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Abstract: In this paper, results of numerical simulations and measurements are presented concerning the non-

uniform torsion and bending of an angled members of hollow cross-section. In numerical simulation, our linear-

elastic 3D Timoshenko warping beam finite element is used, which allows consideration of non-uniform torsion. 

The finite element is suitable for analysis of spatial structures consisting of beams with constant open and closed 

cross-sections. The effect of the secondary torsional moment and of the shear forces on the deformation is included 

in the local finite beam element stiffness matrix. The warping part of the first derivative of the twist angle due to 

bimoment is considered as an additional degree of freedom at the nodes of the finite elements. Standard beam, 

shell and solid finite elements are also used in the comparative stress and deformation simulations. Results of the 

numerical experiments are discussed, compared, and evaluated. Measurements are performed for confirmation of 

the calculated results.  

KEYWORDS: Non-uniform torsion, Angled frame, Hollow rectangular cross-section, Measurements and 

numerical calculations 

 

1 Introduction 

The effect of non-uniform torsion must be considered in the structural elastostatic and 

elastodynamic analyses of straight and curved thin-walled beams with both open and closed 

cross-sections. The maximum normal stress due to the bimoment occurs at the points action of 

the external torques (except for a free end of the beam) and at the cross-sections of restrained 

warping (e.g. clamped cross-sections). Special theories of torsion with warping, usually referred 

to as non-uniform torsion or warping torsion, were used to solve such problems analytically 

(e.g. [1]). The analogy between the 2nd-order beam theory with axial tension and torsion 

including warping has also often been exploited (e.g. [2], [3]). However, it is worth of note that 

in the literature and in engineering practice, as well as in the guidelines provided by Eurocode 

3 [4], the significance of the effect of warping is assumed to be restricted to open cross-sections. 

Warping-based stresses and deformations in closed cross-sections are assumed to be 

insignificant and have, therefore, generally been neglected.  

According to the aforementioned theory of torsion of open cross-sections including warping 

and according to the mentioned analogy, special finite beam elements were designed and 

implemented into finite element codes (e.g. [5], [6]). The warping effect was included through 

an additional degree of freedom at each nodal point in form of the first derivative of the angle 

of twist of the cross-section of the beam.  Comprehensive overview of the literature dealing 

with the issue of a non-uniform torsion in elastostatics and elastodynamics of thin-walled beams 
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can be found in the articles [7, 8], for example. The actual research results show that for non-

uniform torsion of beams with closed cross-sections the impact of the Secondary Torsion 

Moment Deformation Effect (STMDE) is especially significant [3, 9]. It is also shown [10, 11], 

that not only warping, but also a cross-section distortion plays very important role. 

Consideration of this effect leads to developing of new approaches with definition of more than 

7 degrees of freedom in the beam cross-section, what an usual case is. If the new degrees of 

freedom not a tensor quantities are, then a problem arises in their transformation from a local 

to a global coordinate system, for example in the case of angled beam structures. However, it 

should be noted that taking into account the cross-sectional distortion can greatly reduce the 

disproportion between the results of the non-uniform torsion solution with finite beam elements 

on the one side and the solids respectively shell finite elements on the other side. As shown for 

warping modal analysis [9, 12], the acceptable eigenfrequencies match was achieved for the 

open cross-sections beams, and also for the first eigenfrequency of the hollow cross-section 

beams. Higher eigenforms of the hollow cross-section are characterized by a pronounced cross-

sectional distortion that reduces the torsional stiffness of the cross section over that which is 

calculated in the sense of Thin Tube Theory (TTT). But as shown in [7, 13], the results of an 

elastostatic analysis of the thin-walled straight beams with our warping beam finite element 

agree well with the ones obtained with the solid finite elements [7, 13]. 

In the actual research papers, there is very hard to find contributions dealing with 

elastostatics or elastodynamics of thin-walled angled frames including non-uniform torsion. 

One interesting description of this problem is made in the PhD work [14] where the effect of 

warping and distortion is shown on deformation of an angled members of hollow rectangular 

cross-section under out-of plane loading. Assessment of the 32x32 stiffness matrix of new beam 

element with joint modelling is presented. A very good agreement of obtained displacements 

with the ones obtained with finite shell elements is presented. The results comparison has also 

shown significant difference to the results obtained with TTT beam elements and by 

Timoshenko beam finite elements. 

