
DOI: 10.2478/scjme-2018-0021, Print ISSN 0039-2472, On-line ISSN 2450-5471 2018 SjF STU Bratislava 

 

Journal of  MECHANICAL ENGINEERING – Strojnícky časopis, 

VOL 68 (2018), NO 2, 105 - 124 

 
  

 

 

DYNAMIC AND SENSITIVITY ANALYSIS GENERAL  

NON-CONSERVATIVE ASYMMETRIC  

MECHANICAL SYSTEMS 

ŽMINDÁK Milan1 

1University of Žilina, Faculty of Mechanical Engineering, Department of Applied Mechanics, Univerzitná 

8215/1, 01026 Žilina, Slovak Republic, e-mail: milan.zmindak@fstroj.uniza.sk 

 

Abstract: In this paper the concept of generalized form of proportional damping is proposed. Classical modal 

analysis of non-conservative continua is extended to multi DOF linear dynamic systems with asymmetric 

matrices. Mode orthogonality relationships have been generalized to non-conservative systems. Several 

discretization methods of continua are presented. Finally, an expression for derivatives of eigenvalues and 

eigenvectors of non-conservative system is presented. Examples are provided to illustrate the proposed methods. 
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1 Introduction 

Machine is a multi-parametric oscillating system. Its dynamic characteristics (properties) 

are dependent on design parameters and operational parameters. Design parameters define the 

shape, dimensions and material constants of all machine parts (components) and their mutual 

connection (linkage). Operational parameters characterise the mode of operation, for example 

revolutions, transmitted torque in rotary machines, state quantities of flowing medium in 

machines with flows, etc. In order to assess the dynamic behaviour of the machine, we require 

that the absolute value of displacement u  at any point x  in any operating mode and at all 

times t  does not exceed a certain conventional value u , i.e. 

 , , ,    u x y z t u


  (1) 

In order to meet this simple criterion, we must first know the machine dynamic properties 

– dynamic analysis. In the second step we need to improve the dynamic properties that have 

proven unsatisfactory during the operation – dynamic synthesis. This includes the problems of 

tuning, reconstruction and optimisation [1-3]. Finally, it is necessary to verify whether the 

created mathematical model is a good approximation of the real system – identification. 

In this paper we deal with modal analysis of asymmetric systems with real matrices K ,C ,

M . Generally, these are non-conservative systems where it does not apply that the sum of 

potential and kinetic energy is constant. In the following sections we deal with methods of 

transformation (symmetrization) of these systems to a symmetric form. The objective of this 

subchapter is to explain some fundamental properties of non-classical structures and define 

the necessary and sufficient conditions for a non-classical system to become unconstrained, or 

that it can be solved in space N. The end of this chapter is dedicated to models of general 

damping and non-viscous damping.  
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2 Mathematical model of non-conservative continuum 

The objective of this part is to use methods of functional analysis [4, 5] to get to know and 

analyse spectral and modal properties of operators of mathematical models of non-

conservative continuum. Using the above will allow us assessing the uniqueness (un-

ambiguity) or ambiguity of orthonormal eigenfunctions that correspond to simple or multiple 

eigenvalues. Finally, we evaluate the consequences for numerical solution of a forced 

vibration. 

We begin with a mathematical model of forced-oscillation non-conservative continuum 

described by a differential equation (or by a system of such equations) in the operator form 

  v(t) v(t) v(t) ( )M C K f t    (2) 

This is a second order differential equation with respect to time t with linear differential 

operators K, C, M only with respect to the coordinates of the definition domain   with 

homogenous boundary conditions L in  t, | h = 0, defining the state at the boundary h of the 

definition domain   and with two initial conditions
0 0

v ,v , defining the state in the beginning 

at time t = 0. The system is acted upon by a force ( )f t . 

Since the differential operators K, C, M are not a function of time t, equation, (1) can be 

expressed in the following form 

 
 

 

 

 

v

, ,   v

v

t

K C M t f t

t

 
 

 
  

 (3) 

     
2

1

, ,   v ,K C M T t f t T d dt

T

 
   
 
  

 (4) 

respectively in a short form as follows 

    v  ZT t f t  (5) 

    v  Z t f t  (6) 

2.1 Modal analysis 

Modal analysis plays a central role in the vibrational studies of linear engineering 

structures. The methods for calculation eigenvalues was originally proposed for undamped 

structures whose inertia and stiffness properties can be represented by symmetric matrices or 

self-adjoint differential operators. In fact, practical experiences show that the damping cannot 

be neglected in many cases. For “classical damping” or “proportional damping”, the modal 

analysis of undamped systems is applicable to damped systems.  There are systems which 

inertia, stiffness and damping properties cannot be represented by symmetric matrices or self-

adjoint differential operators. These kind of problems arise in the dynamics actively 

controlled structures and in many general non-conservative dynamic systems, for example, a 

moving vehicle on road, a missile on its trajectory, a ship´s motion in seawater, etc. 

 A starting equation is the mathematical model (2). First, we investigate the spectral 

and modal properties of its operators, i.e. we solve the respective eigenvalue problem (EVP). 

