivities, 

experiment on relaxation time, experiment on hydroglobe. This latter one leads to the engineering application of 

the problem. 
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1 Introduction 

The Paper deals with the application of the cross-coupled heat and moisture transport theory 

[1] in physics, especially in mechanics. Also, the paper is built up around the electrical analogy 

(EA).  

What is the importance of EA? First of all, it gives a deeper insight into the phenomenon. 

Second, the analytical solution worked out in electricity is applicable also in thermo-hygro-

mechanics (THM). Third the numerical methods based on this analytical solution and widely 

used in electricity can be applied, too. And finally, the EA gives a good tool for experiments.  

And all of these show the structure of this paper, i.e. we are going to deal with EA, analytical 

solution and experiments, first of all EA based experiments.  

2 Frequent Coupled Fields in Mechanics 

Some of the most often applied coupled fields of mechanics are collected in Table 1. Maybe 

most frequent is the thermo-elastic one. 
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Table 1/a Coupled fields of mechanics and their relations 

 

Table 1/b Coupled fields of mechanics and their relations in matrix multiplication form 

 

 

Table 1/c Coupled fields of thermo-hygro-elasticity 

 

In case of dynamical processes of solids, the coupling between displacement and thermal 

fields is not negligible (see Duhamel-Neumann eq.). For engineering applications of 

thermoelasticity the reader is referred to [2, 3]. This means that classical Fourier’s law of heat 

conduction is no longer valid in such processes. Also, in hygroscopic materials, due to the Soret 

and Dufour cross coupling effects, heat and moisture transport is coupled, i.e. the moisture 

diffusion process is not described by classical Fick’s law. Let us see first the basic equations of 

thermo-hygro-elastic materials.  

The generalized displacement-temperature-moisture field equations for a homogeneous 

isotropic thermoelastic body with moisture take the form:  

iimiikikjji umTbuu   ,,,,
)( ; (1) 
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Here iu , T  and m are the displacement, temperature difference and moisture concentration; 

 , Lamé constants;   the density; ib the body force; mD , TD  and TmD , mTD  the moisture 

diffusivity, the temperature diffusivity and the cross coupled diffusivities, respectively; 

t )23(   and mm  )23(  , where t  and m  are coefficients of thermal (CTE) 

and moisture expansions (CME); c , mk , 0T  and 0m  are the specific heat, moisture conductivity, 

temperature and moisture concentration in the natural state; T  and m  are the relative 

temperature and moisture concentration above 0T  and 0m , that are, e.g. the environmental 

temperature and moisture concentration, the dot designates material time derivatives and the 

comma space derivatives.  

If the temperature is neglected and we let  0 tmTD  , the equations (1) and (3) stand for 

the hygro-elastic (HE) case. If the moisture diffusion is neglected equations (1) and (2) describe 

the thermo-elastic (TE) phenomenon.  

Let us deal in more detail form with the coupled thermal and moisture fields (TH). Taking 

into account the second sound phenomenon, the constitutive and conservation laws read (see 

[1], eqs. 4.13a, 4.12 and 4.14a): 

jijjiji CJJ    , (4) 

iii JC  , (5) 
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and f  and q  are the moisture and heat fluxes, ij  and ij  are the relaxation time and 

conductivity matrices, i  is the source term. Eliminating iJ  from (4) and (5), we obtain the 

governing equation of the problem: 

jijijijjiji CDCC    2 . (6) 

In case of thermo-hygro-viscoelastic materials (THVE), the eqs. are slightly different. The 

time dependence of material parameters has to be taken into account.  

3 Generally on Analogies in Mechanics 

Dealing with the coupled fields of mechanics, the governing equations lead to complicated 

partial differential equations system due to material properties and couplings. The 

investigations often require experimental methods, including analogies.  