In this paper, results of bending, uniform and non-uniform torsion elastostatic analysis of the 

angled frame, consisted of rectangular hollow cross-section beams, are presented. 

In chapter 2, a brief summary of our 3D-beam finite element with warping torsion (WT) is 

presented with 14x14 stiffness matrix [7]. In non-uniform torsion, the part of the bicurvature 

caused by the bimoment is taken into account as the warping degree of freedom, and the 

STMDE is also considered. 

Chapter 3 contains the numerical and analytical investigations. The results from elastostatic 

analysis of the angled member of rectangular hollow cross-sections with WT beam finite 

element are presented and compared with the ones obtained by commercial FEM codes and an 

analytical method. Measurements are performed for confirmation of some of the calculated 

results. The final assessment of the obtained results is contained in the conclusions. 

The main novelty of this paper is to extension of the knowledge of article [7] to elastostatic 

analysis of the angled frames with hollow cross-section, to show the effects of non-uniform 

torsion, and performing comparative analysis by the finite element method using standard 

beam, solid and shell elements. Numerical results are validated with the measurements. 

2 Finite element equations of Timoshenko 3D beam finite element (WT) including 

torsional warping and STMDE  

2.1 Local finite element equations 
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Fig. 1 shows a doubly symmetric prismatic beam element of length eL , with the two nodes 

i and k, and with appropriate geometric, material, static and kinematic parameters: A is the 

cross-sectional area; yI  and 
zI  are the quadratic area moments of inertia; 

TI  is the torsion 

constant; I  is the warping constant; TsI  is the secondary torsion constant. The material 

properties are Young’s modulus E and the shear modulus G. In order to include warping, an 

additional degree of freedom is added to the classical nodal variables at each element nodal 

point. As mentioned previously, the warping part of the first derivative of the twist angle, M , 

is considered as this degree of freedom [7]. This is advantageous for the formulation of 

boundary conditions. If the effect of the secondary torsional moment on the deformations is not 

considered,    xxM   . Here,   x  is the first derivative of the angle of twist (bicurvature) 

that is very often used as a 7th degree of freedom in the usual non-uniform torsion formulations 

[1], [5], [6]. 

The nodal displacement vector in the local coordinate system, as shown in Fig. 1, is given 

as 

   
T

e
i i i xi yi zi Mi k k k xk yk zk Mku u v w u v w          (1) 

where wvu ,,  and x , y , z  are the classical degrees of freedom at the nodal points i and k. 

As mentioned above, the 7th degree of freedom at each node is a part of the bicurvature caused 

by the bimoment M  : Mi  and Mk . The respective nodal loads vector is given as 

   
T

e
i yi zi xi yi zi i k yk zk xk yk zk kF N T T M M M M N T T M M M M   (2) 

where Tixi MM   and Tkxk MM   are the torsional moments, iM  and kM  are the bimoments, 

zkziykyi MMMM ,,,  are the bending moments,  and kN  are the axial forces, and 

zkziykyi TTTT ,,,  are the shear forces. 

 
Fig. 1 WT-beam finite element, considering non-uniform torsion, embedded in the local 

coordinate system. 

Enhancing the classical representation of Timoshenko finite beam elements by the stiffness 

matrix for non-uniform torsion of straight beams [7], gives the local equations for our finite 

Timoshenko beam finite element (WT-beam) considering warping: 

iN
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    e le eF K u  (3) 

The effect of the secondary torsional moment and of the shear force on the deformations is 

included in the local finite element stiffness matrix  leK , relating the nodal displacements 

 eu  to the nodal forces  .eF   leK is given as: 
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(4) 

The terms in (4) that refer to non-uniform torsion are given as [7] 
2

1

11,411,114,4
k

ck
kkk


 , 

31

2

2

2

14,1111,714,47,4
kkk

k
ckkkk







, 
14,147,7

kk  1 0 3 2/c b b k k  , and 2314,7 / kckk 

, where 
EI

b
k 1
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EI
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2   and  .
Ts

b b
k

EI GI

 
  