From (2) we obtain equations of this problem for 

 0,  v v stf t e   (7) 
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and that for both the function v  and for the adjoined function w : 

 2  v 0K sC s M    (8) 
2 *( ) 0K sC s M w    (9) 

The top right index “ * ” means the adjoint operator. As can be seen from (8), it is a quadratic 

eigenvalue problem in parameter s. Equation (2) is a second order equation with respect to t 

and it is therefore useful to simplify this equation by adding a trivial identity 

    v  v 0M t M t x   (10) 

Then we obtain twice the number of first order equations with respect to t 

      N u t Pu t g t   (11) 

where 

0

C M
N

M

 
  
 

, 
0

0

K
P

M

 
  
 

 (12) 

 
 

 

v
,

v

t
u t

t

 
   

 
, 

0

f
g

 
  
 

. (13) 

To equation (11) then belongs the eigenvalue problem (EVP) 

   
* *  0P sN u p sN u     (14) 

with a nontrivial solution of 
*,   ,  

v v v
s u u  satisfying the EVP equations 

   
* *  0

v v
P s N u p s N u

 
     (15) 

After assigning the scalar product to the first equation by function *

u  and by the second 

function vu   we obtain: 

   
 

 

** *

*

*

, 0, , 0

, 0

,   0

v v v

v

u P s N u u P s N u

P s N u u

u P s N u

  

 

  

   

 

 

 (16) 

from which we obtain 

     

  

* * *

*

, , ,

, 0

v v v v

v v

u Nu s u Pu u Nu s

s s u Nu

   

 

 

 
 (17) 

This leads to general formulas 

   * *, , ,
v v v v v

u Nu u Pu s
   

    (18) 

If the eigenvalue 
v

s  is 
v

n -fold, then it is attributed linear independent eigenfunctions
jv

u , *
jvu  

in the number vn . So we assume that these are continuous of a simple structure [6]. From these 

eigenvalues, we create scalar spectral sub-matrices vvv IsS   of the vn -th order, and the 

respective modal sub-matrices 
v jv

U u    , 
* *

v jv
W w     that satisfy the EVP equations 
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* * * * * *0
v v v v v v v

PU NU S P U N U N U S     1 (19) 
1 As the operators K, C, M, and hence also P, N are real, in addition to sub-

matrices 
*, ,S U U x

  
 a solution is also in complex conjugate sub-matrices 

*, ,S U U
  

. 

 

and meet  the conditions of orthogonality and norm 

    vvvvvv SPUUINUU  ,,  , **

 (20) 

Solution to equation (11) is then searched in the following form 

  )(tcUtu v

v

v  (21) 

Substituting to (11), assigning scalar products to the sub-matrix *

U  and with respect to (20), 

by the method of variation of constants we obtain the solution 

 

       

     

 

* * *

*

( ) ( )

, ( ) , , ( )

( ) ,

( ) v

v v v c

v v

v v v

v v

v v v

tS

v v

N U c t PU c t g t

U NU c t U PU c t U g t

c t S c t U g t

c t e a t

  









 

 

 



 

 
 (22) 

 

   

   

*

*

*

0

( ) ( ) ( ) , ( )

( ) ,

( ) ,

v v v

v

v

tS tS tS

v v v v v

tS

v v

t

S

v o v

S e a t e a t S e a t U g t

a t e t U g

a t a e d U g











  





  

 

  

 
(23) 

2.2 Forced vibration 

From the general solution (22) we derive formulas for forced oscillation in the transient 

mode (TM), respectively in the harmonic mode (HM) 

TM: 

     *,vtS

v ov v v v

v v

u t U e a U t U g     (24) 

where 

   

 

0

*

0

( ) ( ) ,   ( )

v
, ,    ( )

v

v

t

t S

v v v v

o

ov v o

o

t t I t e d

a U N u u t


    


  

 
   

 


 (25) 

HM: 

     
1 *

0
,

ts i t

v v v
u t U e c i I S U g e 

 

 




     (26) 

where  

   
1 *,

ov ov v v v
c a i I S U g



    (27) 
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vvv Itt )()(   

       
1

0

( )   v v

t

t S s ti t i t

v v
t e e d i s e e

      


     (28) 

From formulas (24) and (25) we obtain the forced oscillation formulas 

TM: 

    

    

0

0

v ,

v ,

v

v

t S

v v v v v

v v

t S

v v v v v v v

v v

t V e a V t W f

t V S e a V S t W f

  

  

 

 
 (29) 

HM: 

     

     

1

0

1

0

v ,

v ,

v

v

tS i t

v v v v v v

v v

tS i t

v v v v v v v v

v v

t V e c V i I S W f e

t V S e c V S i I S W f e













  

  

 

 
 (30) 

Let us note the formulas for velocity in formulas (29). If we derive them by differentiating the 

formula for forced displacement, we obtain 

       v v ( ) , , ( )vtS i t

v v ov v v v v v

v v v

t t t V S e a V S t W f e V W f t           (31) 

   , 0
v v

V W f   (32) 

This consideration gives rise to general formulas for forced oscillation, which we breakdown 

for displacement, velocities in the transition mode (TM) and in the harmonic mode (HM), and 

the steady-state harmonic mode (SSHM), when the influence of the initial conditions 

disappears 

TM: 