Analogies in mechanics are known for a long time, e.g., between torsion and soap-film 

(Prandtl’s) or sand heap (Nadai’s) [4], or between heat conduction (Fourier’s law) and moisture 

diffusion (Fick’s law) [5]. There are others, e.g. between telegraphic and coupled thermoelastic 

phenomena [6,7], which have been mentioned only lately.  
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As another example, the parallel circuit electrical analogy may be mentioned for calculation 

of thermal conductivity [8]. There are many other analogies also. E.g. in Ref. [12] on 

experimental methods of mechanics a whole chapter is devoted to analogies and also the 

electrical analogy is discussed in connection with different problems. Starting from this one 

there are several other possibilities in coupled fields of mechanics. Based on the similarity 

between heat conduction and moisture diffusion the coupled hygroelastic [9], thermo-hygro 

[10], thermo-hygro-elastic [11] problems can be handled.  In these cases, we have to take into 

account the Soret and Dufour effects.  

On the other side, the method can be extended to processes taking into account the second 

sound phenomenon. In this case the electrical analogy provides a perfect opportunity to compare 

the results obtained by parabolic and hyperbolic systems. With time dependent electrical 

parameters it is possible to model viscoelastic materials, too.  

As mentioned before, analogies are well-known and often used in mechanics. Beside the 

ones listed before one of the most often used is the analogy between mechanical and electrical 

vibrations. It is the basic example of this type of analogy. The reason for its frequent application 

is clear. The electrical circuit provides good opportunity for experiments and numerical 

methods worked out for this system are applicable in mechanics, too. On the other hand, the 

mechanical analogy helps the imagination of the physical process. It shows the symbiosis 

existing between mechanics and electricity. 

Another very often mentioned analogy is between the heat conduction (Fourier’s law) and 

moisture diffusion (Fick’s law), e.g. references [10,11]. Beside the analogy the two processes 

are cross-coupled.  Later we’ll recall the equations of the problem but now it is worth to mention 

that in case of composite materials the relationship is triple: analogy, cross-coupling, and both 

the heat and moisture effects may cause degradation and lead to failure.  

There is another, not very often used but known analogy between the coupled thermoelastic 

and telegraphic problems [7]. Recalling 1D displacement-temperature eqs. of a nonlinear 

dynamic coupled thermoelasticity 

0 xttxx T
E

uu
E






, (7) 

txxttxx TuuTgTTfT



 )()( , (8) 

and the 1D governing equations of the telegraphic phenomenon, 

txttxx i
L

R
e

LC

G
ii

LC


1
, (9) 

RGeLRCee ixttxx  , (10) 

the analogy is obvious in spite of the difficulties in realization. The notations in eqs. (7-10) are 

as follows: u and T  is the displacement and temperature difference above 0T  such that 

TTT  01  is the temperature of a natural state; E ,  ,  , c and   are the Young modulus, 

density, CTE, specific heat, conductivity,  )23(  , where   and    are Lame 

constants; i  and e are current and voltage; R , L ,G  and C are resistance, inductance, electrical 

conductance, capacitance.  
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4 Electrical Analogy 

The electrical background of our investigations is a circuit theory and Kirchhoff’s equations. 

The best-known applications of these last ones are the telegraph equations. We are not going to 

recall it in details, only refer to the literature, e.g. [6]. The result shows the feasibility of 

electrical analogies in coupled fields in mechanics. 

Coupled thermoelasticity and hygroelasticity 

As the first application of electrical analogy, let us recall the eqs. (7-10) of the coupled 

thermoelastic and telegraphic problems [7]. Eqs. (9-10) are based on the elementary circuit 

shown in Fig.1. in which the current i and voltage e correspond to the displacement u and 

temperature T, respectively.  

 
Fig. 1 Elementary circuit for coupled thermoelastic problem 

A comparison of the equations (7)-(8) with (9)-(10) shows that there is an analogy if: 
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.  

One can show that the elementary circuit scheme can be iterated in a laboratory in such a 

way that an electrical model of a long bar that satisfies eqs. (9)-(10) is recovered, and from (11)  

the physical properties of a long thermoelastic bar are obtained. 

Heat conduction and moisture diffusion with second sound 

Because of the similarity between the heat conduction and moisture diffusion, these two 

cases can be discussed simultaneously.  