 

3 1
3   

The effect of the secondary torsional moment is considered by means of the constant 
1

1













Ts

T

I

I
 and the transfer constants 3,0, jbj . If this effect is disregarded, 1 . This 

is usually done for the case of beams with open cross-sections where the influence of the 

secondary torsional moment is insignificant [9]. However, for hollow cross-section (HCS) 

beams this effect must be considered, as was previously shown in [3] and [7]. The expression 

for the secondary torsion constant TI  and TsI  and I   depends on the chosen form of the cross-

section [15]. The element stiffness matrix for non-uniform torsion was derived in [7] in the 

local coordinate system, using the transfer relations. The indices m,n by the stiffness constants 

km,n denote their position in the local stiffness matrix [Kle]. 

The terms in (4) that represent the obvious axial and flexural stiffness read 

L

EA
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z
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Parameters 
GAkL

EI
s

y

y

y 2
  and 

GAkL

EI
s

z

z
z 2
  are stiffness ratios, with s

yk  and 
s

zk denoting the 

shear correction factors. 

The primary and the secondary torsional moment at the nodal points are given as [3] 

 MiTTiTsi GIMM   ,    MkTTkTsk GIMM    (5) 

and 

Tpi Ti TsiM M M  ,    TskTkTpk MMM   (6) 

The expressions for the calculation of the axial stresses and the shear stresses depend on the 

type of the cross-sectional area, as was described in detail in [3]. These expressions will be used 

for calculation of the stresses in the numerical investigation in chapter 3. 

2.2 Transformation of the element stiffness matrix from local to global coordinates 

The element stiffness matrix (4), the displacement vector (1), and the load vector (2) have to 

be transformed from the local to the global coordinate system. The transformation is performed 

with the help of the extended transformation matrix. 

The element stiffness matrix in the global coordinate system can formally be written as 

      eleTege TKTK   (7) 

where [Te] is the 14x14 transformation matrix for finite element e and [Te]T denotes its 

transpose. 

Figure 2 shows the position of the local and global coordinate systems at a chosen nodal point, 

for the special case of Z being parallel to z. The x-y plane coincides with the X-Y plane. 

 
Fig. 2 Global and local coordinate system – rotation in the X-Y plane, with z as the angle of 

rotation. 

The transformation submatrix [Tz] is given as 
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 (8) 

The transformation matrices [Tx] and [Ty] are obtained by analogy. The whole transformation 

matrix  eT 
 

 and the global system of equations for the beam structure is obtained in the usual 

way. 

The transformation of the nodal degrees of freedom from local to global coordinates is 

carried out by means of 

   g e la T a  
 

 (9) 

where 

   '
T

g g g gg g g g
X Y Z Ma u v w      (10) 

is the global displacements vector, and 

   '
T

l l l l l l l l
x y z Ma u v w      (11) 

is the local displacements vector. 

The new degrees of freedom, 
'g
M = 'l

M , is considered to be a scalar value. 

After the displacements calculation, the distribution of the internal forces and the 

displacements in the axial and the transverse direction can be determined. The local rotation 

angles and the torsional moments for the case of non-uniform torsion can be computed by 

means of the local transfer relations [7]. The new 3D Timoshenko finite beam element with 

torsional warping (WT-beam) was coded with the help of MATHEMATICA [16] and used in 

the following analyses. 

3 Numerical investigation and experimental measurement of the influence of non-

uniform torsion  

In the following, results from numerical analyses of two non-aligned member steel frame   

(E = 200 GPa, 0.3  ) of rectangular hollow cross-section (RHC) has been examined (Fig. 3). 

The beams have length 1 500L  mm and 2 1000L  mm and are connected perpendicularly at 

node B. The frame is clamped at cross-section at point C and is subjected to a vertical force 

77,4yF   N at point A. The cross-sectional dimensions are: 2f wt t  mm; 18b  mm and 

58h  mm. The global coordinate system X,Y,Z has the beginning at point B. 
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Fig. 3 Geometry, boundary conditions, loading and cross-section of the frame. 

