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Abstract: The buckling analysis of carbon nanotubes without and with hetero-junctions is described in this paper. 

The buckling behaviour was investigated by the finite element method and the carbon nanotubes were modelled 

as space frame structures. The results showed that the critical buckling force depends on the dimensions of carbon 

nanotubes. The critical buckling forces of hetero-junction carbon nanotubes are in range between critical buckling 

forces of carbon nanotubes of both used diameters with the same chiralities without hetero-junction. 
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1 Introduction 

The carbon nanotubes were discovered by Iijima in 1991 [1]. From the discovery of 

nanostructures, their mechanical, thermal and electrical properties have been widely studied [1-

12]. The buckling behaviour of carbon nanotubes is often studied because of their relative 

dimensions – the nanotubes are relatively long with respect to their diameters and they have 

small wall thickness. On the buckling behaviour have effect dimension but also vacancies in 

the structure, boundary conditions and connection of carbon nanotubes. The buckling behaviour 

of nanotubes was studied in papers [2-4]. 

In this paper the buckling analysis of single-walled carbon nanotubes without and with 

hetero-junctions is described. The carbon nanotubes with two chiralities (armchair and zigzag) 

are modelled using finite element method. All degrees of freedoms of movement are 

constrained on the one end of nanotube and axial loading is applied to the second end. The 

computed critical buckling forces are represented in graphs. 

2 Modelling of carbon nanotubes 

The carbon nanotubes are modelled using the beam elements. The input properties are 

obtained by making connection between molecular mechanics and continuum mechanics. In 

the molecular mechanics we know interatomic interactions (Fig. 1) as bond stretching, bond 

angle variation, dihedral angle torsion and out of plane torsion. In the continuum mechanics 

these interactions can be represented by the beam elements loaded by pure tension, bending and 

torsion. This connection can be expressed through relations 
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𝑈𝜏 = 𝑈𝜙 + 𝑈𝜃 =
1

2
𝑘𝜏(Δ𝜙)2, (3) 

where 𝑘𝑟 , 𝑘𝜃, 𝑘𝜏, Δ𝑟, Δ𝜃, Δ𝜙 are the bond stretching force constant, bond angle bending force 

constant, torsional resistance, the bond stretching increment, the bond angle variation and the 

angle variation of bond twisting, respectively [5-7]. 

 
Fig. 1 Interatomic interactions between carbon atoms 

The elastic moduli of beam elements are evaluated from mechanical considerations - 

relations between the sectional stiffness parameters in structural mechanics and the force 

constants in molecular mechanics. In case the sections of beams representing carbon-carbon 

bonds are assumed to be identical and circular, the moments of inertia are 𝐼𝑥 = 𝐼𝑦 = 𝐼. Three 

stiffness parameters 𝐸𝐴, 𝐸𝐼 and 𝐺𝐽 are obtained from this assumption and from linkage among 

the energy terms in molecular mechanics and continuum mechanics. It is possible to write 

relations 
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where 𝑈𝐴 is the strain energy of a uniform beam of length 𝐿 subjected to axial force 𝑁, Δ𝐿 is 

axial elongation, 𝑈𝑀 is the strain energy of a uniform beam under bending moment 𝑀, 𝛼 is the 

rotational angle at the ends of the beam, 𝑈𝑇 is the strain energy of a uniform beam under tension 

𝑇 and Δ𝛽 is the relative rotation between the ends of the beam [8,9]. 

Comparison of equations (1)-(3) and (4)-(6) leads to equations 
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On the basis of these equations a beam element (Fig. 2) is created and its elastic properties 

for further computations are 
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Fig. 2 The dimensions of carbon hexagon made from beam elements 

where constants 𝑘𝑟 , 𝑘𝜃, 𝑘𝜏, L are 𝑘𝑟 = 6.52 × 10−7 N nm−1, 𝑘𝜃 = 8.76 × 10−10 N nm rad−1, 
𝑘𝜏 = 2.78 × 10−7 N nm rad−2 and 𝐿 = 𝑎𝐶−𝐶 = 0.1421 nm [10]. 

From the equations (8) the diameter 𝑑 = 0.147 nm, elastic modulus 𝐸 = 5.4875 TPa and 

shear modulus 𝐺 = 0.871 TPa can be computed and used for modelling the beam elements. 

