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Abstract: Classical analysis methods are applied to show how flexural deflections due to shear strain in the 

flange pack produce bending moments and tensile loads on bolts within preloaded bolted joints. It was found that 

in joints made with long bolts these loads can be significant. The loads can cause yielding of the bolt, reducing 

bolt preload. The methods presented are adequate to demonstrate the structural integrity of joints made with long 

bolts or with a small footprint.  
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Nomenclature 

𝐴𝑏 Tensile area of each bolt 

𝐴𝑗 Total area of joint 

𝐴𝑠.𝑏 Shear area of each bolt 
 

𝑑𝑏 Nominal bolt diameter 

𝑑ℎ Bolt hole diameter 

𝐷𝑏 Effective diameter of bolt tensile area 

𝐷𝑛 Basic effective diameter of bolt thread (pitch diameter) 

𝐷𝑠 Minor diameter of bolt thread (root diameter) 
 

𝐸𝑏 Young’s Modulus of elasticity for bolt material 
 

𝐹𝑏(𝑛)
 Total axial bolt load on bolt ‘n’ 

𝐹𝑝 Preload in each bolt 

𝐹𝑠.𝑏(𝑛)
 Shear load on bolt ‘n’ 

𝐹𝑠.𝑏.𝑙𝑖𝑚(𝑛)
 Limiting shear load on bolt ‘n’ 

𝐹𝑡.𝑏(𝑛)
 Tensile load on bolt ‘n’ 

𝐹𝑥 External In-plane force acting in x-direction 

𝐹𝑦 External In-plane force acting in y-direction 

𝐹𝑧 External axial load in direction of ‘z’ axis 
 

𝐺𝑓 Shear Modulus for flange material 
 

𝐼𝑏 Second Moment of Area of the tensile area of each bolt 

𝐼𝑏
′  Second Moment of Area of the tensile area of a bolt 

𝐼𝑥𝑥.𝑗 Second Moment of Area of joint about ‘x’ axis 

𝐼𝑥𝑥.𝑗
′  Second Moment of Area transposed about x’-axis 

𝐼𝑥𝑦.𝑗 Product Moment of Area of joint 
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𝐼𝑦𝑦.𝑗 Second Moment of Area of joint about ‘y’ axis 
 

𝐽𝑧𝑧.𝑗 Polar Second Moment of Area of joint 
 

𝑘𝑗𝑝 Joint pack stiffness 
 

𝐿𝑓 Through flange thickness 

𝐿𝑔 Bolt grip length (including washers) 
 

𝑀𝑥 External moment acting about the ‘x’ axis 

𝑀𝑥
′  Resultant moment  

𝑀𝑦 External moment acting about the ‘y’ axis 

𝑀𝑧 External torsional moment acting on joint 
 

𝑇𝑝 Residual torque in each bolt 
 

𝑥(𝑛), 𝑥𝑠(𝑛)
 Coordinate of bolt ‘n’ 

 

𝑦(𝑛), 𝑦𝑠(𝑛)
 Coordinate of bolt ‘n’ 

𝑦(𝑛)
′  Transposed coordinate of bolt ‘n’ 

 

∝  Flank angle of thread (half the included angle) 
 

𝛿𝑏(𝑛)
 Displacement of bolt ‘n’ bolt head normal to bolt axis 

𝛿𝑧(𝑛)
 Bolt Extension 

 

𝜃  Angle of resultant moment 
 

𝜇𝑏 Friction coefficient under bolt head 

𝜇𝑡 Friction coefficient at thread flank 
 

𝜎𝑎.𝑏(𝑛)
 Axial stress in bolt ‘n’ 

𝜎𝑏(𝑛)
 Total tensile stress in bolt ‘n’ 

𝜎𝑏.𝑏 Bending stress component in each bolt 

𝜎𝑚𝑏(𝑛)
 Total bending stress in bolt ‘n’ 