    

    

0

0

v ,

v ,

v

v

tS

v v v v v

v v

tS

v v v v v v v

v v

t V e a V t W f

t V S e a V S t W f

  

  

 

 
 (33) 

where 

 

   

0 0 0 0

0

, v v v

( ) ( ) ,   ( )

v v

v v

t

s t

v v v v

tS s t

v

a W M C M s

t t I t e d

e e I

 
    



  

  



  (34) 

HM: 

     

     

   

1

0

1

0

1

0 0

v ,

v ,

,

v

v

tS i t

v v v v v v

v v

tS i t

v v v v v v v v

v v

v v v v v

t V e c V i I S W f e

t V S e c V S i I S W f e

c a i I S W f

















  

  

  

 

   (35) 

SSHM: 
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     

     

1

1

v ,

v ,

i t

v v v v

v

i t

v v v v v

v

t V i I S W f e

t V S i I S W f e













 

 




 (36) 

Note that when we enter 0   in the first formula (36), we obtain the formula for static 

displacement sv , due to static load f as a limiting case of the dynamic phenomenon 

     

     

1

1

v ,

v ,

i t

v v v v

v

i t

v v v v v

v

t V i I S W f e

t V S i I S W f e













 

 




 (37) 

3 Discretization of the continuum 

Continuum mechanics is based on a system of partial differential equations (PDE) with 

appropriate initial and boundary conditions. The analytical solution of PDE can be obtained 

only if the shape of the considered body is sufficient simple, e.g., if it is rotationally 

symmetric, quadrilateral, infinite, etc.  Successful solving of complex engineering problems 

begins with defining a physical model. The physical model is then transformed to a 

mathematical model. To formulate the equations of motion we make use of techniques 

employed in theory on mechanics of deformable bodies which leads to a set of three equations 

of motion, in terms of the displacements   , , ,u x y z t ,  v , , ,x y z t ,  w , , ,x y z t , which must 

be satisfied at every point of the system and which are subjected to initial conditions and at 

the boundaries of the system. Each of the variables x, y, and z can take an infinity of values 

within the region occupied by the system, so the system poses an infinite of degrees of 

freedom.  

The classification of systems as discrete or continuous is quite often arbitrary. The same 

system can be regarded at times as discrete and described by ordinary differential equation 

and other times as continuous and described partial differential equations.  

A solution to the mathematical model is usually obtained by numerical methods that are 

called approximation. Finite element analysis is now abundantly performed in various 

branches of engineering design and scientific research.  A number of commercial computer 

programs are employed for solution many industrial problems, including modelling of 

technological processes [7, 8].   

The transformation process of a continuous mathematical model to a model with a finite 

number of degrees of freedom is called discretization. In statics we deal with discretization in 

space. In dynamics it is discretization in space and time. We mainly use the following 

discretization methods [9]: 

• Finite element method (FEM) 

• Differential method 

• Boundary element method (BEM) 

• Finite volume method (FVM) 

• Spectral methods 

• Meshless methods 
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The area of the continuum computational mechanics is currently divided into two leading 

methods. While the mechanics of bodies (stress analysis, and dynamics) is absolutely 

dominated by finite elements, fluid dynamics [10] is dominated to a certain extent by the 

finite volume method (FVM). Both the methods are based on different analytical principles: 

1. FEM is predominantly based on the variational principle; it uses predefined shape 

functions for the element topology. It is easily extended to a higher order 

discretization. It leads to sparse matrices, usually with good conditionality, and 

solving the resulting system is carried out using direct or iterative solvers.  

2. FVM, on the other hand, usually shows a second order accuracy. It is based on an 

integral form of basic equations; it uses segregated solvers, where constraint 

conditions and nonlinearities are solved iteratively. The method leads to diagonally 

dominant matrices suitable for iterative solvers. The main applications of this method 

are in computational fluid dynamics (CFD) and in fluid–structure interaction (FSI) 

[11]. Here, following discretization, we obtain hundreds of millions of equations. 

Their solving produces a sufficiently accurate solution to such problems as, for 

example, aerodynamics of vehicles or aircraft, internal combustion in engines, 

nuclear reactor models, etc.  

In the following sections we briefly mention the basic principles of FEM. FEM 

formulation in displacements is the basis of most commercial software programs, such as 

ABAQUS, ADINA, ANSYS, etc.  

According to the variational principle used, FEM is classified into three main groups [12]:  

1. Rayleigh–Ritz formulation. 

2. Galerkin formulation. 

3. Least-squares formulation.  
 

3.1 Rayleigh–Ritz method 

The Rayleigh–Ritz method looks for a minimum total potential energy and thus the 

numerical solution based on this principle has the characteristics of the best approximation, 

i.e. the difference between the FEM solution and the exact solution is minimised with respect 

to a certain energy standard [13]. Moreover, this FEM formulation leads (at least in linear, but 

often even in nonlinear problems) to a symmetric positive definite system of linear algebraic 

equations. This formulation is mainly used in the mechanics of bodies and in heat conduction. 

Note that most of the current commercial FEM software programs are based on this method. 

