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Abstract: Traditionally, the Furuta pendulum was used for testing advanced control strategies on a simple 

nonlinear and underactuated structure. In this paper, we investigate analytically and experimentally the dynamical 

description of the Furuta pendulum focusing on the effect of dry friction on a special bifurcation behaviour of the 

downward equilibrium position. 
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1 Introduction 

The Furuta pendulum (or rotary pendulum) is a two degree of freedom mechanical device, 

which consists of two arms connected to each other. The first arm rotates in the horizontal plane 

and its motion is usually controlled via an electrical motor. The second arm is called the 

pendulum, it is placed at the end of the first arm and it freely rotates in a vertical plane, which 

is perpendicular to the axis of the first arm. The structure of the Furuta pendulum is shown in 

Figure 1.  

The Furuta pendulum was used to investigate advanced control strategies for balancing and 

swing-up of the inverted pendulum [1, 2]. While planar inverted pendula are widely used for 

developing control algorithms [3], the Furuta pendulum is an especially good device for this 

purpose because of its strongly nonlinear nature and the relatively simple and underactuated 

structure. The special coupling between the generalized coordinates and the gravitational force 

result in strongly nonlinear dynamics. The precise mechanical description capturing the full 

dynamics was given in [4]. The analysis of the equations of motion in the neighbourhood of 

certain stationary motions was presented in [5]. The bifurcation of the downward equilibrium 

position was investigated analytically and it was also verified by a series of measurements on 

an experimental rig. However, the theoretical investigations and the measurements showed a 

significant discrepancy, which suggested that essential dry friction was present in the 

experimental rig influencing the motion of the Furuta pendulum. The identification of the effect 

of dry friction in simple dynamical systems is an essential task in many laboratory tests and 

corresponding numerical simulations as shown for example in [6]. 

The aim of this paper is to describe and analyse the effect of the dry friction on the dynamics 

of Furuta pendulum focusing on the specific bifurcation behaviour. 
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Fig. 1 Structure of the Furuta pendulum (left), experimental rig (right). 

 

2 Mechanical model  

All the parts of the Furuta pendulum (arm and pendulum) are assumed to be perfectly rigid. 

Since the Furuta pendulum is a two degree of freedom system, the two generalized coordinates 

are chosen to be the positions of the arm and the pendulum, which are described by the angles 

𝜑 and 𝜃, respectively. The 𝜃 = 0 state means the downward position of the pendulum. The 

viscous damping effects are neglected, only the gravitational force and the dry friction at the 

pendulum pivot point are taken into account as external forces. The nonlinear equations of 

motion can be obtained using the Lagrangian equations of the second kind: 

(𝐽𝑎 + 𝐽𝑝 sin2 𝜃)𝜑̈ + (𝑚2𝑟𝑙 cos 𝜃) 𝜃̈ + 2𝐽𝑝(sin 𝜃 cos 𝜃)𝜑̇𝜃̇ − (𝑚2𝑟𝑙 sin 𝜃)𝜃̇2 = 0, (1) 

𝐽𝑝𝜃̈ + (𝑚2𝑟𝑙 cos 𝜃)𝜑̈ − 𝐽𝑝(sin 𝜃 cos 𝜃)𝜑̇2 + 𝑚2𝑔𝑙 sin 𝜃 + 𝐹𝑐 = 0 (2) 

where the corresponding mass moments of inertia terms are: 

𝐽𝑝 = 𝐽2 + 𝑚2𝑙2 , (3) 

𝐽𝑎 = 𝐽1 + 𝑚1 (
𝑟

2
)

2

+ 𝑚2𝑟2 , (4) 

and 𝐹𝑐 stands for the effect of dry friction at the pivot point of the pendulum. The dry friction 

is considered as a set-valued function of the pendulum angular velocity 𝜃̇: 

𝐹𝑐  { 

= 𝐶,           if  𝜃̇ > 0

∈ (−𝐶, 𝐶), if  𝜃̇ = 0 

  = −𝐶,        if  𝜃̇ < 0  

 (5) 

Considering the assumptions described above, these equations present a special case of the 

ones given in [4], except the terms that includes the dry friction at the pendulum pivot point. 