𝜎𝑚𝑥(𝑛)
 Bending stress in bolt ‘n’ from moments about x-axis 

𝜎𝑚𝑦(𝑛)
 Bending stress in bolt ‘n’ from moments about y-axis  

𝜎𝑠.𝑏(𝑛)
 Bending stress component in bolt ‘n’ 

𝜎𝑉𝑀.𝑐(𝑛)
 Equivalent (Von Mises) stress at core of bolt ‘n’ 

𝜎𝑉𝑀.𝑟(𝑛)
 Equivalent (Von Mises) stress at thread root of bolt ‘n’ 

 

𝜏𝑏(𝑛)
 Shear stress in bolt ‘n’ 

𝜏𝑝 Residual shear stress in each bolt 

𝜏𝑥(𝑛)
 Shear stress at faying surface surrounding bolt ‘n’ from loads in x direction 

𝜏𝑥𝑦(𝑛)
 Shear stress at faying surface surrounding bolt ‘n’ 

𝜏𝑦(𝑛)
 Shear stress at faying surface surrounding bolt ‘n’ from loads in y direction  



Volume 68, No. 3, (2018) 2018 SjF STU Bratislava 185 

 

1 Introduction 

The detailed analysis of preloaded joints using classical theory of elasticity methods has 

been discussed in the paper “Classical Analysis of Preloaded Bolted Joint Load Distributions” 

[1].  This provided an understanding of how preloaded joints work and the interaction of the 

various components of the joint. Reference [1] considered the distribution of tensile loads on 

the bolts but did not go into depth on bolt bending. 

Bolts with a low bending resistance, such as long bolts with a grip length several times 

greater than the nominal bolt diameter, can be prone to self loosening under transvers load 

reversals. Even with nut locking there can be a relaxation in bolt preload. Section 3.2.4 of 

VDI 2230 Part 1, “Systematic calculation of high duty bolted joints with one cylindrical bolt” 

[2] suggests that there could be up to 20% reduction in bolt preload. 

The paper being presented here considers the classical analysis of bolt bending within 

preloaded bolted joints loaded with out-of-plane moments, in-plane loads and torsional 

moments. The effects these external loads have on bolt tensile stresses and their influence on 

bolt preload is discussed. 

2 Out-of-Plane Loads on the Joint 

Any external out-of-plane moments on the joint produces a stress gradient across the 

faying surface. The faying surface is the joints prepared contact face. This stress gradient 

produces a bending moment and bending stress component common to each of the bolts. The 

resulting bending stress component is given by: 

𝜎𝑏.𝑏 = ±
𝑀𝑥

𝐼𝑥𝑥.𝑗
∙

𝐷𝑏

2
 (1) 

It is common for the out-of-plane moment on a joint to be described by a pair of moments, 

𝑀𝑥 and 𝑀𝑦, acting about the principle axes of the joint, or another convenient pair of 

perpendicular axes. These moments and their resultant, 𝑀𝑥
′ , are illustrated in Figure (1). 

 
Fig. 1 Orientation of resultant moment. 
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Since the resultant moment acts about a different axis to those used to define the joint, an 

alternative coordinate system, aligned to the resultant moment, needs to be considered. The 

angle between the transposed coordinate system and the joint coordinate system is given by: 

𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛(𝑀𝑦 𝑀𝑥⁄ ) (2) 

If 𝑀𝑥 is negative then 180 degrees (𝜋 radians) needs to be added to the angle 𝜃 to ensure 

the direction of the resultant moment is in the correct ‘quadrant’. 

