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Abstract: As a continuation of the author’s previous studies on the buckling analysis of helical springs, a closed-

form formula having been obtained with the help of the artificial neural network (ANN) is proposed and discussed 

in detail for the first time for a cylindrical close/open-coiled helical spring with fixed ends and having a solid 

circular section. As far as the author knows there is no such a formula in the open-literature to consider the effects 

of all stress resultants (torsional and bending moments, axial and shearing forces), large helix pitch angles together 

with the axial and shear deformations on the buckled state. The present formula may be used in a wide range of 

the total number of active turns, the ratio of the free axial length to the mean helix diameter, and the spring index.  

It is yet again revealed that it is not appropriate to use the elementary theory to determine the critical buckling 

loads for open-coiled springs. The present formula may allow the deeper understanding of spring buckling 

mechanism and to be used directly and safely in the design processes of such closely/open-coiled springs. 
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1 Introduction 

A helical spring is an essential structural type for miscellaneous mechanisms [1-5]. It has, 

therefore, great practical importance from the engineering point of view [6-58].  The first 

investigations were related to the static response of cylindrical helical springs [6-42]. Haringx 

[6], Ancker and Goodier [7-9], and Wahl [10] put forward the basis of analytical mechanics of 

springs. Nagaya et al. [15] also presented design formulae for elliptical cross-sections of helical 

springs. The complete governing equations of initially twisted elastic space rods made of 

laminated composite materials are presented by Yıldırım [18]. Later, Yu et al. [24] considered 

the warping of naturally curved and twisted beams with general cross-sectional shapes. Dym 

[26], first time in the literature, derived the spring rate of a coiled cylindrical extensional helical 

spring with solid circular wire under an axial force and axially directed torque by a consistent 

application of Castigliano's second theorem. Dym [26] also presented a common notion about 

the effects of each stress resultants on the deformation of the spring. Yıldırım [31] proposed 

closed form formulas for both close-coiled and open-coiled cylindrical helical compression 

springs having arbitrarily doubly-symmetric cross-sections by applying Castigliano’s first 

theorem and by considering the whole effects of all stress resultants namely torsional and 

bending moments and the shearing and axial forces on the tip deflection. Gzal et al. [35] 

determined analytically the stress distribution in elliptical cross-section of helical springs with 

small helix angles under axial static loads. They validated their results by finite element analysis 

and an experimental study conducted on an actual automotive valve spring. Recently, Kobelev 

[42], presented an advanced treatise of the mechanics of springs with focus on the springs for 

automotive industry by demonstrating new and original results for the optimization of helical 

springs. Along with the above analytical studies, some numerical methods such as the finite 

element method [14, 19, 21-22, 32-36, 41], the transfer matrix method [16], the stiffness matrix 
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method [16, 20], and the complementary functions method [17] are also employed for the static 

analysis of cylindrical helical springs. Unfortunately, the number of experimental studies on 

helical springs have been still very limited [27, 30, 35, 43-44]. 

Buckling is one of the substantial failure phenomenon should be considered for helical 

springs having larger free axial length and improper end conditions [43-58] as well as slender 

structures. The general consent to prevent the buckling of a spring subjected to a compressive 

force is, therefore, to restrict to the deflection of the spring or the free axial length of the spring 

(Fig.1). 

 
Fig. 1 Geometry of a cylindrical helical spring 

A comprehensive buckling behavior of such springs are rarely tackled due to the 

computational complexity of the main problem [45-58].   By reason of just the geometry of a 

helix (Fig. 1), a helical spring is to be governed by coupled differential equations even for the 

simplest problem. In static problems, the governing equation of a helical spring, indeed, consists 

of a single twelve order ordinary differential equation for a boundary value problem (BVP) or 

a set of twelve ordinary differential equations with first degree for an initial value problem 

(IVP) [18, 45, 50-58]. When the buckling is considered, additional terms should be included 

into the governing equations [56]. The open literature also covers some studies related to the 

helical springs which considers uncoupled differential equations obtained under certain ad-hoc 

assumptions.  

The buckling behaviour of helical springs with large helix pitch angles were handled 

numerically in a few works by employing the finite element method [47-49], the transfer matrix 

method [45, 50-56, 58], and the stiffness matrix method [57].  Those studies revealed that 

Haringx’s [1] formula gives accurate results only when the helical spring has a small helix pitch 

angle, in other words, when the helix angle is usually less than 10 degrees. In conclusion, the 

elementary theory may give acceptable results for merely closely-coiled helical springs. Chassie 

et al. [52] also presented some reliable buckling charts to be used in the design stage of 

cylindrical helical isotropic compression springs with clamped ends and with circular sections. 