3.2 Galerkin method 

The Galerkin method is based on the formulation using weighted residuals. The unknown 

function is approximated using unknown parameters and test (basis) functions. Algebraic 

functions that allow solving the problem numerically are formulated by “weighted residuals” 

while using appropriately chosen “test functions”. For equations with a self-adjoint and 

positive definite operator, the Galerkin formulation leads to the same system of equations as 

the Rayleigh–Ritz formulation.  

Note that the Galerkin method is more general, since it can be applied even to non-self-

adjoint equations, such as for fluid flow, where the convection component (flow) dominates 

over the conduction component. Here, the Galerkin method does not manifest the best 

approximation feature. Convection components are of the first order and, therefore, non-self-

adjoint. In practice, solving of flow leads to significant oscillations, which are removed by the 
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mesh smoothening, and to stabilisation numerical procedures, which then leads to solving 

very large systems of equations and to the need for supercomputers to solve them. 

3.3 FEM based on the least squares method 

Formulation of finite elements by least squares is based on minimising the residual (error) 

in terms of least squares [14]. In contrast to the Galerkin formulation, which is only 

conceptual and without practical significance and, therefore, in most cases requires further 

mathematical manipulations for the realistic calculation of the practical problem, least squares 

are the final computational expression for any problem. Its disadvantage is that it can be 

applied only to first order differential equation, and hence higher-order differential equations 

need to be transformed to first order equations by introducing other variables, thus increasing 

the number of degrees of freedom for the nodal point. 

3.4 FEM based on reciprocity 

Formulation of finite elements using the reciprocity principle is based on the Trefftz 

functions or fundamental solution for the same continuum (body), or subdomain (element). 

Meanwhile, each auxiliary state can be linear even for nonlinear problems. The disadvantage 

is an asymmetric stiffness matrix even for linear problems. Linear problems lead to 

integration only along the surface of the domain, in our case the element. The method is under 

development and its advantages are being studied. Given the basis of formulation, we can 

name this method a multi-domain formulation of boundary elements, because both are based 

on the same equations. Closely related to this formulation is the hybrid FEM formulation, and 

in particular the hybrid strain formulation. However, we are not dealing with formulation in 

this part, because only its applications to solving linear problems have been known so far. The 

reason why this method has not been used so far for nonlinear problems is that it requires 

direct application of Trefftz functions to formulate the problem, and Trefftz functions for 

nonlinear tasks have not been used yet. Such Trefftz functions can be defined for a given 

configuration (in nonlinear problems – it must be the instantaneous configuration of the 

body), for example in terms of least squares through a discrete set of points of the relevant 

element (subdomains) [15]. 

3.5 Boundary element Method 

The basis of any boundary integral equation (BIE) in the classical theory of elasticity is 

Betti’s theorem on reciprocity (1872) and the application of elastic potentials to satisfy 

equilibrium equations using Somigliana’s identity (1885). In recent years, many BIE 

formulations have been made using the weighted residuals method (WRM). Note that WRM 

is simply applied and is easier to understand, especially for those who know the basics of 

FEM. On the other hand, WRM obscures many fundamental strengths and weaknesses of 

BIE. Therefore we prefer using the classic approach [16,17] to derive basic integral equations. 

A standard FEM is derived in displacements, which means that the only unknowns are 

displacements. These displacements are approximated using the functions that have satisfied 

the prescribed (imposed) boundary conditions in displacements. Stress and load are secondary 

unknowns that are calculated after calculating displacements. The final result is lower 

precision of calculated stress and load. On the other hand, the boundary element method 

(BEM) is a mixed formulation where the unknowns are both displacements and loads. 

Therefore we also approximate the load and the approximation functions are selected so that 

they satisfy also the boundary conditions in loads. This is why loads obtained by BEM are 

usually more accurate than those in FEM. 

Another difference between the methods is in the selection of weighting functions. A 

classic FEM is the Bubnov-Galerkin method in which weighting functions are selected as the 
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fundamental solution of the governing differential equation. This leads to elimination of the 

integral over the investigated domain by Dirac delta (impulse) function displacement, 

resulting in a boundary formulation for the unknown field of displacement and load. 

4 Asymmetric damped discrete systems 

Analysis of damped, i.e. non-conservative, systems is much more complex than that of 

conservative systems [18]. Although solving equation of motion, or studying the 

mathematical model, is based on linear algebra methods, yet a rather complex mathematical 

apparatus is used, and it is only suitable for examining the system properties. From 

a mathematical point of view, it is examining the linear dynamic systems of general, i.e. 

Jordanian, structure with dominant occurrence of multiple eigenvalues [19]. Equation of 

motion in a discrete form and with n degrees of freedom has an analogous form as equation 

(2) 

 t  Mq Cq Kq f  (38) 

where M is the mass matrix, C is the damping matrix, and K is the stiffness matrix of N x N 

degree. General displacement q(t) and excitation f(t) are N-dimensional vectors. It is assumed 

for classic systems that M is symmetric and positive definite, and C and K are symmetric and 

positive-semidefinite. 

The use of modern control devices leads to asymmetric matrices that also loose their 

positive definiteness. Asymmetry of C and K is usually associated with gyroscopic forces. 

