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Abstract: The paper deals with static balancing of various kinds of mechanisms and manipulation devices using 

spring balancing mechanisms. In case of parallelogram robots and manipulation mechanisms a spring balancing 

mechanism exerting a constant force is used. Problems of static balancing of variable payloads are also presented 

and investigated in the paper. Static balancing is formulated as an optimization problem with the objective 

function expressing minimization of the forces acting in the driving joints. As design variables geometrical 

variables and spring stiffnesses and their unloaded lengths are used. Optimization Toolbox for Use with Matlab 

and GOOD (Generator Of Optimal Designs) are used to solve the static balancing problems. The optimized 

mechanisms are evaluated by using multibody dynamics programs taking into account friction effects in 

mechanism joints. The results of static balancing optimization show essential reduction of the gravity load in 

drive joints and consequently driving forces with important energy savings. 
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1 Introduction 

The powered joints of robot mechanisms and manipulation devices are loaded by the 

gravity forces caused by the masses of the mechanism links and by mass of the payload. The 

masses of the mechanism links are often 10‒15 times as large as the mass of the payload. 

The balancing mechanisms should produce forces which make it possible to eliminate or at 

least substantially reduce the static gravity forces in the drive joints [1]. In this way also 

driving forces in the drive joints are substantially reduced. Two basic ways of static balancing 

exist in practice – static balancing by spring mechanisms and balancing by additional masses 

using counter-weights. Combination of these two ways is also possible and used. In some 

cases redistribution of links masses is possible. The balancing by spring mechanisms takes 

advantage of negligible changing the mass and inertia parameters of the balanced 

mechanisms.  

Correctly formulated objective functions and appropriate choice of design (optimization) 

variables are of great importance for achieving good results [2, 8, 9]. Numerical optimization 

will be carried out by Optimization Toolbox for Use with Matlab [3] and optimization 

program GOOD [4]. It is possible to speed up numerical computation using the computer 

program Maple [5] for symbolic computation.  

Evaluation of the optimally balanced mechanisms will be carried out by multibody 

dynamics programs SPACAR (Developed at TU Delft) and Working Model 2D [6]. Using 

other comercially available programs is also possible.   
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2 Static balancing of parallelogram robot mechanisms with spring mechanisms 

exerting constant force  

Parallelogram robot mechanisms have a special property. It is possible to find a point at 

which a force of constant magnitude can ideally balance the mechanism in its arbitrary 

position, Figs. 1 and 2. In [1] a special spring mechanism able to exert a force of the required 

constant magnitude and direction is presented, Fig. 3. 

 

Fig. 1 Robot with parallelogram mechanism 

 

 

Fig. 2 Kinematic scheme of the robot with parallelogram mechanism 
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Fig. 3 Spring mechanism exerting constant force 

For static balancing of the three transport degrees of freedom only two have to be balanced 

– q2 and q3, Fig. 1. The rotation about the vertical axis (q1) is balanced supposing that the 

robot is in vertical position. Balancing of three orientation degrees of freedom (q4, q5, q6) can 

usually be neglected. Equilibrium of static moments about point O is  
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where F is the vertical balancing force at point K, Fig. 2. 

Eq. (1) can be split into two equations by comparing terms multiplied by 1cos  and 

 1 2cos    

               AZAZTWZT 6885755 Fmmlmmg   (2) 

and 

               AKZWATDT 8667 F=mmmg 7         (3) 

From eq. (2) the force for balancing the robot in arbitrary position determined by the 

coordinates 2  and 3 can be derived 
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Substituting F into eq. (3) the position of point K can be determined 
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In the case of ideal spring balancing mechanism with massless link 9, Fig. 3, it would be 

able to exert the force F needed for balancing the robot mechanism, eq. 4. If the mass of the 

link 9 is taken into account, then the force exerted by the spring balancing mechanism can be 

derived from the moment equilibrium condition of the link 9 about point L in the form 
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2.1 Formulation of the optimization problem and results  

Minimization of the static loading in the transport degrees of freedom 2  and 3  can be 

formulated by the objective function in the form 

              2
op

1

1
i

N

i

f F F
N 

   (7) 

which expresses minimization of the difference  F F   at N points of the rectangular grid in 

the rectangle E1E2 E3E4 in which the robot gripper M can move, Fig. 2.  