The buckled state deformation was computed in [45-52] by omitting the contribution of the 

shearing and axial forces, and bending moments. As understood in [18] and [54, 56, 58], the 

bending moment, the shearing and axial forces may considerably affect the tip deflection as 

well as the torsional moment especially when the open-coiled springs are concerned or the 

spring having small spring index is concerned. A governing buckling equation set which also 

covers the effect of shearing force on the buckled deformation was offered by Yıldırım [56] for 

a compression spring having doubly symmetric solid sections as a first time in the open 

literature.  

Patil et. al. [43] experimentally showed that Haringx’s results become poor for values of 

helix pitch angles which are around ten degrees, and significant deviations from the elementary 

theory occur at small number of turns or at helix pitch angles around 
10 . 
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Ibrikci et al [55] explained the use of artificial neural networks (ANN) to perfectly predict 

the critical buckling loads of cylindrical isotropic helical spring with fixed ends, with circular 

sections, and with large helix pitch angles. The training network consists of about 5000 epochs 

(3662 patterns for the training data and  1305 patterns for  the questioning set)  in the ANN 

analysis was acquired numerically based on the transfer matrix method [53] by using the 

governing equation set recommended by [56] in this study. That is the training network in ANN 

analysis consists of about accurate 5000 epochs each of which was obtained by solving a 

numerical initial value problem (IVP) of a differential equation set consisting twelve first order 

differential equation. The maximum relative error was, therefore, found mostly far less than 

5%. The detailed knowledge related to the applied ANN procedure may be found in Ibrikci et 

al.’s [55] study except the buckling formula which is to be presented and discussed in details in 

the present study.  

It is worth noting that the training data set consists of the inputs which are assumed to be in 

the following ranges (Fig. 1): 124/  dDC , 305 turnsactiveofnumbern    , and 

165/ DLo . As is well known, most springs used in engineering have those parameters 

within the assumed ranges having physical meaning. After machine learning by ANN, the range 

of the possible theoretical inputs are extended to the ranges 600C , 800 n , and 

700/ DLo . In conclusion, the present formula may be safely used to predict accurately the 

buckling loads of such springs.  

2 Elementary Buckling Formulas  

By using a rod-model approximation, as a pioneering investigator Haringx [6] offered a 

closed-form buckling formula for cylindrical helical springs. Those formulas are also studied 

in a detailed manner in [10]. Denoting the helix mean diameter by RD 2 , the critical tip 

deflection by cr which corresponds to the critical buckling load, crP , the following conditions 

are presented in [6, 10] for the buckling criteria of a close-coiled spring with solid circular 

section (Fig. 1). 
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where  tan/0 nDL   and  n  is the total number of active turns. According to the above 

formulas the buckling does not occur in a spring with fixed-fixed ends, viz., in a spring 

supported between flat parallel surfaces when 242.5/ DLo  (Fig. 2). In other words, if 

242.5/ DLo the spring will most likely buckle under any compressive axial force. Similarly 

those bounds are determined as 621.2/ DLo  for fixed-guided ends, 31.1/ DLo  for fixed-

free ends.  
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Fig. 2 Wahl’s [10] buckling charts for cylindrical helical springs with circular section  

In Eqs. (1), the axial critical total tip deflection, cr ,  is computed by using Wahl’s [10] 

classical formula, which may be used for simply close-coiled springs having small helix pitch 

angles and does not observe the additional effects of both the bending moment and the shearing 

and axial forces on the tip deflection of the spring  [31]. 
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As a common opinion, a compression spring whose free length is more than four times its 

mean diameter is assumed to be necessary to be checked for the buckling phenomenon. In 

practical applications, the following criteria for absolute stability which is in the simplest 

combined form of Eqs. (1) and (2) is also frequently used.  
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where E  and G are Young’s and shear moduli of the wire material, respectively. In Eq. (3), 

end is referred as the end-condition constant or simply end-constant.  
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 fixedfixed
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guidedfixed
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 ,   2
 freefixed

end
  (4) 

If the wire material is chosen as a conventional steel material, Eq. (4) may be simplified as 

end
Steel
o DL /63.2  (5) 

As 0L  of a compression spring increases in proportion to its diameter, viz., as the spring 

becomes more slender, it can be buckle under a compressive axial force. The likelihood of 

buckling depends upon the maximum load or deflection. 

