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Abstract: In this paper, effects of the defect in an adhesively bonded joint have been investigated using cohesive 

zone modeling. Consequently, a 3D finite element model of a single lap-joint is constructed and validated with 

experiments. Strength prediction of current model is found desirable. Accordingly, different sizes of square 

shape defects are imported to model in the form of changing (raised or degraded) material properties 

(heterogeneity) and locally delaminated areas (as inclusion/void), respectively. Joint strength is investigated and 

a stress analysis is carried out for adhesive layer and adherends. Obtained Results show that, defect has 

significant impact on the results. It is found that at constant size of defect, local delamination has more impact on 

bonded joint strength than the heterogeneity. Furthermore, stress analyses demonstrate that the stress field does 

not change in adherends by taking defects into account. However, stress values decrease with degraded material 

properties and joint’s strength. Through evaluation of peel and transverse shear stresses in adhesive layer it is 

found that there is a change of stress distribution for both types of defects. Whereas, there is a considerable stress 

concentration in the delaminated adhesive layer. 
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1 Introduction 

Due to the developments in adhesives’ technologies and also their higher peel and shear 

strengths and ductility, the use of adhesive bonding in many fields of engineering, such as 

automotive and aeronautical engineering has become possible [1]. Since adhesively bonded 

joints brings several advantages over welding, riveting and bolting methods, such as reduction 

of stress concentrations, reduced weight penalty and easy manufacturing, they are often used 

in multi-component structures [2]. 

It is important to analyze and predict failure behavior of adhesive bonding in order to 

predict the performance and to improve reliable and safe joint designs. In the past, different 

approaches were employed to predict the mechanical behavior of bonded joints. At first, 

theoretical investigations of stress fields in the adhesive and failure prediction (by comparison 

of the maximum stresses with the material strengths) were popular because of simplicity and 

quickness. However, this approach employs lots of simplifying assumptions and can only be 

used for simple geometries [3-8]. 

In recent decades, finite element methods due to being highly accurate and combining 

several complex material laws have replaced theoretical methods in predicting adhesive 

mechanical behavior. Initially failure prediction of adhesive bonded joints was based on 

stress/strain criteria, which, has several drawbacks like dependence on the mesh size at the 

critical regions. Another finite element failure prediction is based on fracture mechanics 

criteria, such as the Virtual Crack Closure Technique (VCCT), which are bounded to Linear 

Elastic Fracture Mechanics (LEFM) and need an initial crack with a very fine mesh [9-11]. 
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More recently, powerful numerical techniques such as Cohesive Zone Modeling (CZM) 

have become available. The CZM method has been used for analyzing adhesive joints. It 

overcomes the limitations of the aforementioned approaches such as requiring an initial crack, 

and also brings more accurate prediction than conventional finite element methods because 

different shapes of the cohesive laws can be employed. In order to implement CZM method, a 

traction-separation law with a pre-defined shape (e.g. exponential, trapezoidal, and the 

bilinear shape) should be used, also the values of critical energy release rate and cohesive 

strength respectively for damage initiation and evolution at failure region must be determined 

[12-16]. Moreover, techniques used for determining the cohesive strength and critical energy 

release rate, commonly are the property identification technique, the direct method and the 

inverse method. These methods are based on the Double Cantilever Beam (DCB) and End 

Notched Flexure (ENF) tests. The inverse method estimates the CZM parameters by iterative 

fitting the finite element result with experimentally measured data (the load-displacement 

curve) until an accurate representation achieved [12]. The CZM method depends on an 

accurate measurement of the cohesive strengths in tension and shears and of the critical 

energy release rates; therefore, accurate values of these parameters play a crucial role in 

accuracy of results. Experiments suggest that the greater the adhesive thickness, the higher the 

apparent critical fracture energy [17]. Other parameters affecting joint strength are overlap 

length, adherend materials and thickness [18]. 