The resultant moment, 𝑀𝑥
′ , is given by: 

𝑀𝑥
′ = 𝑀𝑥 ∙ cos(𝜃) + 𝑀𝑦 ∙ sin(𝜃) (3) 

The Second Moment of Area about the x-axis transposed to the x’-axis is given by: 

𝐼𝑥𝑥.𝑗
′ = 𝐼𝑥𝑥.𝑗 ∙ 𝑐𝑜𝑠2(𝜃) + 𝐼𝑦𝑦.𝑗 ∙ 𝑠𝑖𝑛2(𝜃) − 𝐼𝑥𝑦.𝑗 ∙ sin(2𝜃) (4) 

Equations (2) to (4) follow the “right hand” rule, as illustrated in Figure (2). Loads are 

positive in the direction of the axes and positive moments act clockwise about the axes when 

viewed from the origin. 

 
Fig. 2 Right hand rule coordinates. 

 

When considering an out-of-plane moment that is not aligned with the joint x-axis the 

terms for 𝑀𝑥
′  and 𝐼𝑥𝑥.𝑗

′  given by equations (3) and (4) should be used in equation (1). 
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In most joints the bolt diameter is small compared to the overall size of the joint hence, the 

bending stress given by equation (1) is usually small compared to the bolt’s axial stress. 

However, for joints with a narrow footprint, such as a single bolt or a single line of bolts, the 

bolt diameter may be almost the same as the width/length of the faying surface and this bolt 

bending stress can be significant. 

3 In-Plane Loads on the Joint 

External in-plane loads and torsional moments on the joint are supported by two 

mechanisms, friction at the faying surface and bolt shear.  In some joints dowels, or other 

positive method of locating the joint, can assist these mechanisms. 

Figure (3a) illustrates the way external in-plane loads are reacted into the bolts. The shear 

stresses in the flanges produced by the external in-plane loads and moment result in 

deflections at the bolt head, relative to the nut, perpendicular to the bolt axis. The shear loads 

producing these deflections are transmitted by friction under the bolt head/nut. The through 

thickness stiffness of the flanges is significantly greater than the flexural stiffness of the bolts. 

Hence, it is assumed that there is no flexural rotation of the bolt head or nut. 

 
Fig. 3 Joint In-Plane loads reacted into a bolt. 

 

The friction loads under the bolt head/nut, 𝐹𝑠.𝑏(𝑛)
, are normal to the axis of the bolt and 

produce bending moments on the bolt at the head and nut and a shear load on the shanks of 

each bolt within the joint.  These shear loads exist even though the bolts do not bear on the 

sides of the holes in the flanges. 

It was shown in reference [1] that, assuming there is no joint slip at the faying surface, the 

mean shear stress at the region of faying surface surrounding each bolt is given by the 

following three equations. 
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𝜏𝑥(𝑛)
=

𝐹𝑥

𝐴𝑗
−

𝑀𝑧

𝐽𝑧𝑧.𝑗
∙ 𝑦𝑠(𝑛)

 (5) 

𝜏𝑦(𝑛)
=

𝐹𝑦

𝐴𝑗
+

𝑀𝑧

𝐽𝑧𝑧.𝑗
∙ 𝑥𝑠(𝑛)

 (6) 

𝜏𝑥𝑦(𝑛)
= √𝜏𝑥(𝑛)

2 + 𝜏𝑦(𝑛)
2  (7) 

Where 𝑥𝑠(𝑛)
 and 𝑦𝑠(𝑛)

 are the coordinates of the bolt holes, relative to the centroid of the 

joint. 

Again, Equations (5) to (7) follow the “right hand” rule, as illustrated in Figure (2). 

Equation (5) gives the shear stress component from loads acting in the x-direction. 

Similarly, equation (6) gives the shear stress component from loads acting in the y-direction. 

Equation (7) gives the resultant mean shear stress at the region/area of faying surface that 

surrounds the location of bolt ‘n’. This shear stress is carried across the faying surface by 

friction. 

In an Ideal joint, preloading the joint’s bolts induces a uniform compressive stress at the 

faying surface. In practice, the contact pressure will not be uniform across the surface. Each 

preloaded bolt influences an approximately circular region of the faying surface that 

surrounds it. 