3 The Present Proposed Buckling Formula  

A spring with fixed-fixed ends is considered as properly guided, viz., as the squared and 

ground ends are on rigid parallel surfaces perpendicular to the spring’s axis. In the present 

study, it is assumed that the spring end conditions are proper to evenly distribute the load all 

along the circumference of the coil.  Denoting the helix index by dDC / , the critical 

buckling load is achieved to the following with the help of the ANN analysis in which a three-
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layer (input/hidden/output layers) BP (Back Propagation) network is used as a machine learning 

ANN method [55]. 
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In Eq. (6-8), crP  is the dimensionless critical buckling load and it is a kind of Sigmoid 

function (squashing function) with three parameters. In ANN, it has been chosen as an 

activation function to squeeze the outputs. As stated before 
ia s are determined by using 

accurately computed training network for about 5000 epochs. BP learns by iteratively 

processing a set of training examples. When a BP network is cycled, an input example is 

propagated forward to the output through the intervening input-to-hidden and hidden-to-output 

weights [55].  

The present formula may be used in a wide range of the total number of active turns, the 

ratio of the free axial length to the mean helix diameter, and the spring index.  It is yet again 

revealed that it is not appropriate to use the elementary theory to determine the critical buckling 

loads for open-coiled springs. The present formula may allow the deeper understanding of 

spring buckling mechanism and to be used directly and safely in the design processes of such 

closely/open-coiled springs. 
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The sketch of the graph of a typical Sigmoid function is shown in Fig. 3. By considering this 

graph it may be concluded that, if crP  approaches the unit, the buckling probably will not occur. 

The final decision is made after checking the results by considering the material and the 

geometry of the spring. For instance, if the corresponding buckling deflection is greater than 

the difference between the free axial length of the spring and the solid length of the spring, 

)( so LL  ,  the situation becomes physically meaningless. The spring will, therefore, not be 

buckled under this critical load. As it is known, when the compression spring is compressed 

until the coils come in contact with each other, then the spring is said to be solid. The solid 

length of a spring is simply the product of the total number of coils and the diameter of the wire, 

)( ndLs  . 

 
Fig. 3 A graph of a typical Sigmoid function 

Yıldırım [31] offered the following closed-form formula for the analytically determination 

of the global tip deflection of helical springs with solid circular section. 
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where  is the helix pitch angle, 
Tk  is the reciprocal of Timoshenko’s shear correction factor, 

d   is the helix wire diameter,  is Poisson’s ratio of the wire material, and 2/DR  is the mean 

radius of the helix. Eq. (9) includes the whole effects of the torsional moment, bending moment, 

axial force and shearing force on the tip deflection. After determining the critical buckling load 

at which the spring will buckle from the present formula in Eq. (6), corresponding true tip 

deflection should be determined using Eq. (9) by considering the helix pitch angle of the 

original spring.   

Cowper [59] recommended the following reciprocal of shear correction factor for solid 

circles in terms of Poisson’s ratio.   
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For practical use, 1.1eSolidCircl
Tk may be preferred [60]. Apart from those, the definition of 

the free axial length of helices with large helix pitch angles turns to be  

 tan0 DnL   (11) 

The helix pitch angle at the buckled configuration, 
cr , is then computed by the following.   








 
 

Dn

L cro
cr




 1tan  (12) 



Volume 68, No. 3, (2018) 2018 SjF STU Bratislava 39 

 

As stated above, for a given free axial length, 0L , a helical compression spring has a tendency 

to buckle when the tip deflection,  , becomes  too large. Buckling can, therefore, be prevented 

by limiting the tip deflection of the spring or the free length of the spring. 

4 Validation with both Theoretical and Experimental Results  

In this section, mainly four examples, which consist of carefully selected benchmark 

solutions for nineteen test springs in the available literature, are to be discussed to validate the 

present results and to show the effectiveness of the present formula.  

Geometrical and material properties of the test springs in the first example ( GPaE 210 , 

3.0 , fixed-fixed) are given in Table 1. Comparison of the critical dimensionless buckling 

loads of the first example is presented in Table 2. Corresponding dimensionless critical buckling 

load values are also presented in parenthesis in Table 2. 