One of the most important factors that affect the joint strength and makes the strength 

prediction difficult are adhesive defects. There is a lot of sources for induction of defects in 

the adhesive for instance; fabrication procedure, deficient joint preparation, micro-cracking, 

air bubbles, foreign bodies, grease, and dirt [19]. Existence of a defect in structural members 

such as plates and shells can make them weak. In fact, there is no or little (by degrading 

adhesive material properties) load transmission through the joints component in the defects 

sites which make the stress increase near the defects locally, hence, the joint strength reduces 

at overall [20]. Furthermore, appearance of such defects can bring unpredictable behaviors, 

consequently, causing weakness or even rapid total failure of adhesive joint. Therefore, there 

is a great need in understanding the defect effects in adhesively bonded joint behavior and 

strength, in order to determine whether a joint with a defect can operate properly in a period 

of time or not. 

Maksimyuk et al. [21] studied redistribution of stress around the inclusion in plate 

members which were subjected to internal pressure. Stress concentrations around the 

inclusion in shells were investigated in many studies [22-25], there are some experimental 

[26-28] and theoretical [29-31] studies concerning adhesively bonded joints with defects. 

However, little attention has been paid to numerical study of defect effects on an adhesively 

bonded joint strength. A bonded plate assembly with a heterogeneous adhesive layer was 

investigated by Uysal and Güven [32]. They studied buckling loads for the adhesively bonded 

plates having elliptical inclusions. They found out that, the inclusion has great influence on 

the attained results. Prasad and Khantwal [33] studied the breaking load of single lap joint 

with different joining technique for alloy steel and mild steel. Based on the result, adhesive 

joint has the lowest breaking load and elongation compared to other joining technique. 

In this study, a numerical model was established based on cohesive zone model to predict 

the failure behavior of adhesive joint and investigate the effects of defect on joint strength. 

Using finite element method, a single lap-joint model has been carried out and acquired 

results are compared with experimental results and numerical prediction available in 

literature. In order to study adhesively bonded joint defect effect on joint strength, the defect 

is taken into account as two different types; (1) locally inadequate bonding which is modeled 

as change of the adhesive properties and (2) void/inclusion which is considered as local 
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delamination in different sizes in a single lap-joint. Finally, the results are evaluated and an 

elastic stress analysis is carried out. Some conclusions are established to understand the 

effects of defect in adhesive layer strength and provide important data for bonded joints 

designers. The main innovation of present work is to predict the strength of adhesive joint 

with defect and doing a stress and damage analysis and estimate the joint behavior using the 

CZM method utilizing a three-dimensional model. 

2 Cohesive Zone Model Theory 

It can be seen from Fig. 1, that cohesive zone model relates traction to separation at an 

interface where a crack may initiate. CZM simulates the elastic behavior up to a peak load and 

followed by a softening behavior, to model the progressive degradation of material properties 

up to complete failure. Therefore, the areas under the traction separation laws equal the 

fracture energy. In the present study, traction-separation laws using quadratic stress-based 

failure criteria and mixed-mode energy-based damage evolution are considered. 

 

Fig. 1 Bi-linear traction separation law [15]. 

The traction-separation law assumes a linear elastic behavior followed by linear evolution 

of damage, and the slope of linear elastic range line is defined as the penalty stiffness (𝐾). 

Consequently, elasticity is defined by an elastic constitutive matrix relating the stresses and 

strains in tension and shears across the interface (subscripts n, s, and t, respectively) [34]: 

𝑡 = {

𝑡𝑛

𝑡𝑠

𝑡𝑡

} = [

𝑘𝑛𝑛    𝑘𝑛𝑠    𝑘𝑛𝑡
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} = 𝐾𝜀 (1) 

Many researchers have considered formulas for calculating penalty stiffness. Turon [35] 

suggested a formula for calculating penalty stiffness: 

𝐾 =
𝛼𝐸3

ℎ
,   𝑤ℎ𝑒𝑟𝑒 𝐾1 = 𝐾2 = 𝐾3 = 𝐾 (2) 

where 𝐸3 is Young modulus, ℎ is the thickness of the adhered plies, 𝛼 ≫ 1, with a suggested 

value of 50 and 𝐾1, 𝐾2 and 𝐾3 are penalty stiffnesses in each mode of loading [35]. Also, 

Corigliano suggested following formula for penalty stiffness: 

𝐾1 =
2𝐺13

𝑒
,   𝐾2 =

2𝐺23

𝑒
,   𝐾3 =

𝐸3

𝑒
 (3) 

where 𝑒 is the thickness of adhesive and 𝐺13, 𝐺23 and 𝐸3 are shear and Young moduli [36]. 