The assumed dry friction characteristics is given in Figure 2. 
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Fig. 2 Dry friction characteristics. 

3 Equilibrium positions and stationary motions  

By neglecting dry friction 𝐹𝑐 = 0 in the mechanical model and considering the solution 

𝜑(𝑡) = 𝜑0 + 𝜔0𝑡,   𝜑̇(𝑡) = 𝜔0 (6) 

of the original system (1) and (2), the equations of motion are reduced to a single equation 

𝐽𝑝𝜃̈ − 𝐽𝑝(sin 𝜃 cos 𝜃)𝜔0
2 + 𝑚2𝑔𝑙 sin 𝜃 = 0 (7) 

in which the 𝜔0 parameter is the constant angular velocity of the arm. The equilibrium positions 

𝜃(𝑡) ≡ 𝜃𝑖  are given by the solution of  

(𝑚2𝑔𝑙 − 𝐽𝑝 cos(𝜃𝑖) 𝜔0
2) sin 𝜃𝑖 = 0. (8) 

There are two or four separate equilibrium positions depending on the arm angular velocity 

𝜔0. The critical arm speed, where the number of equilibrium positions changes, can be 

calculated as  

𝜔crit = √
𝑚2𝑔𝑙

𝐽𝑝
. (9) 

By substituting the mechanical parameters of our experimental rig (see [5]), the critical arm 

speed is 𝜔crit ≈ 7 rad/s in our case. 

The stability of all the equilibrium positions can be determined based on the linearized 

equations around each equilibria; the results are: 

𝜃1 =  𝜋 ∶  Unstable,                                                                                 (10) 

𝜃2 =  0 ∶  Stable if |𝜔0| < 𝜔crit , unstable if |𝜔0| > 𝜔crit,             (11) 

𝜃3 = arccos (
𝑚2𝑔𝑙

𝐽𝑝𝜔0
2 ) ∶  Stable and exists only if |𝜔0| > 𝜔crit,    (12) 

𝜃4 = −arccos (
𝑚2𝑔𝑙

𝐽𝑝𝜔0
2 ) ∶  Stable and exists only if |𝜔0| > 𝜔crit. (13) 
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The upward equilibrium position of the pendulum 𝜃1 = 𝜋 is always unstable as expected. 

However, the downward position 𝜃2 =  0 is stable for low arm speeds and loses its stability at 

the critical arm speed 𝜔0 = 𝜔crit and it is unstable for larger arm speeds. The emerging two 

other equilibrium positions 𝜃3 and 𝜃4 are stable when they exist. Therefore, the pendulum is 

stable in a pulled or pushed position above the critical arm speed, in other words, the pendulum 

points backward or forward with respect to the direction of arm rotation. 

To sum up, the downward equilibrium position goes through a supercritical pitchfork 

bifurcation [7] with respect to the arm angular speed 𝜔0 as the bifurcation parameter. All the 

equilibrium positions and the bifurcation diagram are shown in Figure 3.  

Significant dry friction is present in the experimental rig [5], so the dry friction at the 

pendulum pivot point is considered in the mechanical model. Examining the same solution 

described by Equation (6), we obtain the following equation of motion: 

𝐽𝑝𝜃̈ − 𝐽𝑝(sin 𝜃 cos 𝜃)𝜔0
2 + 𝑚2𝑔𝑙 sin 𝜃 + 𝐹𝑐 = 0. (14) 

The equilibrium positions in this case are obtained as: 

(𝑚2𝑔𝑙 − 𝐽𝑝 cos(𝜃𝑖) 𝜔0
2) sin 𝜃𝑖 ∈ (−𝐶, 𝐶), (15) 

which can be checked numerically. Due to the dry friction, stable regions appear around all the 

equilibrium positions, which are also shown in Figure 3. In the case of downward position, the 

stable region becomes wider near to the bifurcation point 𝜔crit. Above the critical arm speed, 

the stable region splits into three branches following the shape of the supercritical pitchfork 

bifurcation, then the width of the three stable regions shrinks as the arm speed increases further. 