Tab. 1 Geometric sizes of the test springs of the first example  

 

Spring 

number 
oL  

(mm) 

D  
(mm) D

L0  
d  

(mm) 

 
C  

 
n  

 

)(  

1 240 40 6 8 5 6 17.657 

2 720 100 7.2 25 4 15 8.687 

3 90 10 9 4 2.5 15 10.812 

4 120 10 12 2 5 20 10.812 

5 240 20 12 4 5 6 32.482 

6 100 25 4 5 5 6 11.98 

7 50 10 5 2 5 10 9.04 

From Table 2, a good harmony among the elementary, the reported and the present results 

is observed for the first four test springs.  However, when the fifth test spring of helix pitch 

angle of 32.482o is considered, the elementary theory fails to truly compute the buckling loads 

as stated previously in [48, 52-53, 55].  The relative error between the elementary theory and 

the results in [53] may be computed as 13% for the fifth spring. Another point is that, in Table 

2, İbrikçi et al. [55] found the maximum relative error as (-0.43%) for the third test spring 

having 5.2C  which falls into the extended range of the spring index (Table 1).  This is an 

indication of the efficiency of the present formula. 

From Table 2, for the test spring numbered six, the critical buckling load reads 

)( 395.38171 NPcr  .The corresponding tip deflection and buckling helix angle may be 

computed as  mmmcr 377.586586377.0   and 
 91.45cr , respectively. Since these 

results are not plausible ( 86.5 / ocr L , mmLL so 7030100  ), it is decided that the spring 

will not be buckled under this force. It may be similarly proved that the seventh test spring will 

also not be buckled due to )( 619.784 NPcr  cannot be reached. 

The material and geometrical properties of the second example are: 6/  dDC , 

GPaE 84.206 , 3.0 , mmd 1 , 1.1Tk , fixed-fixed. The results for the two test springs 

are presented in Table 3.  In Table 3, Yıldırım [56] obtained buckling loads under two 

assumptions: by considering the effects of i) just torsional moment (Eq. 2), )/(64 43 GdnPR

, ii) torsional and bending moments plus shearing and axial forces. He [56] found that the 

relative difference between two results was about 21% for the first open-coiled test spring 

having larger helix pitch angle while it is negligible for the second closely-coiled one having 
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small helix pitch angle.  From the results of the first test spring, it is once more revealed that 

Haringx’s results are poor with the springs having large pitch helix angles together with 

especially relatively small spring index.    

 

Tab. 2 Comparison of the critical buckling loads for the first example 

 
spring  )( NPcr  )(  cr  

number  [48]  [52]  [6]  [53]  [55] Present  [55] 

1 10116.8 

(0.1061)d 

11505.3 

(0.1200)d 

10777.2 

(0.1124)d 

10744.34 

(0.1121)d 

10725.17 

(0.1119)d 

10776.43 

(0.112435)d 

10.1800    

2 48182.9 

(0.0306)d 

48491.6 

(0.0308)d 

48343.3 

(0.0307)d 

48319.864 

(0.0307)d 

48162.470 

(0.0306)d 

48313.714 

(0.030696)d 

6.4042    

3 2345.3 

(0.0230)d 

2351.29 

(0.0231)d 

2356.51 

(0.0231)d 

2342.390 

(0.0230)d 

2332.206 

(0.0229)d 

2332.902 

(0.022907)d 

9.0519    

4 77.95 

(0.0122)d 

78.46 

(0.0123)d 

79.06 

(0.0124)d 

78.292 

(0.0123)d 

78.292 

(0.0123)d 

78.186 

(0.012283)d 

9.9315    

5 906.9 

(0.0483)d 

984.01 

(0.0524)d 

1054.21 

(0.0561)d 

935.170 

(0.0498)d 

937.048 

(0.0499)d 

938.848 

(0.049996)d 

30.3133    

6 --a 

 

--b --b --c 
--c 

38171.395  

(0.967421)d 

--c 

7 --a 

 

--b --b --c 
--c 

784.619  

(0.12194)d 

--c 

ano convergent solution 
bwill not buckle (decided from the charts) 
cnot studied 
ddimensionless critical buckling load  

 

Tab. 3 Buckling loads of the second example 

   )(NPcr  [56]  Present Formula 

n  )(  DLo /  Eq. (2) Eq. (9) crP  )(NPcr  

5 18.9717 5.4 156.292 197.149 0.187224 188.891464 

30 7.6147 12.6 8.43780 8.45764 0.007681 8.513447 

 

 

The material and geometrical properties of the third example are: 10/  dDC , 5n , 

GPaE 84.206 , 3.0 , mmd 1 , 1.1Tk , fixed-fixed,  4816366.32 , 10/ DLo . 