3.1 Description of the cross-section characteristics 

The RHS cross-section parameters calculated by TTT [15] are in Table 1: 

Title Expression Value 

Cross-sectional area 2( )w fA ht bt   304.0  

[mm2] 

Auxiliary constant / /w fh t b t    38.0 

Warping ordinate at the 

corners 
4

f w
R

f w

ht bthb

ht bt



 


 

137.4  

[mm2] 

 

Warping constant 
2

3
R

A
I     

61.912 10  
[mm6] 

Torsion constant 22( )
T

hb
I


  

 

 57365.0  [mm4] 

 

Secondary torsion 

constant 

2 2 2 2

20

( ) ( )

1,5

Ts

w f

I A
I

Ahb h b

hbt t







 
 

14589.3  
[mm4] 

Quadratic moment of 

area  
       

3 3

12 12

b t h t b t h t
I

   
 

 

20885.3 

[mm4] 

Intermediate cross-

sectional area 
sA bh

 
 

1044 

[mm2] 

Tab. 1 General expressions for cross-sectional characteristics of RHS. 

The shear correction factors are: 0.715s
zk  , 0.1337s

yk k  [5]. 

3.2 Solution of internal moments and deformation 

The elastostatic analysis of the frame is done by number of 200 of the WT beam finite 

elements with following results: 
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Distribution of the bending and torsional moment, oM and TM , is shown in Figure 3. 

Distribution of the bimoment , M , along the aligned centerline C-B-A of the beam is shown in 

Figure 4 ( 1 2L L L  ). 

 

Fig. 4 Distribution of the bimoment. 

Distribution of the primary, TpM , and secondary, TsM , torsional moment along the aligned 

centerline C- B - A is shown in Figure 5. 

 

Fig. 5 Distribution of the primary and secondary torsional moment. 

Numerical values of the internal moments at points A, B and C are in Tab. 2. The notation 

BA means a position of the cross-section cut to the left of the point B, and BC means the position 

to the right of the point B. 

 

Point 
TpM  

[Nm] 

TsM  

[Nm] 

TM  

[Nm] 

oM  

[Nm] 

M  

[Nm2] 

A 0.00 0.00 0.00 0.00 0.00 

BA -7.84 7.84 0.00 77.39 0.162 

BC 53.85 23.54 77.39 0.00 0.162 

C 61.70 15.69 77.39 38.69 -0.324 

Tab. 2 Internal moments and bimoment at relevant points of the frame. 

Deformed configuration of the frame is shown in Figure 6. Numerical values of the relevant 

global displacements at the points B and A (according the notation (10)) are listed in Table 3. 
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Fig. 6 Deformation of the frame. 

Point gv [mm] 
g
X [rad] 

g
Z [rad] 

'g
M [rad/m] 

B -0.78 -0.0086 0.00231 0.00877 

A -15.64 -0.018 0.00228 0.0 

Tab. 3 Global displacements at the points B and A.  

The displacement at point A is calculated analytically by the Castigliano's first theorem: 

g
A

A
v

F





; where 1 2A A A A      is the total stress energy in the frame. There, 

21

2
o

V

A dV
E

    is the normal stress energy due to bending moment, 2
1 1

1

2
V

A dV
G

   is the 

shear stress energy due to torsional moment, 2
2 2

1

2
V

A dV
G

   is the shear stress energy due to 

shear force, and V is the volume of the frame. After some mathematical operations, the vertical 

displacement at the end A is: 

   
 

2

1 23 3 2 1
1 2 2

6.95 8.77 0.28 15.99
3 2

g
A

s

F L LFL A LF
v L L

EI G A t GAk

  
            
   

 [mm] 

that consists of parts due to bending and uniform torsion with Bredt's stress, and shear forces 

with the shear correction factor 0.1337s
yk k  [5]. The shear modulus is 76923

2.6

E
G  

MPa. The analytical solution with uniform torsion gives comparable displacement with this 

obtained by our warping torsion method (see Table 3). 

3.3 Normal and shear stress calculation in the cross-section at point C 

As listed in Table 2, the cross-section at point C (Figure 7) is loaded by the bending moment, 

bimoment, primary and secondary torsional moment. 
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Fig. 7 Internal moments in cross at point C. 