Camanho et al. [37] and Harper [38] respectively used a penalty stiffness of 𝐾 = 106 N/mm3 

and 𝐾 = 105 N/mm3 in their studies and they reached good results. Damage initiation can be 

specified by different criteria. In this paper, quadratic stress-based failure criterion is selected 

for damage initiation. Quadratic stress-based failure criterion is as follows: 
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{
〈𝑡𝑛〉

𝑡𝑛
0 }

2

+ {
〈𝑡𝑠〉

𝑡𝑠
0 }

2

+ {
〈𝑡𝑡〉

𝑡𝑡
0 }

2

= 1 (4) 

The Macaulay brackets in the equation (4) indicate that merely compressive stresses or 

deformations do not initiate damage. A variable, 𝐷, shows damage quality by changing from 

0 (no damage) to 1 (complete failure), therefore: 

𝑡𝑛 = (1 − 𝐷)𝑡𝑛̅,   𝑡𝑠 = (1 − 𝐷)𝑡𝑠̅,   𝑡𝑡 = (1 − 𝐷)𝑡𝑡̅ (5) 

where 𝑡𝑛, 𝑡𝑠 and 𝑡𝑡 are stress components predicted by elastic behavior for current strains 

without damage. Damage evolution is assumed to be linear. After reaching cohesive strength, 

the adhesive stiffness degradation initiates and continues until full separation and maximum 

mixed mode failure displacement is reached. When a mixed-mode loading are present 

simultaneously, a mixed mode damage model is necessary. There is the linear form of the 

power law which predicts the required energies for failure in the pure modes as follows [34]: 

𝐺𝐼

𝐺𝐼𝑐
+

𝐺𝐼𝐼

𝐺𝐼𝐼𝑐
+

𝐺𝐼𝐼𝐼

𝐺𝐼𝐼𝐼𝑐
= 1 (6) 

However, for single lap-joint, the amount of energy required for complete failure is 

secured from the Benzeggagh-Kenane (BK) mixed-mode equation which is particularly useful 

when the critical energy release rates during deformation purely along the first and the second 

shear directions are the same, and calculates the critical energy (𝐺𝑐) based on mixing modes 𝐼 

and 𝐼𝐼 fracture energies (see Fig. 2) [39]: 

𝐺𝑐 = 𝐺𝐼𝑐 + (𝐺𝐼𝐼𝑐 − 𝐺𝐼𝑐) (
𝐺𝑠ℎ𝑒𝑎𝑟

𝐺𝑇
)

𝜂

 (7) 

𝐺𝑠ℎ𝑒𝑎𝑟 = 𝐺𝐼𝐼 + 𝐺𝐼𝐼𝐼 , 𝐺𝑇 = 𝐺𝐼 + 𝐺𝐼𝐼 + 𝐺𝐼𝐼𝐼 and  are BK material parameter. Cohesive 

zone modeling is based on two different techniques; cohesive element and surface based 

cohesive behavior. Surface based cohesive behavior offers capabilities that are very similar to 

cohesive elements that are defined using a traction-separation law. However, surface-based 

cohesive behavior is typically easier to define and allows simulation of a wider range of 

cohesive interactions, such as two “sticky” surfaces coming into contact during an analysis 

[34]. In this paper, surface based cohesive behavior has been used. 

 

Fig. 2 Diagram of mixed-mode traction-separation model [34]. 
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3 Numerical Study 

3.1 Numerical modelling of single lap-joint 

In order to simulate the adhesively bonded joints, the ABAQUS version 6.13 is used. 

Therefore, the finite element Simulation is performed by the solver ABAQUS/Standard. The 

bilinear CZM formulation is chosen for present work because of its simplicity, and 

availability in ABAQUS, also, a mixed mode formulation is utilized. 