Critical buckling loads and corresponding helix pitch angles together with the ratio of the 

critical deflection to the helix axial free length are presented in Table 4 in a comparative manner. 

Since the spring has also a large spring index, a significant deviation from the elementary theory 

does not occur for this test spring having a large pitch angle.  

Table 4 also states that if the whole effects of the stress resultants is concerned by Eq. (9), 

one may reach higher critical buckling loads than the elementary theory. Critical buckling loads 

computed by Haringx’s [6] formula which considers just the effect of the torsional moment 

without helix pitch angle mostly fell in the safe region in the design. 
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Tab. 4 Critical buckling loads of the third example 
  [54, 58] (in a dynamic manner) [53] (in a static manner) Present Formula 

 )(NPcr  )(  cr  (%) / ocr L  )(NPcr  )(  cr  (%) / ocr L  )(crP  )(NPcr  

Eq. (9) 21.283 29.287 11.9 21.299 29.271 11.96 0.07406 21.404 

)/(cos64 43 GdnPR    20.4 30.17 8.7 -- -- -- -- -- 

)/(64 43 GdnPR = 

Eq. (2) 

20.9 29.66 10.6 -- -- -- -- -- 

 

As a final example, nine test springs made of ASTM A323 Type 304(SS) [38-39] are 

considered. The common properties of these springs are: mmD 18 , mmd 2 , 9C , 

GPaE  193 , GPaG  3.70 . The other specifications of the springs and their buckling loads 

which are determined numerically and experimentally are shown in Table 5. 

Tab. 5 Experimental and theoretical critical buckling loads of the fourth example 
   

  Experimental 

[44] 

Theoretical 

[44] 

Present 

Spring 

no 
DLo /  )(  n  

crP

(N) 

cr

(mm) 

crP

(N) 

cr

(mm) 

crP

(N) 

cr

(mm) 

1 5.6 2.22 20 63.21 45.34 68.51 56.30 69.35 54.97 

2 5.83 2.82 20 62.50 44.28 58.95 49.14 61.16 48.49 

3 7.0 3.68 25 40.30 32.59 34.00 32.03 35.21 34.88 

4 8.17 4.60 25 32.10 24.48 26.37 28.22 28.36 28.12 

5 9.72 5.91 26 29.34 22.80 21.18 22.75 21.90 22.69 

6 10.6 6.59 26 27.12 18.29 18.99 20.71 19.86 20.52 

7 11.1 6.98 27 23.40 18.70 17.63 19.40 18.03 19.35 

8 12.8 8.24 27 19.20 16.40 15.17 16.56 15.41 16.56 

9 14 9.14 28 16.40 13.30 12.85 15.12 13.38 14.94 

 

For those nine springs, present applied force and corresponding deflections are presented in 

Table 6. Table 6 also includes Patil et. al.’s [43, 44] experimental deflection values in 

parenthesis. 

In Table 5, the present and Patil et al.’s [43-44] theoretical results are closer to each other 

than their experimental values. To achieve a better comparison of the theoretical and 

experimental values, load-deflection curves from the present results and experimental ones 

together with theoretically and experimentally determined buckling loads are all illustrated in 

the same figure for the nine test springs considered (Fig. 4). From Fig. 4 the followings may be 

concluded: 

• The specifications of the test springs were indeed chosen within the range of the 

elementary theory by Patil et al. [43, 44]. Despite this, the experimental results have 

some errors especially for springs having around 106 o helix pitch angles and when 

the loads are increased. The maximum relative error may be reached around 40% in Patil 

et al.’s [43,44] theoretical and experimental results. 

• Buckling loads obtained by the present formula fall on the linear load-deflection line 

obtained by Yıldırım’s [31] deflection formula in Eq. (9). This may be assumed as the 

other verification of the present formula.    
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Tab. 6 The present applied force and corresponding deflections for the fourth example 
 

Spring number 

No 1 No 2 No 3 No 4 

P
(N) 

 (mm) P
(N) 

 (mm) P
(N) 

 (mm) P
(N) 

 (mm) 

4.8 3.805 

(5)a 

2.06 

 

1.633 

(5)a 

5.2 5.152 

(5)a 

5.29 5.244 

(5)a 

11.87 9.409 

(10)a 

5.88 

 

4.662 

(10)a 

9.81 9.720 

(10)a 

9.81 9.725 

(10)a 

18.25 14.466 

(15)a 

13.4 

 