In the case of the upward position, there is narrow stable region around the unstable equilibrium 

also, which means, that the dry friction can stabilize the pendulum in this position. 

 

 

Fig. 3 Bifurcation diagram with neglecting and considering dry friction. 
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4 Measurements 

Three different experiments were carried out: one for determining the dry friction parameter 

𝐶, and the other two for measuring both branches of the bifurcation diagram of the downward 

equilibrium position. 

The dry friction parameter 𝐶 was measured at standstill 𝜔0 = 0 rad/s. The pendulum was 

moved up by hand, then it was let move back with slower and slower speeds, while the position 

where it stopped was recorded. This value practically remained the same below a certain speed, 

the mean value of this final position was 𝜃mean = 3.17°; using this value we can approximate 

the dry friction parameter as: 

𝐶 = 𝑚2𝑔𝑙 sin 𝜃mean ≈ 0.011 Nm. (16) 

The stationary behaviour was also measured on the experimental rig for both the forward 

and backward pointing branches of the pitchfork bifurcation. An electrical DC motor was used 

for providing the arm angular velocity for these measurements. We started the measurement 

from the standing position: the input voltage of the motor was incremented by small steps, we 

waited some rounds to let the pendulum settle, then the pendulum position was recorded. This 

method was repeated until we reached the 𝜔0 = 12 rad/s arm speed, then we started to 

decrement the motor input voltage using the same steps and record the pendulum positions until 

the arm stopped. This way we have two sets of measurement points, one set for increasing arm 

speed and the other set for decreasing arm speed. The two sets of measurement points differ 

from each other significantly by presenting a hysteresis.  

For the increasing speed measurements, the downward position of the pendulum remains 

stable even above the critical arm speed, so some measurement points lie on the (unstable) red 

dashed line in Figure 3 showing that the dry friction stabilizes the pendulum. Then the 

pendulum jumps to one or the other stable branches of the pitchfork bifurcation (pointing 

backward or forward, respectively) where the dry friction-induced stable region becomes 

narrow. The pendulum continues to rise as the arm speed increases. 

For the decreasing speed measurements, the pendulum goes back on a different path which 

is near the outer edge of the dry friction-induced stable region. This difference means that there 

is a significant hysteresis caused by the dry friction. At the end of the measurement with zero 

arm speed, the final position of the pendulum is only in the vicinity of the initial vertical position 

and it is near the edge of the stable region caused by the effect of dry friction. 

The Figures 4 and 5 show the measurements for the cases when the pendulum points 

backward and forward during the rotation, respectively. The measured dry friction constant was 

used for illustrating the true stable region of the experimental rig in these figures. 
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Fig. 4 Measurement of the steady motion for backward pointing pendulum. 

  

Fig. 5 Measurement of the steady motion for forward pointing pendulum. 

 

CONCLUSION 

The bifurcation diagram containing all the theoretical results and the measurements are 

shown in Figure 6. The true size of the stable region is represented based on preliminary 

experiments. The measurements on the rotating Furuta pendulum were carried out for the 

downward position and they show good agreement with the theoretical calculations assuming 

the dry friction. During the measurements with increasing speed, the stable region was 

identified also around the unstable branch, when the width of stable region is too narrow, then 

some perturbations make the measurements jump to the neighbourhood of the stable branches, 

therefore, the stable region around the unstable branch is only vaguely attractive. During the 
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measurements with decreasing speed, significant hysteresis was detected in the dynamic 

behaviour, which is also caused by dry friction.  

These results and observations are to be used in future work on establishing control strategy 

for stabilizing the upper position of the Furuta pendulum. 

 

Fig. 6 Bifurcation diagram containing all the results. 
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