For investigating the defect effects on adhesively bonded joints, initially, a metal-metal 

single lap-joint finite element model, which is loaded under mixed-mode conditions, is 

constructed. The main reason is to validate the present model with experimental and 

numerical results presented by Anyfantis et al. [40, 41] and predict failure behaviour of the 

adhesive joint. Anyfantis et al. tested three specimens for single lap-joint under a tensile 

loading using a MTS hydraulic testing machine at room temperature under displacement 

control with a rate of 0.1 mm/min [40, 41]. Nevertheless, single lap-joint geometry is shown 

in Fig. 3 and width of the single lap-joint is 28.5 mm. Adherends are mild marine steels which 

are modelled as typical elastic solids and C3D8R elements are utilized for them. The single 

lap-joint was modelled as three-dimensional and geometrical nonlinearities were considered. 

Adhesive layer is Araldite 2015 and adhesive thickness (𝑇𝑎) is 0.5 mm. Adhesive layer is 

modelled using surface based cohesive behaviour (surfaces of overlap area), and bilinear 

CZM formulation, including a mixed-mode formulation has been employed for the 

description of their constitutive relation. Therefore, no elements are considered for adhesive 

layer and it is defined as part of the surface interaction properties that are assigned to a contact 

pair (surface of overlap area). Accordingly, the constructed finite element model is shown in 

Fig. 4. 

 

Fig. 3 Geometry of single lap-joint specimen. 

 

 

Fig. 4 Numerical modelling of single lap-joint test and boundary conditions. 
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Anyfantis et al. [40] suggested a 0.5×0.5 mm2 dimension for adhesive layer element size, 

hence, 0.5×0.5 mm2 element dimension is considered for adjacent adherends at overlap area. 

For the sake of solving time and the computational effort, the elements are constructed using 

bias effects from the bonding area towards the edges of adherends. Loading and boundary 

conditions are faithful to real testing conditions and have been applied to areas of adherends 

that are restrained in grips of testing machine. As shown in Fig. 4, 0.3 mm tensile 

displacement is applied. Material properties of Aralidite 2015 is presented in Table 1, and 

penalty stiffnesses in different fracture modes are calculated by dividing elastic and shear 

moduli on adhesive thickness. 

Table 1 Properties of the adhesive Araldite 2015 for single lap-joint simulation [40]. 

Property Unit Value 

Young’s modulus, 𝐸 GPa 1.85 

Shear modulus, 𝐺 GPa 0.7115 

𝑡𝑛
0 MPa 30 

𝑡𝑠
0

 MPa 18.5 

𝑡𝑡
0

 MPa 18.5 

𝐺𝐼𝑐 N/mm 4.0 

𝐺𝐼𝐼𝑐  N/mm 4.7 

𝐺𝐼𝐼𝐼𝑐  N/mm 4.7 

Experimentally gained and numerically predicted responses of single lap-joint are 

represented in Fig. 5. Single lap-joint response, is expressed in the form of applied force on 

adhesive layer to displacement of adherends. As shown, load-displacement curve consists of 

three fields. First one is linear from 0 to 0.1 mm displacement which adhesive is in elastic 

state. The second field corresponds to the damage initiation and load carrying capacity of 

adhesive layer at redirection of load-displacement curve. And the last field is damage 

evolution and softening behaviour of the adhesive layer where joint cannot bear any more 

load. 

 

Fig. 5 Numerical and experimental load-displacement curves for present single lap-joint 

specimen. 

Table 2 presents a comparison between present numerical and experimental results and 

numerical predictions by Anyfantis et al. [40] in terms of maximum load and deflection in 
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maximum load values. All of numerical predictions have good agreement to experimental 

average values. Present work has respectively 4.15% and 37.75% differences for maximum 

load and displacement at maximum load to experimental average values. As can be seen in 

the figure, presented numerical result completely mimics the experimental result at elastic 

region. Although there is a variation in amount of maximum displacement and predicting 

softening behaviour, which result from numerical limitation of CZM law shape. Since the 

acquired curve follows the CZM law shaped used closely, there is an acceptable prediction of 

softening behaviour for present numerical simulation compared to experimental and 

numerical curves. The main aim of the present study is strength prediction and determination 

of load carrying capacity of the adhesive layer is fully acquired, moreover, it can be seen that 

present numerical is fairly acceptable compared to numerical data 2. Therefore, overall 

accuracy of present numerical prediction is pleasant. Fig. 6 shows the von-Mises stress 

distribution in adherends at maximum applied load at the point of redirection of curve for 

present simulation. 