The bolt bending stresses calculated from equations (1) to (4) are influenced by the section 

properties 𝐼𝑥𝑥.𝑗, 𝐼𝑦𝑦.𝑗 and 𝐼𝑥𝑦.𝑗. These section properties can be calculated assuming the 

contact surface consists of the circular regions described above. However, the shear loads on 

the bolts calculated by equations (5) to (7) are determined by the shear strains in the joint 

pack. These shear strains are influenced by the whole of the joint pack. Hence, the section 

properties 𝐴𝑗 and 𝐽𝑧𝑧.𝑗 should be calculated from the geometry of the full flange section. 

A method of calculating the area of the faying surface influenced by a bolt is presented in 

part 3, section 8.5 of Shigley’s Mechanical Engineering Design [3] and in section 5.1.2 of 

VDI 2230 Part 1 [2].   

Assume the transverse, normal to the bolt axis, flexural displacement of the bolt head 

arises from the shear strain across the thickness of the flanges. Then the displacement of bolt 

‘n’ is approximated by: 

𝛿𝑏(𝑛)
=

𝜏𝑥𝑦(𝑛)
∙ 𝐿𝑓

𝐺𝑓
 (8) 

The bolt head displacement calculated by equation (8) is relative to the nut, not absolute. 

The through flange thickness 𝐿𝑓 is the total flange thickness that carries the shear load. It 

does not include washers or packers under the bolt head or nut that do not directly react the 

external loads that produce in-plane shear in the flanges. 

The bolt, as illustrated in figure (3a), is treated as a beam. Assuming the effective beam is 

fixed at the nut and there is no rotation at the bolt head then the shear load on the bolt, acting 

perpendicular to the bolt shank, is given by: 
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𝐹𝑠.𝑏(𝑛)
=

12 ∙ 𝐸𝑏 ∙ 𝐼𝑏

𝐿𝑔
3 ∙

𝜏𝑥𝑦(𝑛)
∙ 𝐿𝑓

𝐺𝑓
 (9) 

The grip length 𝐿𝑔 is the total length of bolt between the contact faces of the bolt head and 

nut, including washers. It has been shown that the first internal thread supports a large 

proportion of the load and is subject to yielding [4]. Hence, an additional allowance of one 

bolt thread pitch can be added to the grip length to account for flexibility of the thread within 

the nut. 

The Second Moment of Area for the bolt thread tensile section has been used in equation 

(9). This is the case for bolts threaded for their full length. When the bolts have two or more 

cross-sectional elements, such as a plain shank and threaded section then a mean effective 

Second Moment of Area could be used. The mean effective Second Moment of Area is given 

by: 

𝐼𝑏
′ =

𝐿𝑔

∑
𝐿(𝑖)

𝐼(𝑖)
𝑖

  

Where, 𝐼(𝑖) and 𝐿(𝑖) are the Second Moment of Area and Length respectively of each cross-

sectional element of the bolt. 

The resulting shear stress in the bolt is given by: 

𝜏𝑏(𝑛)
=

𝐹𝑠.𝑏(𝑛)

𝐴𝑠.𝑏
 (10) 

The flexural stiffness of the bolts is considerably less than the torsional stiffness of the 

joint. Hence, shear stresses in the bolts are significantly less than the shear stress at the faying 

surface. 

The bending stress at each bolt’s thread root, at a location just under the nut, is given by: 

𝜎𝑠.𝑏(𝑛)
= ±

𝐹𝑠.𝑏(𝑛)
∙ 𝐿𝑔

2 ∙ 𝐼𝑏
∙

𝐷𝑏

2
 (11) 

3.1 Bending Induced Bolt Tension 

Figure (3b) illustrates how the flexural deflection of the bolt and the high through flange 

stiffness results in some axial extension of the bolt. The extended length of an element is: 

𝑑𝑠 = √𝑑𝑧2 + 𝑑𝑦2  

Which can be approximated as: 