3 Buckling of hetero-junction carbon nanotubes 

The buckling analysis is performed for carbon nanotubes without and with hetero-junctions. 

The armchair (n, n) and zigzag (n, 0) chirality is used for modelling carbon nanotubes. The 

length of the carbon nanotubes varies from 3 nm to 48 nm. The used chiralities and diameters 

of carbon nanotubes are given in Table 1. The hetero-junction carbon nanotubes are made as 

the connection of the two carbon nanotubes (Fig. 3) with the same chirality and with the 

different diameter (Table 2). 

Diameter of carbon nanotubes is computed from relation 

𝐷 =
𝑎0

𝜋
√𝑛2+𝑚2 + 𝑛𝑚, (9) 

where 𝑎0 = 0.246 nm. 

 

Tab. 1 Chiralities and diameters of modelled carbon nanotubes 

Chirality (n,m) (6, 0) (8, 0) (10, 0) (4, 4) (5, 5) (6, 6) 

Diameter (nm) 0.4701 0.6268 0.7834 0.5428 0.6785 0.8142 
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Tab. 2 Modelled hetero-junctions of carbon nanotubes 

Chirality (n,m) (6, 0)-(8, 0) (6, 0)-(10, 0) (8, 0)-(10, 0) 

Diameter (nm) 0.4701-0.6268 0.4701-0.7834 0.6268-0.7834 

Chirality (n,m) (4, 4)-(5, 5) (4, 4)-(6, 6) (5, 5)-(6, 6) 

Diameter (nm) 0.5428-0.6785 0.5428-0.8142 0.6785-0.8142 

 
Fig. 3 Carbon nanotube a) with zigzag chirality (6,0), b) with zigzag chirality (10,0) and 

c) hetero-junction with zigzag chirality (6,0)-(10,0)   

The carbon nanotubes are modelled using beam elements with six degrees of freedom at the 

node, with material properties and length mentioned above. The beam elements represent the 

interatomic interactions and the nodes represent the carbon atoms. The finite element analysis 

is performed for nanotubes fixed on the one end (end with bigger diameter for the hetero-

junction carbon nanotubes) and the second one is loaded by axial force. The critical buckling 

forces for the all carbon nanotubes are computed by the finite element method. The all 

computed results are shown in Figs. 4-9. From these figures is clear that the critical buckling 

forces of nanotubes depend on the diameter and length. The magnitudes of critical buckling 

forces for hetero-junction carbon nanotubes intervene between magnitudes of critical buckling 

forces of carbon nanotubes with the same chirality as both ends of these tubes.  

4 CONCLUSION 

In this work, a finite element method was used for modelling and simulation of the buckling 

behaviour of carbon nanotubes. The carbon nanotubes were modelled as space frame structures, 

where the interatomic interactions were represented by the beam elements and the carbon atoms 

were represented by the nodes of beam elements. The input properties for beam elements were 

obtained by creating a connection between molecular and continuum mechanics. The two types 

of carbon nanotubes were modelled: carbon nanotubes with and without hetero-junction. For 

the complexity, the carbon nanotubes with armchair and zigzag chirality were modelled too, 

but the effect of chirality on the buckling behaviour is negligible from the point of view of 

prevailing dimensions (diameter and length) of nanotube. The boundary nodes of the one end 

of nanotube were constrained and the ones on the second end were loaded by axial force. The 

critical buckling forces were obtained by the finite element method and results were represented 

in graphs. The critical buckling forces for hetero-junction carbon nanotubes lie between critical 

buckling forces of carbon nanotubes with the same chirality of both ends of these tubes. 

 

a) b)

c)
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Fig. 4 Critical buckling forces for zigzag carbon nanotubes 

 
Fig. 5 Critical buckling forces for zigzag carbon nanotubes 
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Fig. 6 Critical buckling forces for zigzag carbon nanotubes 

 
Fig. 7 Critical buckling forces for armchair carbon nanotubes 
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Fig. 8 Critical buckling forces for armchair carbon nanotubes 

 
Fig. 9 Critical buckling forces for armchair carbon nanotubes 
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