The bending normal stress is: oC
oC

z

M
y

I
  , where the quadratic moment of area is: 

20885.3zI  mm4. The position y is: max min,y y y   with  max / 2 10wy b t      mm, 

and  min / 2 8wy b t     mm. Then, max 18.53oC   MPa and min 14.82oC   MPa. The 

average bending stress in the middle of the thickness t   is 16.67oCav   MPa. 

The bimoment normal stress in the corners of the cross-section is: 

23.27C
RC R

M

I





     MPa. 

After superposition of the maximal bending stress and bimoment normal stress in the 

corners, the resultant, maximal and minimal normal stress is obtained: 

max max 41.79rC oC RC       MPa, min max 4.74rC oC RC     MPa.  

After superposition of the average bending stress and the bimoment normal stress in the 

corners, the average resultant, maximal and minimal, normal stress is obtained: 

max 39.94rCav oCav RC       MPa, min 6.6rCav oCav RC     MPa. 

Distribution of the resultant, maximal and minimal normal stress is depicted in Figure 8. 
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Fig. 8 The normal stress distribution in the cross-section at the point C. 

The torsional shear stress in non-uniform torsion theory including STMDE is divided into 

two components, namely on a stress caused by the primary and the secondary torsional moment 

[3]. 

The primary shear flow at point C is: 29.54
2

TpC
pC

M
T

bh
 N/mm. Because of constant 

thickness of whole cross-section, f wt t t  , the primary torsional shear stress is constant 

along the circumference of the cross section:  14.77
pC

pC

T

t
   MPa (Figure 9a). 

The secondary shear flow and the secondary torsional shear stress varies along the 

circumference of the cross section [3]. 

The limit values of the secondary shear flow at points 0, 1, 2 of the cross-section (Figure 9) 

read: 0, 0 15.03TsC
sC

M
T S

I
  N/mm; 1, 1 21.17TsC

sC

M
T S

I
  N/mm; 

2, 2 17.66TsC
sC

M
T S

I
   N/mm. 

There, 
 

2 2

0 1831.6
6 / /

R

h b
S

h t b t



 


mm2, 1 0 3067.9

4

R
fS S A


   mm2, 
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2 0 2452.1
4

R
wS S A


   mm2 are the auxiliary constants, and 36fA bt  mm2 is the area of  

the flange and 116wA ht  mm2 is  the area of the web. 

The limit values of the secondary torsional shear stress at point C read (Figure 9b): 

0,
0, 7.51

sC
sC

T

t
   MPa, 

1,
1, 12.59

sC
sC

T

t
   MPa, 

2,
2, 8.83

sC
sC

T

t
    MPa. 

Resultant torsional shear stress in the corners of the cross-sectional area at C is: 

0 0, 22.29C pC sC     MPa. If the torsional shear stress is calculated by Bredt's formula, the 

torsional shear stress is: 18.53
2

TC
C

M

hbt
   MPa. As can be shown, the shear stress due to shear 

force is not significant and therefore neglected. 

 
Fig. 9 Distribution of the torsional shear stress in the cross-section symmetric part at the 

point C. 

Maximal von Mises stress is in the left corners (Rc, Figure 3) is: 

2 2
max 03 56.9Rc rC C     MPa. 

The von Mises stress in the right corners (Lc, Figure 3) is: 

2 2
min 03 38.9Lc rC C      MPa. 

If both the bimoment normal stress and the STDME are neglected (Saint Venant torsion), 

the maximal von Mises stress is: 
2 2

max 3 19.97SV oC C     MPa. Comparison of the von 

Mises stress shows that neglecting of warping and STMDE may lead to significant under-

estimation of the frame. 

4 Verification of the solution results obtained by the WT warping beam finite 

element 

The same example as studied in previous chapter is solved by ANSYS [5] using the 

BEAM188 (warping restrained, WR) and warping unrestrained, WU) and SHELl81 and 

SOLID186 finite elements. The rectangular hollow cross-section of the frame is considered by 

the finite element models. Measurements are performed for confirmation of the calculated 

results. Figure 10 shows the measured frame assembly. It should be noted that in contrast to the 

calculation models where the rectangular hollow cross-section of the beams was considered, 

the measured frame, given the practical possibilities, is made of two beams of hollow cross-

section with rounded corners (Figure 11) with 2r  mm. 
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Fig. 10 Measured frame assembly. 