The basic eqs. of the elementary circuit shown in Fig. 2 will be examined. On the basis of 

Kirchhoff’s equations, the equations of the elementary circuit are derived as follows: 
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Eq. (13) is analogous to the field equation: 
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that describes a modified heat conduction equation or a modified moisture diffusion equation, 

when iC is identified with temperature T or moisture m , respectively. On this basis an 

experimental setup is offered. New notations: 
x

x





(..)
(..) . Considering the heat conduction 

problem of a finite length rod (see Fig. 3), the governing equation describing the heat 

propagation in the rod is as follows: 

1 T
xx t tt

T T

T T T
D D


   (15) 

 

Fig. 2 Elementary circuit for heat conduction or moisture diffusion problem with second 

sound 

 

Fig. 3 Heat conduction for a long rod 

 

The boundary and initial conditions correspond to heating one end of the rod to temperature 

)(0 tT  and keeping the other end at a constant temperature 1T , while the mantle is insulated. At 

the beginning there is a uniform temperature distribution initTxT )0,( . 

Comparing equations (12) and (15) the following electrical setup is implemented (see Fig. 

4), with the electrical elements chosen on the basis of equal coefficients in the (12) and (15): 
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, LC
DT
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.  

In this case the voltage ),( txe  measured at discrete points as a function of time corresponds 

to the temperature ),( txT . Of course, the conditions 

)()( 00 tetT  ,
 

consteconstT ll  ,  

consteconstT initinit    

must be fulfilled, too. 

 

 
Fig. 4 Electrical model for for heat conduction or moisture diffusion problem with second 

sound 

If 0L , classical (parabolic) equation of heat conduction results: 

t

T
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T
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D
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

. (16) 

The hyperbolic equation of heat conduction can be compared to the parabolic one. 

5 Analytical Solution 

The analytical solution method is built up according to the generalized thermoelastic 

equations and the governing equations of the telegraphic phenomenon [6]. 

The basic problems are the initial and boundary conditions, mainly the last ones. It takes the 

physics into the mathematical problem. That is why we start with the boundary conditions based 

on our previous works [13] and go on with the details of the solution.  

Boundary conditions 

The boundary condition for heat conduction in a solid immersed in a fluid is 

( )S l

S

T h
T T

n k


  


, (17) 

where h , sT , lT and k  are the heat transfer coefficients, the temperature of solid and fluid on the 

surface and coefficient of heat conduction, resp. On the surface of a porous solid with moisture 

diffusion and bounded by a fluid, the boundary condition is the following (see Fig. 5). Let us 

equal the fluxes of diffusion and convection on the surface: 
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In normalized form: 
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The notations are according to the previous parts.  

Boundary condition for cross-coupled heat and moisture diffusion can be obtained by 

following the consideration of the previous part. We can equal the fluxes F  on both sides of 

the surface of a porous solid (see Fig. 6) 

 hS
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are the diffusivity matrix, gradient vector, convectivity matrix and difference vector, 

respectively.  

 

Fig. 5 Boundary condition for moisture diffusion  

a.) moisture concentration  b.) moisture potential 
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Fig. 6 Boundary condition for cross-coupled heat and moisture diffusion 

In components Eqs. (21) take the form: 
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Coupled thermo-hygro problem with second sound 

Let us start with the governing equation of the problem according to eq. (6), but neglecting 

the source term and using more simple notations: 

jijjiji CDCC 2    (25) 

Here: 
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In a  one-dimensional case eqs. (25) take the form: 

xxxx TDmDTmm 12111211   
,
 (26) 

xxxx TDmDTmT 22212212    . (27) 

Let us try to find the solution of the 1D problem in exponential form: 

xtj

ii eCC   0
, 1j . (28) 

Following the conventional way of the solution, we obtain: 

ii CjC  , ii CC 2 , iix CC  , iixx CC 2  , (29) 

moisture 

temperature. 

is the relaxation matrix with: 11 , 22 - temperature and moisture 

relaxation and 12 , 21 - crosscoupled relaxations. 

is the diffusivity matrix with: 11D , 22D - temperature and moisture 

diffusivities and 12D , 21D - crosscoupled diffusivities. 
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The analysis of equation (32) gives the different cases. The most general is the coupled 

heat/moisture diffusion (case A), it needs to solve a fourth order equation. Let us see the 

subcases (case B). 