Linear systems with asymmetric matrices M, C and K, which are not positive definite, are 

called non-classic systems. These systems are mainly found in microdynamics. As long as 

matrices M, C and K can be transposed to a symmetric shape, we talk about symmetrization 

of non-classic systems [20]. Note that for mechatronic systems, the system of differential 

equations (38) is supplemented by systems of algebraic equations. With some exceptions, 

analytical solving of the above systems is not possible and we must therefore use numerical 

methods. However, equation of motion (38) can be also transformed to the state space. This is 

more convenient for problems relating to controlled movement. 

4.1 Solving in 2N-dimensional space 

In this case, solving the system (38) is transformed to state space 2N. By adding identity 

 Mq Mq 0  to system we obtain a system of two matrix equations 

 t  

 

Mq Cq K q f

Mq Mq 0
  

Then we obtain in the compact form 

     t t t Ax Bx p  (39) 

where  

 
  
 

C M
A

M 0
, 

 
   

K 0
B

0 M
,  

 

 








t

t
t

q

q
x


,  

 

 

t
p t

t

 
  
 

q

q
 (40) 

Since matrices A  and B  are asymmetric for calculation of eigenvalues (and eigenvectors), 

we must consider the eigenproblem from the right and from the left 

 s  A B z 0 ,  H s  y A B 0  (41) 
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where s is the eigenvalue, z  the right-hand eigenvector, and y  is the left-hand eigenvector. 

The top left index “H” denotes the Hermitian conjugate vector  TH yy   and “´- ” is the 

complex conjugate number. Let us note that vectors jz and jy  are orthogonal and can be 

normalised so as to satisfy also the conditions of orthonormality [19]. 

4.2 Solving in N-dimensional space 

Solving equation of motion (38) in N-dimensional space means to investigate the spectral 

and modal properties of the system and its response to the known curve of loading force 

without transforming the original problem to 2N-space (state space). The system response is 

then simply the sum of the homogenous solution (eigen oscillation) and the particular solution 

which represents forced (driven) oscillations should eigen oscillation disappear. It is 

important to note that solving the equation of motion in space N has the advantage that 

matrices M, C, K  are of the N degree, while in 2N-space we work with 2N-degree matrices 

A and B . 

In general, matrices M, C, K  are asymmetric. Therefore, the eigenvalues are not real but 

complex. The eigenvalue problem becomes a quadratic problem. Assuming a solution in the 

form   stt ev v , then after substituting to (38) we obtain   

 2  s s  M C K u 0  (42) 

Given the matrices M, C, K  asymmetry, it is necessary to consider also the adjoint 

eigenvalue problem (problem from the left) 

 2  H Ts s  w M C K 0  (43) 

where H
w  is the Hermitian conjugate vector to vector  TH www  . Equation (41) has the 

form 

 2  T T Ts s  M C K w 0  (44) 

Based on the Frobénius theorem for obtaining a nontrivial solution, the following applies 

 2det 0 s s  M C K  (45) 

Equation (44) is a polynomial equation of the 2N degree, and its solving provides us 2N 

eigenvalues that occur in complex conjugate pairs. For different eigenvalues, orthonormality 

conditions are satisfied in the form [22] 

 

 

j
0

2 1

H

i j i i

H

j j j

s s

s

     


  

w Mv C v

w M C v
 (46) 

As regards the calculation of eigenvectors of asymmetric non-conservative systems, these 

cannot be calculated by simple procedures. One of the possibilities is to determine these 

vectors by the left-hand-side and right-hand-side vectors of the corresponding asymmetric 

conservative system. 

Example 1 - three degrees of freedom 

To illustrate the calculation of left-hand-side and right-hand-side eigenvectors and 

eigenvalues, we present the following example with three degrees of freedom. Matrices 

M, C, K  are defined as follows: 
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0.5574 1.3858 1.3858

0.7070 0.7070 0.7070

0.4620 1.1914 0.1914

 
  
 

   

M , 

 

2.6710 2.9592 2.9651

0.4843 1.2606 0.6119

0.2875 0.5808 1.2272

 
  
 

  

C , 

1.3748 10.9440 25.2975

1.2625 2.8770 17.4195

0.7455 4.1244 0.8625

 
  
 

  

K  

(a) 

As can be seen, all the three matrices are asymmetric, and it is easy to show that they are not 

positive definite. By solving the general problem of eigenvalue without damping, we obtain 

eigenfrequencies 
1 2 3

1.3506,  3.0913, 4.8527      and the matrix of left-hand-side and 

right-hand-side vectors  

 1 2 3

1.0741 0.6240 0.4421

, , 0.0292 0.9635 0.5428

0.0047 0.00290 0.8731

 
    
 
   

U u u u  (b) 

 1 2 3

0.3082 0.4876 0.5167

, , 0.5025 0.3000 0.7973

0.8983 0.9954 0.5915

 
   
 

  

V v v v  (c) 

If we consider damping, then the eigenvalues are 
1

 0.7725 1.1965is    , 

2 3
 s 0.7251 3.056i,  s 1.3949 4.0392i       and also their corresponding complex 

conjugate values. Complex eigenfrequencies are obtained from relation /
i i

s i   

1.0162 0,0819 0.7395 0.1175 0.6187 0.5750

0.0665 0,1357 0.9530 0.0994 0.7821 0.2688

0.0310 0.0527 0.0063 0.1582 0.8802 0.0060

d

i i i

i i i

i i i

    
 