The deflection of the frame was measured by micrometer in the points A and B. Normal 

stress due to bending moments and bimoment is measured by tensometers (strain gauges). Their 

position on the twisted part of the frame is shown in Figure 11 and Table 4. They are positioned 

at the places where the maximal influence of the non-uniform torsion has been shown in the 

above calculations. Due to strain gauge measurements, it was not possible to place the strain 

gauges on profile edges or directly at the clamped end C. The mechatronic set-up included a set 

of tensometers (type HBM 1,5/120LY61), strain/bridge input measuring module NI-9235 (8 

differential analog input channels, bridge resistance 120 Ω), and a laptop with software 

LabVIEW for acquisition of measurement data. 

 

Fig. 11 Position of the tensometers on the twisted part of the frame and the cross-section. 

Tensometers T1,6 T2,7 T3,8 T4,9 T5,10 

xtens,i [mm] 3 25 50 100 220 

ztens,i [mm] ±24 

Tab. 4 The position of the tensometers iT  is defined by coordinates xtens,i and ztens,i.  



48 2018 SjF STU Bratislava Volume 68, No. 2, (2018) 

 

Comparison of the deflection at the points A and B, obtained by WT and BEAM188 (WU 

and WR) and SHELL181 and Solid186 finite elements, and by measurement (M), is shown in 

Table 5. 

Number of 

FE 

WT 

200 

SHELL181 

44394 

SOLID 186 

65520 

WR 

150 

WU 

150 

M 

 
g
Av [mm] -15.64 

 

-18.80 -17.17 -15.43 -15.50 -17.20 

g
Bv [mm] -0.78 -0.85 -0.88 -0.78 -0.78 -0.97 

Tab. 5 Comparison of the calculated and measured vertical displacements.  

As it has been shown before, the analytical solution by the Castigliano's first theorem results 

the displacement at point A: 15.99
g
Av   mm. 

Table 5 shows that all the beam theories produce smaller displacements compared to the 

SHELL181 and SOLID186 solution, and to the measurement results as well. It follows from 

that point of view that the beam theories solutions are less accurate compared to the 

measurement, but the difference in the displacements is not significant. As shown in [14], the 

difference is caused most likely by the torsional distortion of the thin-walled hollow cross-

sections, what is not considered in the above calculations done by the beam finite elements. On 

the other side, a preparation of the computational model of the spatial beam structures through 

the shell and solid finite elements is quite demanding. From this point of view, the consideration 

of the Saint Venant torsion theory could be assumed as satisfactorily for the displacement 

calculation in the solved example. However, as shown in [3],[7],[12],[13] and also in the 

following investigations, the warping torsion effect and the STDME influence the stress state 

significantly and therefore could not be neglected. 

The above normal stress calculated numerically by the WT beam finite elements is verified 

using the SHELL181 and SOLID186 finite elements [5]. Normal stress has been also measured 

at the positions from Table 4 and Figure 11 on the twisted part of the frame made of rounded 

hollow cross-section beams. Measured values of the resultant normal stress, rm , due to 

bending moment and bimoment is presented in Table 6. 

Tensometer T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 

rm  [MPa] 11.5 12.5 13.2 14.4 10.4 30.5 23.2 18.1 12.9 8.9 

om  [MPa] 20.9 18.2 16.4 14.8 10.1 20.9 18.7 16.4 14.8 10.2 

m [MPa] -9.4 -5.7 -3.2 -0.4 0.3 9.6 4.5 1.7 -1.9 -1.3 

Tab. 6 Normal stress obtained by the measurement.  

By subtraction, resp. by addition the measured normal stress caused by bending, om , from 

the resultant normal stress rm , the normal stress due to bimoment , m , is obtained. Their 

values are shown in Table 6. A certain disproportion of the measurement results in Table 6 is 

due to the implementation conditions and accuracy of the tensometric measurement itself. 

Nevertheless, the measured results can be considered as valid. 