B11.) Simple heat conduction with second sound 

It means the following parameters: 
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B12.) Simple heat conduction without second sound 
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and instead of eq. (35) 
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B21.) Simple moisture diffusion with second sound 

It means the following parameters: 

0122122   ,  0122122  DDD . (38) 

By these similarly to eq. (35) 
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B22.) Simple moisture diffusion without second sound 

The previous conditions and 011   and by this, finally 
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  . (40) 
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B3.) Heat conduction and moisture diffusion without coupling 

It means the following parameters: 

01221  ,  01221  DD . (41) 

By these the eq. (32) reads 
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Now let us calculate a temperature with second sound (or moisture) diffusion in details, 

according to previous sections (simple heat conduction and moisture diffusion with second 

sound). The governing equation with the conventional notations is the following (see eq. (15)): 
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Repeating the conventional way of solution followed by eqs. (28-35) we obtain the 

propagation coefficient,   (see eq. (35)) with slightly different notations: 
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Let us suppose  in the following form: 
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By introducing the propagation velocity, v  as: 




v  , (50) 

we obtain the thermal wave propagating in positive direction of the x-axis: 
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By replacing  x  by x  in (51) we obtain the thermal wave propagating in negative direction 

of the x-axis: 
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A general solution is the following: 
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Let us calculate   and   by eqs. (35, 48): 
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In the Table 2 the initial data and the parameters are collected. By these the numerical 

solution of the heat (or moisture) diffusion can be calculated. On the Fig.7 the results are 

displayed.  

 

Table 2 Initial data and parameters to heat (or moisture) diffusion by analytical method 
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Fig. 7/a Temperature T (or moisture) vs. location, x 

 

 
Fig. 7/b Temperature T (or moisture) vs. time, t 

6 Experiments 

Our experiments are to achieve different goals. One of them was to model the entire 

phenomenon. In this case the result is embodied by the functions of temperature, T(x,t) and 

moisture concentration, m(x,t). Choosing proper parameters, ie. different material and process 

properties, we may obtain information on the influence of these parameters.  

An other purpose was to model parts of the process and gain the numerical values of the 

different parameters, such as relaxation times,   and diffusivities, D, etc. In a summary, there 

are mainly two goals: check the entire theory and complete it e.g. by the material properties. 

According to all of these, this chapter deals with different kinds of experiments. We analyze the 

experimental possibility by EA to determine the relaxation time [7], diffusivities [14], and a 

pressure in a hydroglobe [15, 16] 

Most of the details of the theoretical background and of the experiments are described in the 

previous sections. 



32 2018 SjF STU Bratislava Volume 68, No. 4, (2018) 

 

Before dealing with some of the details of the above-mentioned experiments, we try to give 

a short summary on the philosophy of the experiments with emphasis on our field, i.e. on THM.  

Generally on Experiments 

Let us start with the Leonardo da Vinci thoughts: (i) There is no real science without a 

mathematical proof, and (ii) There is no real science without experiments. In our field the 

experiment is a special kind of experience. It is close to the practice, but not as close as e.g. the 

field measurement. The steps of the cognition on our field (THM) can be divided according to 

the Table 3. Of course, not all of these steps belong always to the proper branch of science, 

some of them may be left out1. 

Table 3 Possible steps of the cognition in THM 

1. Observation 

2. Theory 

3. Thought experiment: 

 EA (electrical analogy) 

 Analytical solution 

 Numerical solution 

4. Laboratory experiment, e.g.: 

 measurement by EA 

 generally by measurements 

5. Field experiment, e.g.: 

 measurements 

 observations 

6. Practice 

Dealing with the experimental possibilities given by the EA, let’s ponder again a little bit 

generally on the EA. In our case it offers triple-fold advantages: 

▪ theoretical by giving deeper insight into the phenomenon, 

▪ analytical solution, 

▪ experimental possibility. 

Some of the researchers have various opinion on the advantages mentioned above.  E.g. they 

say that the experimental possibility given by the EA can be dropped, because it may be replaced 

by numerical calculations. Also, the analytical results after some hesitation may be dropped, 

because we already have got numerical results. Unfortunately, the theoretical possibility can’t 

be replaced by any other tool since a theory is needed not only as a state of art but also as an 

instrument complementary to the experiment. If an experiment has no theoretical background, 

a proper evaluation of the results is impossible as said in the Einstein’s joke about the flea’s leg 

and ear.  