Table 2 Comparison of obtained present FE results with available experimental and numerical 

data [40]. 

Results 

Maximum Load  Deflection at Max. load 

Value 

(kN) 

Error 

(%) 
 

Value 

(mm) 

Error 

(%) 

Experimental data 1 [40] 13.2 -  0.240 - 

Experimental data 2 [40] 12.9 -  0.237 - 

Experimental data 3 [40] 14.3 -  0.247 - 

Experimental average [40] 13.47 -  0.241 - 

Presented results 12.91 4.15  0.15 37.75 

Numerical data 1 [40] 13.07 2.96  0.199 17.42 

Numerical data 2 [40] 12.90 4.23  0.16 33.60 

 

 

Fig. 6 Single lap-joint von-Mises stress distribution in adherends at maximum load. 

3.2 Numerical analyses of defect in adhesive layer 

In order to study the effect of defects in adhesive layer, defects have been presented as 

changing of material properties and delaminated area consequently. In the models defect is a 

square area at the center of adhesive layer in four different sizes. Araldite 2015 with 0.2 mm 

thickness and material properties presented in Table 1 is selected as adhesive layer. A single 

lap-joint with same modelling procedure as section 3.2 is constructed, however, for 

investigating the effect of defects in center of adhesive layer, model width change to 25 mm 
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to make the overlap area square. As presented in Fig. 7, in order to introduce defect in the 

numerical models, four different sizes of 5×5 mm2 (4% of area), 8×8 mm2 (10% of area), 

10×10 mm2 (16% of area) and 12×12 mm2 (23% of area) have been separated at the center of 

overlap area. A delaminated area in adhesive layer and a change of material properties as 

variations of separated adhesive layer material properties at the overlap area, in the form of a 

coefficient of cohesive strength and critical energy release rates. It should be noted that 

penalty stiffness is fixed for all models. Initially a perfect adhesively bonded single lap-joint 

is simulated and defective models’ results are compared with it. 

 

Fig. 7 An example of separated area in the center of overlap area which serves as defect. 

4 Results and Discussion 

4.1 Numerical modelling of single lap-joint 

The obtained results are presented in Figs. 8 and 9 for different defects. As can be seen in 

Fig. 8, by enlarging the area of delamination, strength of adhesive reduces. Also, as shown in 

Fig. 9, by enlarging the size of changed material properties the change of strength gets more 

severe. Fig. 10 shows perfect single lap-joint and square shape defects load-displacement 

curves. On the other hand, Fig. 10 and Fig. 11 demonstrates that with fixed size and shape of 

the defect, local delamination has the most impact on joint strength as the joint strength 

weakening is severe. 

 

Fig. 8 Force-displacement curves for perfect single lap-joint and the model with delamination. 
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A comparison of numerical results is shown in Table 3 and Fig. 11. It can be noted that as 

the size of delamination grows, highest load and deflection at peak load values decrease and 

compared to changed material properties (heterogeneous) model it has the most discrepancy 

with the perfect model. on the other hand, change of material properties from 1.2 times to 0.4 

times of original material properties does not have too much difference with respect to the 

perfect model, for which, maximum discrepancy is about 5%. Moreover, another interesting 

point is that discrepancy of maximum load and deflection at maximum load on the 

heterogeneous model from those acquired from perfect model is almost the same in every 

type. 

 

(a) 

 

(b) 

Fig. 9 Force-displacement curves for perfect single lap-joint and inhomogeneity in the form of 

(a) degradation (0.8 times) and (b) raising (1.2 times) of cohesive strength and critical energy 

release rates for different sizes. 
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Fig. 10 Force-displacement curves for perfected single lap-joint and single lap-joints with a 

square of 5 mm2 at the center of overlap area for presenting inclusion and inhomogeneity in 

the form of delamination and raised or degraded cohesive strength and critical energy release 

rates. 

 

Table 3 Comparison of obtained present finite element results. 