As design variables were chosen: k ‒ the spring stiffness, l0 ‒ the length of the unloaded 

spring, l9 ‒ the length of the link 9 and geometrical dimensions a, b, c, d and e. The length lL 

of the rope HNEP, Fig. 3, is considered as so called computed variable for which the 

following condition holds 

               HNEPNE maxL l  (8) 

where the distance HN  is a specified variable (reserve). This condition does not allow the end 

point of the spring H to run over the puley in any position of the spring balancing mechanism.  

Optimization was performed for the following specified variables: m5 = 57 kg, m6 = 57 kg, 

m7 = 57 kg, m8 = 57 kg, m9 = 57 kg, mM = 10 kg (payload), l5 = 1.098 m, l6 = 0.18 m, l7 = 1.098 

m, l8 = 0.918 m, 5ZT = 0.5 m, 8WT = 0.638 m, 8CT = 0.458 m, AO = 0.18 m, 6AT = 0.09 m, h 

= 0.05 m.  

Using Optimization Toolbox for Use with Matlab the following optimal values of the 

design variables were obtained: kopt = 18929.02 N/m, l0,opt  = 0.07 m, aopt = 0.3031 m, bopt = 

0.4268 m, Ropt  = 0.0604 m, dopt  = 0.0477 m, copt  = 0.0102 m, eopt  = 0.3626 m, l9,opt  = 0.3393 

m. 

Verification of the optimization results was carried out by computation of the balancing 

force at point C of the robot mechanism, Fig. 2. The average value of the balancing force is 

FC,av = 0.04 N. 

Tab. 1 shows that different payloads deteriorate optimization results significantly 

(optimization was performed for 10 kg payload).  

Tab. 1: Average balancing force FC,av for varying payloads 

Payload [kg] FC,av [N] 

0 474.59 

2 371.09 

4 272.52 

6 200.97 

8 87.24 

10 0.04 

12 83.36 

14 163.45 

Balancing different payloads can be improved by determining new optimum values of the 

parameter determining position of point K ( AK ), at which the balancing force F is acting, 

and by chosing an appropriate design variable (from the design point of view) and its 

reoptimization. As an appropriate design variable the parameter b was chosen. The other 

design variables remain unchanged. Tab. 2 shows the results. 
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Tab. 2: Optimum values of AK  and b 

 

 

 

 

 

 

 

Tab. 3 presents the average balancing forces FC,av for unbalanced robot with different 

payloads. These forces are too high which would negatively influence drive power and its 

frame size and also control accuracy.  

Tab. 3: Average balancing force FC,av of unbalanced robot 

 

 

 

 

 

 

 

Computer simulations performed by multibody dynamics program Working Model 2D, 

Fig. 4, made possible evaluation of friction in mechanism joints A, B, C, D and O, Fig. 2. The 

friction moments are 

             rLM
kf

=  (9) 

where 
k

 is the coefficient of kinetic friction, L is the joint load and r is the shaft radius. 

 

Fig. 4 Computer simulation of the robot mechanism in Working Model 2D 

Figs. 5 and 6 present balancing forces FCx and FCy for very slow motion along the vertical 

in the working space of the robot (0.3 m to the right from the line E1E4, Fig. 2).The figures 

show that friction does not significantly influence the results of static balancing optimization. 

Payload [kg] AK [m] bopt  [m] fop  [N] 

0 0.0167 0.4034 2.57 

2 0.0194 0.4082 2.12 

4 0.0221 0.4129 1.64 

6 0.0241 0.4173 1.07 

8 0.0271 0.4222 0.58 

10 0.0296 0.4268 0.005 

12 0.0319 0.4314 0.63 

14 0.0342 0.4359 1.29 

Payload [kg] FC,av  [N] 

0 2645.98 

2 2682.46 

4 2735.65 

6 2770.56 

8 2829.14 

10 2876.42 

12 2923.49 

14 2970.24 
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The simulations were performed for four different kinetic friction coefficients (
k

 = 0 for 

case A, 
k

 = 0.001 for case B, 
k

 = 0.002 for case C, 
k

 = 0.003 for case D). 