𝑑𝑠 = 𝑑𝑧 +
1

2
∙ (

𝑑𝑦

𝑑𝑧
)

2

𝑑𝑧  

The extended bolt length is given by: 



190 2018 SjF STU Bratislava Volume 68, No. 3, (2018) 

 

𝐸𝑥𝑡𝑒𝑛𝑑𝑒𝑑 𝑙𝑒𝑛𝑔𝑡ℎ = 𝐿 + 𝛿𝑧 = ∫ 𝑑𝑠
𝐿

0

  

Hence: 

𝛿𝑧 =
1

2
∙ ∫ (

𝑑𝑦

𝑑𝑧
)

2𝐿

0

𝑑𝑧  

Solving this leads to: 

𝛿𝑧(𝑛)
=

𝐹𝑠.𝑏(𝑛)
2 ∙ 𝐿𝑔

5

240 ∙ (𝐸𝑏 ∙ 𝐼𝑏)2
 (12) 

Where the transverse force, 𝐹𝑠.𝑏(𝑛)
, is the shear force given by equation (9).  

This axial extension results in an axial load in addition to the bolt preload. This additional 

tensile bolt load component is given by: 

𝐹𝑡.𝑏(𝑛)
=

𝐹𝑠.𝑏(𝑛)
2 ∙ 𝐿𝑔

4 ∙ 𝐴𝑏

240 ∙ 𝐸𝑏 ∙ 𝐼𝑏
2  (13a) 

The additional tensile load given by equation (13a) is based on an infinitely stiff joint pack. 

Allowing for the stiffness of the joint pack the equation is rewritten as: 

𝐹𝑡.𝑏(𝑛)
=

𝐹𝑠.𝑏(𝑛)
2 ∙ 𝐿𝑔

4 ∙ 𝐴𝑏

240 ∙ 𝐸𝑏 ∙ 𝐼𝑏
2 ∙ (1 +

𝐴𝑏∙𝐸𝑏

𝑘𝑗𝑝∙𝐿𝑔
)
 (13b) 

Where 𝑘𝑗𝑝 is the through thickness stiffness of the joint pack under the bolt head. 

The joint pack contained within the grip length of a bolt can be considered as consisting of 

a number of elements. A typical joint would consist of four elements, a washer under the bolt 

head, two flanges and a washer under the nut. A joint made with a tapped, or threaded, 

component would typically consist of two elements, a washer under the bolt head and a single 

flange. These two examples are of the most common joint configurations but other joints 

could include additional flanges, packers and spacers. The overall stiffness of the joint pack is 

found by combining the stiffness’s of each element and can be estimated from: 

𝑘𝑗𝑝 =
1

∑
𝑡(𝑖)

𝐴(𝑖)∙𝐸(𝑖)
𝑖

  

Where, 𝑡(𝑖), 𝐴(𝑖) and 𝐸(𝑖) are the thickness, Area and Young’s Modulus of Elasticity 

respectively of each element of the joint pack. 

More refined methods of calculating the joint pack stiffness are suggested in both section 

5.1.2 of reference [2] and part 3, section 8.5 of reference [3]. 

Neglecting the effects of the joint pack stiffness will results in a slightly conservative 

(high) tensile load component. 
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4 Combined Bending 

The bending stresses 𝜎𝑏.𝑏(𝑛)
 and 𝜎𝑠.𝑏(𝑛)

 are from moments acting about different axes. The 

vector addition of the two stress components is performed by the following equations: 

𝜎𝑚𝑥(𝑛)
= 𝜎𝑏.𝑏 ∙ sin(𝜃) − 𝜎𝑠.𝑏(𝑛)

∙
𝜏𝑦(𝑛)

𝜏𝑥𝑦(𝑛)

 (14) 

𝜎𝑚𝑦(𝑛)
= 𝜎𝑏.𝑏 ∙ cos(𝜃) + 𝜎𝑠.𝑏(𝑛)

∙
𝜏𝑥(𝑛)

𝜏𝑥𝑦(𝑛)

 (15) 

𝜎𝑚𝑏(𝑛)
= √𝜎𝑚𝑥(𝑛)

2 + 𝜎𝑚𝑦(𝑛)
2  (16) 

Equation (14) gives the bending stress component about the x-axis. Equation (15) gives the 

bending stress component about the y-axis. Equation (16) gives the resultant bending stress 

component in the bolt.  