Defect size Type 

Maximum Load  Deflection at max. load 

Value 

(kN) 

Discrepancy 

(%) 
 

Value 

(kN) 

Discrepancy 

(%) 

No defect Perfect model 10.69 -  0.154 - 
       

5×5 mm2 

Local delamination 10.24 -4.21  0.152 -1.29 

Heterogeneity, 1.2 times* 10.75 0.56  0.157 1.94 

Heterogeneity, 0.8 times* 10.58 -1.02  0.151 -1.94 

Heterogeneity, 0.6 times* 10.51 -1.68  0.151 -1.94 

Heterogeneity, 0.4 times* 10.44 -2.33  0.151 -1.94 
       

8×8 mm2 

Local delamination 9.61 -10.10  0.143 -7.14 

Heterogeneity, 1.2 times* 10.90 1.96  0.157 1.94 

Heterogeneity, 0.8 times* 10.46 -2.15  0.15 -2.59 
       

10×10 mm2 

Local delamination 9.04 -15.43  0.131 -14.93 

Heterogeneity, 1.2 times* 11.02 3.08  0.159 3.24 

Heterogeneity, 0.8 times* 10.35 -3.18  0.1511 -1.88 
       

12×12 mm2 

Local delamination 8.30 -22.35  0.124 -19.48 

Heterogeneity, 1.2 times* 11.16 4.39  0.161 4.54 

Heterogeneity, 0.8 times* 10.21 -4.49  0.147 -4.54 

* Of original material properties 
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Fig. 11 The influence of defect area on the maximum load predicted numerically for the 

araldite 2015. 

4.2 Stress analysis of adhesive joint 

The von-Misses stress distribution at maximum load for square shapes of 0.5×0.5 mm2 

area defect is presented in Fig. 12. Nevertheless, stress fields in every faulty specimen almost 

remain intact compared to perfect adhesive bond, but as the adhesive bond strength decreases, 

the stress values are decreasing in adherends. Accordingly, peel (direct through-thickness) 

stress at maximum load in the adhesive layer for square shapes of 0.5×0.5 mm2 area defect is 

shown in Fig. 13. Additionally, there is a sudden change in stress fields in 13-c and 13-f at the 

center of adhesive layer which are on behalf of 1.2 times material properties and 

delamination, respectively. Stress concentration at the top and bottom of delaminated 

specimen which present defect is much more severe than other specimens and at overall 

delaminated specimen has the lowest value of stress. Due to the severe stress concentration 

and sudden change of stress fields in the model with delamination, peel stress at different size 

of delamination is presented in Fig. 14. Because of adhesive absence at the center of overlap 

area, induced stress increases with enhancing the size of delamination which applies to 

adherends. Also, observing Fig. 15, distinguishes induced stress to the adhesive layer for a 

delaminated model, there is a significant stress concentration at the top and bottom of 

delamination location and it becomes more intense with increasing the size of delamination. 

Consequently, Transverse shear stresses (𝑡𝑥𝑧 and 𝑡𝑦𝑧) in adhesive layer are shown in Figs. 16 

and 17. It can be seen from Fig. 16, that, 1.2 times material properties has more stress than 

perfect model at heterogeneous location, also at 0.8 to 0.4 times material properties stress 

value decreases at heterogeneous location, delaminated specimen shows the lowest value at 

delamination location which applies to adherend due to the lack of adhesive. In Fig. 17 for 𝑡𝑦𝑧 

there is same condition like Fig. 16. However, for the model with delamination (Fig. 17 (f)) 

there is a stress concentration at the top and down of delamination location. 
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(e) (f) 

Fig. 12 Von-Misses stress fields at maximum load in adherends for (a) perfect single lap-joint 

and (b) square shapes 0.5×0.5 mm2 defect as 1.2 times of cohesive strength and critical energy 

release rates, (c) 0.8 times of cohesive strength and critical energy release rates (d) 0.6 times 

of cohesive strength and critical energy release rates, (e) 0.4 times of cohesive strength and 

critical energy release rates and (f) defect in the form of delamination. 
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Fig. 13 Peel (direct through-thickness) stress fields at maximum load in overlap area adhesive 

for (a) perfect single lap-joint and (b) square shapes 0.5×0.5 mm2 heterogeneity as 1.2 times 

of cohesive strength and critical energy release rates, (c) 0.8 times of cohesive strength and 

critical energy release rates, (d) 0.6 times of cohesive strength and critical energy release 

rates, (e) 0.4 times of cohesive strength and critical energy release rates and (f) inclusion in 

the form of delamination. 
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(c) (d) 

Fig. 14 Peel (direct through-thickness) stress fields at maximum load in overlap area adhesive 

for (a) 0.5×0.5 mm2, (b) 0.8×0.8 mm2, (c) 10×10 mm2 and (d) 12×12 mm2 delamination. 