Distribution of the bimoment normal stress   (obtained with WT beam finite element) 

along the right upper edge of the twisted part C-B of the frame is presented in Figure 12  

( 1 2L L L  ) together with the stress values obtained from measurement by the tensometers 

6 10T T (marked by the black dots). As shown in Figure 12, a good agreement of the calculated 

and measured results is obtained. 
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Fig. 12 Distribution of the bimoment normal stress   obtained by measurement and WT. 

The resultant normal stress rc  comparison, calculated by SHELL181 and SOLID186 finite 

elements [5], along the right upper edge of the twisted part C-B of the frame is shown in Figure 

13 ( 1 2L L L  ) together with the stress values (marked by black dots) measured by the 

tensometers 6 10T T . 

 

Fig. 13 Comparison of the calculated resultant normal stress rc with the measurement. 

The above comparison shows that the resultant normal stress rc  increases very strong to its 

maximal values in the corner cR  which are listed in the Table 7. 

Finite element SHELL181 SOLID186 WT 

Maximal resultant normal 

stress [MPa] at cR  

48.3  39.5  41.79 

Tab. 7 Comparison of the maximal resultant stress in the corner Rc.  

The difference in the maximal normal stress (Figure 13) between the solid and shell finite 

element solution results from different properties of the elements and the effect of the boundary 

condition. Our results obtained with the WT finite element is located between the both results. 

The trend of the steep increase in the measured normal stress corresponds to the trend of the 

calculated stress, but its values, in particular due to the location of the strain gauges and the 

rounding of the corners, are smaller, which is understandable. 

The comparison of the resultant normal stress rct  calculated by SHELL181 and SOLID186 

finite elements [5], along the line allocated by , 24tens iz  mm (Figure 11) from the x axis  is 
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shown in Figure 14,  together with the stress values (marked by black dots) measured by the 

tensometers 6 10T T . Maximal calculated values of the stress are given in Table 8. 

 

Fig. 14 Comparison of the resultant calculated normal stress rct  with the measurement on 

the shifted line. 

Finite element SHELL181 SOLID186 

Maximal resultant normal  

rct stress [MPa]  

35.0 40.6 

Tab. 8 Maximal calculated values of the resultant normal stress from the Figure 14.  

The results in Figure 13 and Figure 14 and Table 6 and Table 7 verify not only correctness 

of the measured results but also acceptable accuracy of our WT finite element (Figure 12). 

5 SUMMARY AND CONCLUSIONS 

This paper has dealt with elastostatic analysis of the spatial frame consisted of two angled 

members of the rectangular hollow cross-section (RHS). The 3D Timoshenko beam (WT) finite 

element [7] of open and closed cross-sections, considering non-uniform torsion and STDME, 

is used in the analysis. The frame is loaded by bending and torsion. Obtained results concerning 

deformation and stress are compared with the ones obtained from solution by the standard 

beam, shell and solid finite elements [5]. Verification of the numerical results is done by the 

measurements. 

The main contribution of the article is the application of our effective 3D Timoshenko beam 

finite element with torsional warping to the elastostatic analysis of angled beams with 

consideration of non-uniform torsion. It should be noted that in literature, except [14], can find 

research articles that deal with the non-uniform torsion of only straight and curved beams. 

While standard software contain the beam finite elements considered warping, but their 

application is only relevant to open profile beams, whereby the bimoment and bimoment 

stresses evaluation is inconvenient especially for closed profiles. The influence of the secondary 

torsion moment deformation effect, which is especially important for the closed profiles, is not 

reflected. It should also be noted that the classical analytical methods, intended for solution of 

non-uniform torsion, can only be applied to straight, generally of an single thin-walled beams. 

Such a task can also be solved by the shell and solid finite elements, but their application to the 

spatial beam structures is rather complicated and inefficient. 

The results of the comparative calculations as well as the results of the experimental 

measurement confirmed the high efficiency and good precision of our end beam finite element. 
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It is also shown that neglecting the effects of warping upon analysis of the beams with a thin-

walled closed cross section leads to a great under-estimation of the bearing capacity of such a 

system. On the other hand, it has been shown that the relevant deformation of the system can 

also be obtained by applying the Saint Venant theory of torsion. It may also have led to claim 

in the Eurocode 3 [17] that in design of thin walled steel structures of the closed cross-section 

the influence of non-uniform torsion could be neglected. 
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