 

Fig. 5 Balancing force FCx 

 

Fig. 6 Balancing force FCy 

3 Static balancing of robot mechanisms with two spring balancing mechanisms  

For static balancing of of the transport degrees of freedom 2  and 3  of the robot 

mechanisms in Figs. 1 and 7 two spring mechanisms presented in Figs. 8 and 9 can be used 

[7]. 

 

Fig. 7 Scheme of the robot mechanism 
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The spring balancing mechanism in Fig. 8 is exerting the balancing force and this force is 

transmitted by means of two pullyes and a belt onto the link 7 (horizontal arm).  

 

Fig. 8 Static balance of the link 7 

Another spring balancing mechanism, Fig. 9, is exerting balancing force acting on the 

vertical arm 5. 

 

Fig. 9 Static balance of the links 5 and 7 together 

From the static equilibrium conditions of the robot mechanism links in Fig. 7 the 

equilibrium conditions for 6 unknowns can be derived in the form 
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where: cv =  1 2cos   , sv =  1 2sin   , sf1 = 1sin , cf1 = 1cos , sf2 = 2sin  q = 6AT , p 

= 5ZT  and 
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The balancing forces Fx and Fy acting at point C, Fig. 7, are determined using Maple in the 

form 
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The following parameters were chosen as design variables (see Figs. 8 and 9): k1 ‒ the 

spring stiffness, l01 ‒  the length of the unloaded spring k1, e1, lx1, lx2 ‒ position of the 

rotational-translational joint V1, 10 ‒ the angle determining the position of point T, k2, l02, e2, 

ly1, ly2 ‒ variables analogical to the variables for the first spring mechanism, 20  ‒ the angle 

determining the position of point T for 1 2.   

The objective function expressing the average balancing force at point C, Fig. 7, can be 

defined in the form 

             op
2 2

1

1 N

xi yi
i

f F F
N 

   (14) 

where xiF  and yiF  are components of the resultant balancing force at point C which are 

computed at points of an rectangular grid of the rectangle F1F2F3F4 in which point C can 

move (motion of point C corresponds to motion of the gripper M in the robot working space 

E1E2E3E4, Fig. 7). 

For the specified mass and geometric variables, given in section 2.1, the output of the 

optimization program GOOD is: fop = 3.15 N.  The balancing force at point C is presented in 

Fig. 10 at the points of the rectangular grid in the rectangle F1F2F3F4 determined by the 

coordinates x and y, Fig. 7. 

The average value of the balancing force at point C was verified by the multibody 

dynamics program SPACAR for the optimum values of the design variables. The average 

value was found to be 3.46 N. 
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Fig. 10 Balancing force as function of position of point C 

4 Balancing of bed upright positioning  

In health care various mechanisms are used for positioning patients in medical 

investigations and procedures. 

In this section optimization of statical balancing of an verticalization bed equipped with a 

spring balancing mechanism will be described. 

Mechanical model of the verticalization is presented in Fig. 11.  

The spring balancing mechanism consists of the spring rod 3, spring 5 and rotational-

translational joint C. The balancing force exerted by this balancing mechanism is acting on 

the bed in joint B. 

 

Fig. 11 Mechanical model of the verticalization bed 

Static equilibrium conditions of the spring rod 3 and bed 2, Figs. 12 and 13, enable us to 

determine the fictitious force F needed to balance the mechanism at a position determined by 

the angle .  
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Fig. 12 Free-body diagram of the bed 2 

 

Fig. 13 Free-body diagram of the spring rod 

The fictitious force F is used to formulate the objective function 

             op
2

1

1 N

i
i

f F
N 

   (15) 

where N is the number of positions 0 , 90i     in which the force F is evaluated. 

As optimization variables the following variables were chosen: k ‒ the spring stiffness, l0 ‒  

the length of the unloaded spring k1, l3 ‒ the length of the spring rod 3, lAB and lAC ‒ distances 

of joints AB  and AC.  

The following variables are specified (see Figs. 12 and 13): l2 = 1.8 m, l2P = 1.1 m and v2P 

= 1.8 m determine the mass center of the patient, l2K = 0.85 m and v2K = 0.035 m determine 

the mass center of the bed 2, mP = 80 kg (mass of the patient), mK = 37.5 kg (mass of the bed). 