4.1 Total Bolt Load 

Reference [1] shows that the bolt axial stresses resulting from the combined loading of the 

preload, external axial load and external out-of-plane moment are given by: 

𝜎𝑎.𝑏(𝑛)
=

𝐹𝑝

𝐴𝑏
+

𝐹𝑧

𝐴𝑗
+

𝑀𝑥

𝐼𝑥𝑥.𝑗
∙ 𝑦(𝑛) (17) 

When considering an out-of-plane moment that is not aligned with the joint x-axis the 

terms for 𝑀𝑥 and 𝐼𝑥𝑥.𝑗 in equation (17) should be replaced with 𝑀𝑥
′  and 𝐼𝑥𝑥.𝑗

′  as given by 

equations (3) and (4) and the term for 𝑦(𝑛) should be replaced by: 

𝑦(𝑛)
′ = 𝑦(𝑛) ∙ cos(𝜃) − 𝑥(𝑛) ∙ sin(𝜃) (18) 

Where 𝑥(𝑛) and 𝑦(𝑛) are the coordinates of bolt ‘n’ defined with respect to the centroid of 

the bolt group. 

The total axial load on each bolt is given by: 

𝐹𝑏(𝑛)
= 𝜎𝑎.𝑏(𝑛)

∙ 𝐴𝑏 + 𝐹𝑡.𝑏(𝑛)
 (19) 

The total bolt stress, including the bending stresses, is given by: 

𝜎𝑏(𝑛)
=

𝐹𝑏(𝑛)

𝐴𝑏
± 𝜎𝑚𝑏(𝑛)

 (20) 

The localised increase in bolt stress, above the preload stress, may cause plastic 

deformation in the bolt thread that could result in some relaxation of the bolt preload. 

4.2 Bolt Limit of Proportionality 

The increase in bolt tension and bending stresses due to the external loads could produce 

some plastic deformation that could lead to relaxation of the bolt preload. The Von Mises 

yield criterion can be applied to both the core and thread root of the bolt.  
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In addition to the stresses produced by the external loads each bolt will also have residual 

stresses from the axial preload and from some residual bolt tightening torque being locked in 

the bolt shank. Appendix B of BS 3580:1964 “Guide to the design considerations on: The 

strength of screw threads” [5] describes the bolt torque-tension relationships. From these 

relationships it is concluded that the residual torque in each bolt is: 

𝑇𝑝 = 𝐹𝑝 ∙
𝐷𝑛

2
∙

𝜇𝑡

cos (𝛼)
 (21) 

The residual shear stress is given by: 

𝜏𝑝 =
16 ∙ 𝑇𝑝

𝜋 ∙ 𝐷𝑠
3 (22) 

The Von Mises, or equivalent, stress in the bolt is given by the following two equations. 

𝜎𝑉𝑀.𝑐(𝑛)
= √(

𝐹𝑏(𝑛)

𝐴𝑏
)

2

+ 3 ∙ (1.5 ∙ 𝜏𝑏(𝑛)
+ 𝜏𝑝)

2

 (23a) 

𝜎𝑉𝑀.𝑟(𝑛)
= √𝜎𝑏(𝑛)

2 + 3 ∙ (𝜏𝑏(𝑛)
2 + 𝜏𝑝

2) (23b) 

Equation (23a) gives the Von Mises stress at the core of bolt ‘n’. The peak shear stress, at 

the centre of the bolt section, will be 1.5 times the mean shear stress. 