10.624 

(15)a 

13.24 13.119 

(15)a 

14.1 13.978 

(15)a 

25.3 20.055 

(20)a 

18.7 

 

14.826 

(20)a 

16.4 16.250 

(20)a 

18.2 18.043 

(20)a 

32.56 25.809 

(25)a 

26.8 

 

21.247 

(25)a 

24.5 24.276 

(25)a 

32.1 31.823 

(24.48)a 

38.6 30.597 

(30)a 

33.15 

 

26.282 

(30)a 

27.86 27.605 

(30)a 

-- -- 

45 35.670 

(35)a 

39.14 

 

31.030 

(35)a 

40.3 39.931 

(32.59)a 

-- -- 

53.07 42.067 

(40)a 

44.5 

 

35.280 

(40)a 

-- -- -- -- 

59.64 47.275 

(45)a 

62.5 

 

49.582 

(44.28)a 

-- -- -- -- 

63.21 50.105 

(45.34)a 

-- -- -- -- -- -- 

No 5 No 6 No 7 No 8 

P
(N) 

 (mm) P
(N) 

 (mm) P
(N) 

 (mm) P
(N) 

 (mm) 

5.68 5.863 

(5)a 

5 5.165 

(5)a 

4.8 5.151 

(5)a 

3.13 3.364 

(5)a 

10.1 10.425 

(10)a 

7.95 8.212 

(10)a 

10 10.731 

(10)a 

7.9 8.490 

(10)a 

15.1 15.586 

(15)a 

12.8 13.221 

(15)a 

16 17.170 

(15)a 

13.8 14.830 

(15)a 

22.1 22.811 

(20)a 

27.12 28.013 

(18.29)a 

23.4 25.110 

(18.7)a 

19.2 20.633 

(16.4)a 

29.34 30.284 

(22.8)a 

-- -- -- -- -- -- 

No 9   

P
(N) 

 (mm) P
(N) 

 (mm) P
(N) 

 (mm)   

4.12 4.598 

(5)a 

5.68 6.339 

(10)a 

16.4 18.303 

(13.3)a 

  

                       aPatil et. al. [43,44] / experimental 

As stated above, there is a good harmony between Patil et al.’s [43-44] theoretical and the 

present buckling loads. 
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Fig. 4 Load-deflection curves and buckling loads 

5 Parameters Affecting the Buckling Loads  

The present buckling formula apparently considers three parameters, namely the spring 

index, dDC / , the number of active turns, n , and the ratio of DLo / . In this section the 

effects of those parameters on the dimensionless critical buckling loads are to be discussed.  

Figure 5 shows the effect of the spring index on the critical buckling loads for 10n . The 

effect of the spring index increases when the ratio of DLo / decreases. This effect becomes 

maximum for the smallest value of the spring index, that is for 4C . As may be guessed, as 

DLo / increases the deviations in the results of the springs having different spring indexes 

become to disappear. 
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Fig. 5 Effect of the spring index on the buckling loads 

Figure 6 illustrates the effect of the total number of active turns on the critical buckling loads 

for 4C . The effect of the number of active turns decreases with increasing DLo /  ratios. The 

dimensionless critical buckling loads decrease with increasing number of active turns. For the 

given values of DLo /  and C , reducing the number of active turns may be an option to increase 

the buckling loads since the deflection becomes smaller. 

 
Fig. 6 Effect of the number of active turns on the buckling loads 

Effect of DLo /  ratios on the buckling loads are shown in Fig. (7) for 4C . Smaller DLo /  

ratios offer higher buckling loads for given n  and C  values. Critical buckling loads decrease 

with increasing number of active turns for all values of DLo / values. 

CONCLUSION 

Buckling of helical springs is still an issue which deserves much attaching a great importance 

by investigators. The responses of the existing elementary buckling formulas are poor for the 

springs with large pitch helix angles together with relatively small spring index. They may be 

used safely for closely-coiled springs in which the helix pitch angle is small and the spring 

index is relatively large.  

In the present study an accurate and effective buckling formula is offered to additionally 

consider the effects of all the stress resultants on the buckled state together with the axial and 
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shear deformation. The proposed formula may be freely and safely used in a wide range of the 

total number of active turns, the ratio of the free axial length to the mean helix diameter, and 

the spring index.   The verification of the present formula was performed with the reported 

experimental and theoretical buckling loads.  

 
Fig. 7 Effect of DLo /  ratios on the buckling loads 
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