Using Optimization Toolbox for Use with Matlab the following optimal values of the of 

the design variables were found: kopt = 44987,56 N/m; l0,opt = 0,1210 m; l3,opt = 1,0877 m; 

lAB,opt = 0,45 m; lAC,opt = 0,06 m. The value of the objective function is fop = 24.75 N.   

Fig. 14 shows dependence of the fictitious force F on the angle   determining position of 

the bed for several different masses of the patient 

 

l2

P 
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Fig. 14 Fictitious balancing force FV 

Tab. 4 shows the values of the objective function fop with and without additional 

optimization where the only optimization variable lAC was chosen. The results show 

significant improvement of the statical balancing. 

Tab. 4: Objective function value with and without additional optimization 

Patient mass 

mP [kg] 

Optimum 

value of  

lAC [m] 

Objective function 

with additional 

optimization fop[N] 

Objective function 

without additional 

optimization fop [N] 

40 0,0358 9,65 151,12 

60 0,0473 16,23 75,0 

80 0,06 24,75 24,75 

100 0,0722 34,94 77,25 

120 0,0857 47,29 153,37 

Fig. 15 presents dependence of the fictitious balancing force F on the angle   for several 

different masses of the patient after additional optimization. 

 

Fig. 15 Fictitious balancing force F after additional optimization 
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4 Hydraulic scissor lift  

Fig. 16 shows mechanical model of an hydraulic double scissor lift. For energy saving a 

spring balancing mechanism is used which makes possible adjusting for different loadings. 

The mechanical model consists of arms 2 to 5, a table 6, rotational joints A, C, D, E, F, G and 

rotational-translational joints B and H. The table is loaded with gravitational force GZ. 

Gravitational forces of all arms 2 to 5 acting at their centroids are also taken into account. 

Friction at all joints is not considered. 

 

Fig. 16 Mechanical model of the hydraulic double scissor lift 

The balancing mechanism consists of the puley 7, spring of constant stiffness k and 

unloaded length l0 and the rope MT. 

Equations of static equilibrium in the matrix form are 

             Ax b  (16) 

The vector of unknowns x includes not only reactions in joints but also the balancing force 

F, Fig. 16, exerted by an hydraulic drive placed horizontally between point B and the frame 1.  

The objective function can be written in the form 

             op
2

1

1 N

i
i

f F
N 

   (17) 

expressing minimization of the average balancing force F for min max, .    

As design variables are considered: k ‒ the spring stiffness, l0 ‒  the length of the unloaded 

spring and a, b and c are geometrical parameters, Fig. 16. The length of the rope MT is 

considered as an computed variable and in this way preventing the rope from winding over 

the puley. 

The specified parameters are: m2 = m3 = m4 = m5 = 33 kg, m6 = 108 kg, mZ = 180 kg (two 

persons on the table 6), l = 2.2 m, r = 0.04 m (puley radius), d = 2.4 m, min = 7º, max = 45º.  
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The value of the objective function after optimization is fop = 5.13 N.  Fig. 17 shows the 

balancing force F in the specified motion interval min max, .    

 

Fig. 17 Balancing force F for mZ = 160 kg 

 

Additional optimization for the changed loading mZ = 80 kg was performed for one chosen 

design variable e. Its optimum value is eopt = 0.151 m (after the first optimization was e = 

0.172 m). The other design variables remain unchanged. 

 

Fig. 18 Balancing force F for mZ = 80 kg 

5 CONCLUSION 

The paper shows that the problem of static balancing of robot mechanisms and 

manipulation devices with spring balancing mechanisms can be formulated as an optimization 

problem. For its numerical solution various optimization programs can be used.  

Balancing forces can be derived with the aid of a Computer Algebra System (e.g. Maple) 

in a symbolic form leading to faster computations. 
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The optimized mechanisms can be evaluated with multibody dynamics programs with a 

possibility to compute various kinematic and force variables taking into account real designs 

of mechanism links. 

The spring balancing mechanisms usually offer a simple possibility to adjust one chosen 

design variable and reoptimize its value for different loadings of the mechanism while the 

other design variables remain unchanged. 
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