 

 

Fig. 15 Peel (direct through-thickness) stress fields at maximum load for 12×12 mm2 

delamination in overlap area and adhesive layer. 
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Fig. 16 Transverse shear (𝑡𝑥𝑧) stress fields at maximum load in overlap area adhesive for (a) 

perfect single lap-joint and (b) square shapes 0.5×0.5 mm2 defect as 1.2 times of cohesive 

strength and critical energy release rates, (c) 0.8 times of cohesive strength and critical energy 

release rates, (d) 0.6 times of cohesive strength and critical energy release rates, (e) 0.4 times 

of cohesive strength and critical energy release rates and (f) defect in the form of 

delamination. 
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(e) (f) 

Fig. 17 Transverse shear (𝑡𝑦𝑧) stress fields at maximum load in overlap area adhesive for (a) 

perfect single lap-joint and (b) square shapes 0.5×0.5 mm2 defect as 1.2 times of cohesive 

strength and critical energy release rates, (c) 0.8 times of cohesive strength and critical energy 

release rates (d) 0.6 times of cohesive strength and critical energy release rates, (e) 0.4 times 

of cohesive strength and critical energy release rates and (f) defect in the form of 

delamination. 

CONCLUSION 

Defect has great impact in material performance since it changes material integrity. 

Because of obscurity in material performance, study of defect effects in adhesive layer is an 

important issue. This work aimed the evaluation of defect effect in strength of adhesive joint 

using a bilinear CZM, by approximating the behaviour of a single lap-joint after validation of 

the model with experiments. Initially after presenting the mathematical relations required for 

initiation and developing of damage based on bilinear mixed-mode CZM, a 3D finite element 
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model of a single lap-joint is constructed for validation purpose. Linear field and strength 

prediction of current model are found very desirable however; there is a variation in amount 

of maximum displacement and predicting softening behaviour, which result from numerical 

limitation of CZM law shape. Nevertheless, overall accuracy of present numerical prediction 

is pleasant. Finally, defects are imported to model in the form in two different types (1) 

locally inadequate bonding which is modelled as change of the adhesive properties like 

cohesive strength and critical energy release rates and (2) void/inclusion which is considered 

as local delamination in different sizes respectively. Joint strength is investigated in four 

different size of defect in the shape of square area at the center of joint’s overlap area for 

presenting defects. Eventually, stress fields is calculated for adhesive layer and adherends. 

Present investigation shows that, defect has significant impact on the results. Results show 

that with taking defect into account, strength of bonded joint changes and as the size of defect 

increases the joint strength changes more severe. It is found that heterogeneity as degraded 

material properties and delamination weaken joint strength. Moreover, heterogeneity as raised 

material properties predicts joint’s strength more than perfect model. At constant size of 

defect, delamination has weakened the bonded joint strength, and the weakening is about 5% 

to 23% at smallest and largest size respectively. Calculating stress fields in adherends shows 

that stress fields does not change in adherends, however, stress reduced with reduction of 

joint’s strength. By evaluating peel stress in adhesive layer, it is found that there is a sudden 

change of stress fields for raised material properties (Heterogeneous model) at the center of 

adhesive layer. Whereas, there is a significant stress concentration in the delaminated 

adhesive layer and it becomes more severe with enlarging the size of defect. Examining 

transverse shear stresses (𝑡𝑥𝑧 and 𝑡𝑦𝑧) show that one of shear stresses (𝑡𝑥𝑧) affected by both 

type of defects same, however other shear stress (𝑡𝑦𝑧) is more affected by delamination since 

there is a stress concentration. 
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