Equation (23b) gives the Von Mises stress at the thread root. For this equation it has been 

assumed that some bolt shear stress will exist in the bolt thread root local to the nut, along 

with the residual shear stress.  

5 Joint Slippage 

In the previous sections it has been assumed that there is no joint slippage. This will be the 

case if dowels have been used to assist in carrying the in-plane loads by “pegging” the joint. 

However, if joint is not doweled then dynamic or impact loads may induce some joint slip. 

Joint slippage is most likely to occur at the bolts where external out-of-plane loads and 

moments reduce the contact pressure at the faying surface. In doweled joints any slippage 

would take the form of localised slip as the shear stress at the faying surface is relaxed. In 

none doweled joints the slip could be more significant. 

5.1 Slip Limited by Displacement 

If the joint is not dowelled, the maximum flexural deflection of the bolt head relative to the 

nut is limited by the bolt and hole diameters. The bolt shear load due to transverse deflection 

of the bolt head is given by: 

𝐹𝑠.𝑏.𝑙𝑖𝑚 =
12 ∙ 𝐸𝑏 ∙ 𝐼𝑏

𝐿𝑔
3 ∙ (

𝑑ℎ − 𝑑𝑏

2
) (24a) 

In deriving equation (24a) it is assumed that the bolt and hole axes are aligned prior to slip 

occurring. Under extreme geometric tolerance stack up of the joint assembly the bolt shear 

load, 𝐹𝑠.𝑏.𝑙𝑖𝑚, could potentially be doubled. 
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The limiting shear load, 𝐹𝑠.𝑏.𝑙𝑖𝑚(𝑛), calculated by equation (24a) can be used in equations 

(10) and (11) in place of the shear load, 𝐹𝑠.𝑏(𝑛)
, given by equation (9). 

5.2 Slip Limited by Friction 

In an extreme case slippage may occur between the bolt head or nut and the washer/flange. 

In this instance the load perpendicular to the bolt shank will be limited by friction under the 

bolt head or nut. It was shown in reference [1] that external loads and moments are supported 

mainly by a reduction in contact pressure at the faying surface, with only a small proportion 

of the external loads producing changes in the bolt tensile stresses. Hence, it is assumed that 

the limiting bolt shear load for an extreme case is given by: 

𝐹𝑠.𝑏.𝑙𝑖𝑚 = 𝜇𝑏 ∙ 𝐹𝑝 (24b) 

Where 𝜇𝑏 is the friction coefficient under the bolt head or nut. 

Soon after the installation of the bolt the friction coefficient 𝜇𝑏 will be that produced by 

any lubricant used during assembly. However, the value of the friction coefficient may change 

with the age, environment and history of the joint. 

Again, the limiting shear load, 𝐹𝑠.𝑏.𝑙𝑖𝑚(𝑛)
, calculated by (24b) can be used in equations (10) 

and (11) in place of the shear load, 𝐹𝑠.𝑏(𝑛)
, given by equation (9). 

CONCLUSION 

External out-of-plane moments produce a stress gradient across the faying surface. This 

results in a bending stress component on each of the bolts, common to all of the joint’s bolts. 

In joints with narrow footprints, such as a single bolt or a single line of bolts, the stress 

gradient and resulting bending stress can become significant. 

The transvers flexural displacement of the bolt head produces a tensile load component in 

the bolt in addition to the existing preload. The total tensile load in the bolt may cause the 

limit of proportionality for the bolt material to be exceeded. This could lead to permanent set 

in the bolt, causing a relaxation of the bolt preload. This is a significant problem in joint 

assemblies incorporating long bolts. 

The low flexural stiffness of a long bolt assembly means that, if the joint is not dowelled, 

the joint is more prone to slippage than one made using short bolts. 

The bolt bending analysis discussed is suitable for calculating stresses for use in a fatigue 

analysis. In which case, stress concentration factors may also need to be applied to the 

calculated bolt stresses.  
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