    
 
     

U  (d) 

0.3426 0.0505 0.5248 0.2880 0.5117 0.0358

0.4676 0,0709 0.0162 0,0713 0.7731 0.0691

0.9109 0.0475 1.0789 0.6182 0.7347 0.5180

i i i

i i i

i i i

   
 

    
 
     

W  (e) 

4.3 Asymmetric systems with general proportional damping 

Damping is a complex physical phenomenon and its consideration most often utilises the 

so-called Rayleigh damping.  In this case we express the damping matrix as 

  C M K  (47) 

where   and   are real values (Rayleigh coefficients). This type of damping is considered 

internal damping. Its major drawback is that damping is applied across the board for all 

material points of the body that have a non-zero velocity. Since the model does not 

distinguish between rigid motion and deformation, its use is limited to cases where a body’s 

rigid motion relative to deformation is negligible. 

If we want to use the modal method also for damped systems, the simplest way is to 

assume proportional damping. Using modal transformation u Vq  we obtain from (37), for 

zero damping, an overdetermined system of equations for the unknown coefficients   and   
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22 , 1, ...,
i i i

i n        (48) 

where 
i
 (I = 1,n) is the damping coefficient (factor). Note that for a system with two degrees 

of freedom the system (48) solution is unambiguous. For systems with many degrees of 

freedom, that is mainly for systems discretised using the finite element method (FEM), we 

take into account the fact that the resulting dynamic response is contributed to by only the 

first few eigenmodes, m « n. The effect of higher eigenmodes is negligible. If we express 

from (48) the damping coefficient 
i
 , we obtain 

2

, 1, ...,
2 2

i

i

i n
 




  


 (49) 

From (48) we see that the member containing 2  is dominant for sufficiently stiff 

structures. So it can be assumed that the damping coefficient is a linear proportional function 

of frequency. Based on the above, the damping coefficients for 1 < i < m are calculated as 

follows 

 1

1 1

1

m

i i

m

 
 


   
 

 for mi   (50) 

For eigenfrequencies larger than m, the damping coefficients values are extrapolated as 

 1

1 1

1

m

i m i m

m

 
 




   
 

 for 2.5m i m  , (51) 

while we are considering 2.5 m eigenmodes. Furthermore, we calculate coefficients    and   

for the values 
1 1
, , ,

m m
     and 

1 2,5 1 2.5
, , ,

m m
    . The resulting values of   and   are 

obtained as average of these values. In the following sections we present more general 

conditions that must be satisfied in order for a damped system to have classic eigenmodes. 

If we consider proportional damping, then system (38) has classic eigenmodes. It can be 

proven that a linear damped system can have classic eigenmodes also for the so-called general 

damping [23]. This first the so-called commutative damping when the system matrices satisfy 

the following relations:  

1)  1 1
KM C CM K ,  2) 

 1 1
MK C CK M ,  3)  1 1

MC K KC M . (52) 

This relation has the drawback that it cannot be generalised to a system with singular 

matrices. However, Caughey and O´Kelly have proven for nonnegative definite systems 

, 0, 0O  K M C  that a system has classic eigenmodes if one of these three conditions 

applies. Another damping type is expressed by Caughey series and is called Caughey’s 

damping.  

 
1

0

i







 
N

1 j

j

C M M K  (53) 

I this case we express 
1

M C  as the power of the product 1
M K . Another damping type is 

general proportional damping. Here, the coefficients i  at M and K are replaced with 

arbitrary matrix functions  •i . The proportional damping form can be generalised for a 

positive definite system. If the 1st condition in (52) is multiplied by M-1  and the 2nd condition 

is multiplied by  K-1 , then we obtain 

        1 1 1 1
M K M C M C M K , respectively AB=BA (54) 
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        1 1 1 1
K M K C K C K M , respectively  1 1

A D DA  (55) 

where  1
A M K ,

 1
B M C  and  1

D K C . Note that the 3rd condition has not been 

considered because multiplying by 1
C gives us a similar commutative condition. 

Eigenvalues, B and D are positive because the system is positive definite. It is true that for 

each two commutative matrices A and B,   A  is also commutative from B, where  x  is 

a smooth real analytic function in the neighbourhood of eigenvalues A. The damping matrix 

C is then expressed as the sum  

   2
  


 1 1

C M M K K K M  (56) 

Similarly, if we multiply condition 1) by 1
M  and 2) by 1

K  we obtain 

   3 4
   1 1

C KM M MK K  (57) 

The damping matrices given by equations (56) and (57) guarantees classic eigenmodes.  