Let us mention one more comment to the problem. Several years ago, on a conference 

somebody referred to the FEM calculations as experimental results. And the audience agreed, 

while I (the older author, A. Szekeres) was totally shocked.  

                                                           
1 It may happen that no possibility exists to make experiment. Eg. for the religion as science there is no 

opportunity for experiments. Interesting example is Thornton Wilder’s book entitled Bridge of King Saint Louis. 

In that story the priest takes the event as god’s gift for human experiment. This idea together with the Da Vinci 

quotation was brought up first in a discussion by P.E. ca. 30 years ago. 
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Experiments by Electrical Analogy (EA) 

As it has been mentioned before, the EA provides us with wide range of experimental 

possibilities. The cases dealt with in the chapter Electrical Analogy are collected in the Table 

4. and completed with some comments. 

We have to analyze the possible extensions of the EA for the following coupled phenomena: 

▪ Thermo-hygro-elasticity (THE) 

▪ Thermo-hygro-visco-elasticity (THVE) 

▪ Cross-coupled thermo-hygro diffusion with and without Second Sound (SS) 

▪ Convection of heat and moisture 

▪ Cross-coupled convection of heat and moisture 

▪ Coupled diffusion and convection of cross-coupled heat and moisture (general case, ie. 

C-C H&M T) 

 

Table 4 Experiments by EA 

Case Comment 

Thermoelasticity (TE) See proper chapter and the Fig.1 

Hygro-elasticity (HE) Based on the analogy between Fourier and Fick’s law. 

Thermo-visco-ealsticity 

(TVE) and hygro-visco-

elastictiy (HVE) 

Based on the previous cases taking into account the time 

dependence of the material properties. 

Heat conduction with and 

without the second sound 

phenomennon 

See the proper chapter, the Fig. 2 and Fig. 4 and the remarks on 

the SS problem (hyperbolic/parapolic type of eq.) 

Moisture diffusion with 

and without the second 

sound phenomennon 

See above. 

Experiment on Relaxation Time 

The eqs. (6, 15, 25, 34) and the Table 2. show the role and importance of the T  relaxation 

time. (For more details, please, see the proper chapter of [1] and [7].) 

According to the investigation of the differential equation of heat conduction (16) obtained 

on the basis of Fourier’s law the rate of wave propagation is infinite. This is obviously 

impossible.  

To resolve this contradiction, the law of heat conduction can be modified. One possible form 

of the modified heat-conduction equation is the Cattaneo-Vernotte equation which can be 

written as: 

1 T
xx t tt

T T

T T T
D D


  , (57) 

of which the velocity of propagation: 

T
t

T

D
v


 . (58) 

Here the question arises, how thermoelasticity of a long bar subject to a thermal shock is 

affected by this. 
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However, to investigate this problem, material property has to be known. Maurer [17] has 

determined the value of T . 

If the velocity of propagation Tv  of the temperature disturbance could be determined, then, 

according to (58) 

2

T

T
T

v

D
 , (59) 

where TD  is the so called temperature diffusivity, a known material property. 

Accordingly, when measuring time 2t  required for the disturbance to propagate over distance 

2l  in the setup shown in Fig. 8, the value of T  can be calculated with the following relationship: 

2

2

2

2

l

tDT
T


 . (60) 

With this setup, the time constant of the experimental setup had been reduced by ~1 order of 

magnitude and, as a result, the time constant has become about 
210

 sec.  

 
Fig. 8 Test setup for relaxation time 

In spite of all the uncertainties, it can be seen from the measuring results (Fig. 9) that the 

value of T  is of the order of magnitude of 
110

 sec, which considerably differs from the value 

given in literature [17].  
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Fig. 9 Experimental results on relaxation time 

This suggests at the same time that a considerable deviation of the results obtained with the 

modified law of heat conduction from those obtained using classical Fourier’s law is expectable 

when applying this law to the dynamic problems of thermoelasticity. 

Experiment on Diffusivities 

Dealing with the tailoring of thermo-hygro-elastic composites four diffusivities arise, which 

are somehow related depending all of them on the microstructure of the material, but two of 

them are equal according to the Onsager’s reciprocal relations.  