However, due to the special shape of the arguments in functions   •  in (56) and (57), C

does not cover the entire set of real space    N x NR , so many damped systems do not have classic 

eigenmodes. Proportional damping (46) is obtained if we put  

 i i
I •   (58) 

The damping matrix expressed by equations (56) and (57) provides a new way of 

interpreting “Rayleigh’s damping” or “proportional damping”. In this case the coefficients i

at M and K are replaced with arbitrary matrix functions  i
 • . This damping model is called 

generalised proportional damping. Functions  i
 •  are called proportional damping functions 

that are identical to the damping constants  i  in Rayleigh’s model. It can be shown that the 

damping matrix expressed in the form of equations (56) and (57) is the most appropriate 

representation of Caughey’s damping. 

5 Sensitivity analysis 

In recent years, methods have been intensively developed to calculate derivatives of 

eigenvalues and eigenvectors. This is due to the fact that derivatives of eigenvalues with 

respect to design variables are important in sensitivity analysis for optimization of mechanical 

systems [24]. This allows us to modify the design for given situations, for example 

discrepancies between analyses and experiments when changing design variables, and to 

indicate changes in the design parameters in order to improve the correlation between 

analyses and experiments. 

Almost all methods for sensitivity analysis use the equation of motion in state space. These 

methods, however, are disadvantageous because the calculation needs a lot of CPU time and a 

lot of disk space to save the matrices. 

Many sensitivity analysis methods are limited only to systems with symmetric matrices. As 

we have mentioned, real systems have asymmetric matrices of mass, damping and stiffness, 

for example the behaviour of structures in the fluid, movement of vehicles on the road, 

aircraft “flutter”, and gyroscopic systems (Fig.1). Sensitivity analysis of these systems cannot 

be done using the methods for symmetric systems. 
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Fig. 1.  Gyroscopic system 

Therefore in this section we derive an algorithm of the method that does not require a left-

hand-side eigenvector. It is based on a quadratic problem in N – dimensional space (38) 

 2 2  s s  M C K u 0   

Differentiating (38) with respect to the design variable α we obtain 

     2 2

, , , , ,
2

j j j j j j j j j
s s s s s s

    
       M C K u M C u M C K u  (59) 

where  ,.  represents the derivative  .  with respect to the design variable  . Multiplying 

equation (59) by the vector T

j
u  we obtain 

   2 2

, , , , ,

T T T

j j j j j j j j j
s s s s s

    
      u M C K u u M C K u  (60) 

Transposing equation (60) we obtain 

   2 2

, , , , ,

T T T T T T T

j j j j j j j j j
s s s s s C

    
      u M C K u u M K u  (61) 

It can be seen from equation (61) that the calculation of eigenvalues derivatives is 

complex. Therefore, some authors use left-hand-side vectors to calculate eigenvalues 

derivatives [25]. Another approach is based on the simultaneous calculation of eigenvalues 

derivatives and eigenvectors [26]. 

In the following we derive a method where the problems caused by singularity and 

damping are solved simultaneously from a single algebraic equation. The method calculates 
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the derivatives of eigenvalues from the eigenvalue problem and the condition for left-hand-

side vectors.  

Transferring the members in equation (59) we obtain 

     2 2

, , , , ,
2

j j j j j j j j j
s s s s s s

    
       M C K u M C u M C K u  (62) 

The damped systems eigenvector is normalised in the state space as 

 ,
2 1

T

j j T

j j j

j j j j

s
s s

    
      

    

u uC M
u M C u

u uM 0
 (63) 

Differentiating (63) we obtain 

   , , , ,
2 2 2 2T T T T T

j j j j j j j j j j
s s s s

   
      u M M C C u u Mu u M C u  (64) 

Note that unlike the symmetrical systems, equation (64) features transposed coefficient 

matrices because T M M , 
T C C  and T K K . Combining equations (62) and (63) we 

obtain a single algebraic equation, from which we calculate derivatives of eigenvalues and 

eigenvectors 

 

 

 

 

2

,

,

2

, , ,

, ,

2

2 2 2

    
2

j j j j j

T T T T
j

j j j j j

j j j

T

j j j

s s s

ss s

s

s





  

 



     
   
      

   
   

  

M C K M C u u

u M M C C u Mu

M C K u

u M C u

 (65) 

Numerical solving of sensitivity analysis requires numerical stability of equation (65). This 

is guaranteed by the matrix 
A  non-singularity in equation (65), i.e.  det 0 A . In order to 

prove that the matrix 
A  is non-singular, we introduce the following equations 

 
  
 

Γ 0
X

0 1
, 

 
  
 

ψ 0
Y

0 1
 (66) 

where 
1 2 1
, ,....,

n j
  


   Γ v , 

1 2 1
, ,....,

n j
  


   ψ u , and jv  is the left-hand-side 

eigenvector, and 
j

u  is the right-hand-side eigenvector, which satisfy the following condition 

 

 

2

2v

j j j

T

j j j

s s

s s

  

  

M C K u 0

M C K 0
 (67) 

Vectors 
k
  and kψ  are any vectors that are independent of 

j
v  and 

j
u . Multiplying the 

matrix 
A  by vectors TX  and Y  we obtain 

 

 

   

 

2

2

2

2 2 2

2

2 2 2

T

j j j j
T

T T T T

j j j j j

T T

j j j j

T T T T

j j j j j

s s

s s

s s s

s s




      
     
       

   
 
    

M C K M C uΓ 0 ψ 0
X A Y

0 1 0 1u M M C C u Mu

Γ M C K ψ Γ M C u

u M M C C ψ u Mu

 (68) 
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Since the last columns Γ  and ψ  are the system eigenvectors, we can rewrite equation (68) 

to the following form 

0

0 0

2 2

T

T T

j j



 
 

  
 
 

B c

X A Y c

d u Mu

 (69) 

where B  is the non-singular matrix    11  nn  corresponding to the eigenvalues  j , 

 2T

j j j
s c v M C u , c  and d  are non-zero matrices. 

Utilising the determinant’s property for a partitioned matrix, we can simplify equation (69) 

to the following form 

       
10 0

det det det 0 2 det 0
2 2

T

T T

j j

c
b




    
             

   

X A Y B B c A
u Mu d

 (70) 

We can see that  det 0 A  because matrices X  and Y  are non-singular. In other words, 

the matrix 
A  is non-singular. 

Example 2 - Gyroscopic system 

The equation of motion of the gyroscopic system depicted in Fig. 2 has the following form 

           t t t t    Mu C G u K H u F  (a) 

 

 
Fig.2 Rotating beam 

where M , C , K  and F  are matrices of mass, damping, stiffness and external load, G  and 

H  are the gyroscopic matrix and the centrifugal forces matrix. So the system is asymmetric 

and the coefficient matrices are as follows 
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11 11 12

22 22 12

11 12

22 12

0 0 0
, ,

0 0 0

0 0
,

0 0

     
            

   
       

M C G
M C G

M C G

K H
K H

K H

 (b) 

Matrices G  and H  are given as 

   

 
12 11

12

2
ij ij

ij ij
h L

  

  

G M

H
 (c) 

Material data are as follows [27] 

0
1m kg m , kgM 1 , 1L m , NmLKK 202

21  , 141  Nsmhc , 223 54 NmLEIx  , 

223 59 NmLEIy  , 121.6 rads   . 

The number of degrees of freedom is 20, and the design variable is the beam length L . The 

eigenvalues and their derivatives obtained from (65) by solving in MATLAB are presented in 

Tab.1, and eigenvector derivatives are shown in Tab.2. 

 

 

 

 

 

Tab.1 Eigenvalues and their derivatives 

Eigenvalue Eigenvalue  Derivative 

 Re
j

s  Im
j

s  
,

Re
j

s


 
,

Im
j

s


 

1 2.557 0.0 2.606e+01 -4.859e+01 

2 -2.813 0.0 1.885e+01 1.700e+01 

3 -1.560e-01 -8.539e+00 6.506e+00  4.119e+01 

4 -1.560e-01 8.539e+00 -1.634e+01 -3.827e+01 

5 1.803e-01 -1.232e+01 2.086e+00 -2.768e+00 

6 1.803e-01 1.232e+01 3.189e+00 -1.947e+01 

7 -3.427e-01 -1.688e+01 -1.283e-01 2.998e+01 

8 -3.427e-01 1.688e+01 -7.071e+01 2.666e+01 

9 -3.719e-01 -2.944e+01 9.281e+01 1.581e+01 

10 -3.719-01 2.944e+01 1.591e+01 -2.893e+01 
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  Tab. 2 Derivatives of the 1st eigenvector 

Degree of 

freedom 

1st eigenvector Derivative of the 1st 

eigenvector 

 
j

Re   
j

Im  



,

Re
j

 



,

Im
j

 

1 1.885e-02 -1.559e-03  8.823e-02 5.033e-02 

2 -3.304e-02 7.835e-02  1.012e-01 -9.981e-01 

3 2.616e-04 1.029e-02 -7.523e-02 6.620e-02 

4 4.033e-03 -2.394e-03 8,9,16e-03 8.761e-03 

5 -1.400e-03 -6.835e-04 3.352e-04   -7.207e-03 

. 

.  

.  

. 

. 

. 

.  

.  

.  

. 

. 

. 

.  

.  

.  
17 -2.3744e-05  4.239e-04 -8.362e-04 1.101e-03 

18 5.692e-07  1.669e-04  6.425e-04 3.655e-04 

19 1.0351e-04 -1.302e-04  3.451e-04   -1.978e-04 

20 -1.474e-05 -3.696e-05  2.789e-04 1.814e-04 

6 Conclusion 

The problem of dynamic analysis of nonconservative linear multiple degrees-of-freedom 

systems has been considered. Linear structures whose coefficient matrices do not satisfy the 

classical assumptions of symmetry and definitions arises frequently modern applications. It 

has been assumed that, in general, the mass, damping, and stiffness matrices are neither 

symmetric nor positive definite and cannot be simultaneously diagonalized by any linear 

transformation. Complex eigenvalues of the system are obtained from characteristic equation. 

Next, rates of change of eigenvalues and eigenvectors of linear damped discrete systems 

with respect to the system parameters have been derived. These results are presented in terms 

of changes in mass, damping, stiffness matrices and complex eigensolutions of the second 

order system so that the state-space representation of equations of motion can be avoided. 

These complex eigensolution derivatives can be useful in various application areas, for 

example, FEM updating, damage detection of structures, design optimization, etc.  

Two examples have been used to illustrate the theory herein expounded. 
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