The experiment on diffusivities was performed with a rod type specimen made of heat 

conducting and moisture absorbing composite matrix material [14]. The conditions modeled 

thermal shock, perfect insulation and different moisture content. The method was a combined 

one. Based on our theoretical works [1] we performed numerical calculations. Concerning the 

general form of the governing equation we refer to [10]. We get the final numerical values of 

parameters by comparison of experimental and numerical results.  

There were two major questions concerning the experiment. First, how we are able to fulfill 

the ideal assumptions of the theoretical model, i.e. step loading and perfect insulation of test 

pieces. By doing some trials we found out a quite simple setup to do tests. Another question 

was to find a suitable material for experiments, a plastic which is at the same time appropriate 

heat conductor and a good water absorber. Polyamide seems to fulfill the requirements best, 

therefore the experiments were made with PA 6. The experimental setup is shown in Fig. 10. 

The temperature and displacement responses were measured and calculated for different 

places and moisture contents. To estimate the coupled diffusivities and expansion coefficients, 

the values were compared. In spite of the characteristic qualitative results, the numerical 

separation of diffusivities and expansion coefficients was impossible.  
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Fig. 10 Experimental setup for measure of diffusivity 

 

Experiment on Hydroglobe 

A hydroglobe (water container) can be modeled as a sphere [15, 16]. At low temperature 

there is a risk of freezing so that the container deteriorates. Let us take the model in Fig.11. 

Suppose that initially the container is filled up with water at 0 °C. Then, an ice layer at 0 °C, of 

thickness jv  is formed, so that no stress develops, as the filled-up condition permits a cubic 

expansion. Subsequently the ice layer is cooled, and – according to the supposed stationary state 

– there is a temperature distribution such that stress develops. 

According to the negative coefficient of thermal expansion, an increase in diameter will 

come about, causing stresses. Imposing now the steel container on this ice layer of increased 

diameter, a compressive stress will develop between the two surfaces. The state of stress is a 

resultant of the two states.  The change in the ice thickness: 

 
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. (61) 

Here u , and d  are the displacement and the internal diameter of the container, jE , j , j , 

and jd are the Young-modulus, Poisson-number, thermal expansion coefficient and internal 

diameter of the ice layer, 
2
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kr  and 
br  are 

the internal and external radii of the ice layer, t  is the relative temperature.  

From this overlapping the thin-walled steel container takes up: 
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and the ice sphere: 
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Here p is the contact pressure, v , E  and   are the thickness, Young-modulus and the 

Poisson-number of the container. 

 

 
Fig. 11 Cross section of hydroglobe with ice layer 

 

 

The pressure evolving between the two sphere is: 

1 2

jv
p

w w




 
 (64) 

From the above the resultant stresses can be derived. According to calculations carried out 

with the above relationships, the ice sphere is in an ultimate stress state at a jv  value where no 
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ultimate stresses develop as yet in the steel container. This method has been checked by 

ultrasonic and strain gauge tests.  

To validation the above mechanical model, measurements were carried out by a scale model 

of the hydroglobe. The placements of the gauges were according to the Fig. 12. The character 

of the calculated strain-time curve and the measured strain-time curve were similar. 

 

 

 
 

 

Fig. 12 Positions of strain gauges on hydroglobe 

 

CONCLUSIONS 

This is a continuation of Part I in which the one-dimensional dynamic coupled field theories 

such as: (i) a heat-moisture theory, (ii) a thermo-elasticity theory, and (iii) an electric current-

voltage theory are discussed within an analogy between the governing equations for a pair of 

the coupled field theories; for example, it is shown that both the analytical and numerical 

methods of electric current-voltage theory can be applied to obtain the analytical and numerical 

solutions to problems of heat-moisture theory or thermo-elasticity theory. Also, it is shown that 

a number of experiments based on electric current-voltage theory could be used to find the 

material properties of heat-moisture theory or thermo-elasticity theory models. In particular, the 
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experiments based on electric current-voltage theory are proposed to determine: (i) a relaxation 

time of a restricted model of thermo-elasticity theory in which the temperature propagates with 

a finite speed, (ii) a diffusivity of a moisture transport in a restricted model of heat-moisture 

theory, and (iii) the pressure formula for a spherical hydroglobe. 
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