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Abstract: Description of stress singularity in the vicinity of a free surface is presented. Its presence causes the 

retardation of the fatigue crack growth in that region and fatigue crack is being curved. Numerical model is used 

to study dependence of the stress singularity exponent on Poisson’s ratio. Estimated values are compared to those 

already published. Experimentally measured angles of fatigue crack on SENB specimens confirm the relation 

between Poisson’s ratio and the angle between crack front and free surface. 
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1 Introduction 

The linear elastic fracture mechanics is typical approach for description of the fatigue crack 

behaviour. Stress field around a crack tip is described by stress intensity factor [1], [2], [3]. This 

approach is based on an assumption of two-dimensional singular stresses in the vicinity of the 

crack front with the stress singularity exponent equal to 0.5 [1]. In reality, the stress state near 

the crack tip is always three-dimensional. Square root singularity is always dominant in the 

middle of the body, where plain strain conditions prevail. In the intersection of the crack front 

with a free surface, so called vertex point, additional singularity appears [4], [5] Therefore, the 

stress field in the area near the free surface is much more complicated than in the middle of the 

body and its description is still open question for scientific community. In spite of the fact, that 

the effect of the free surface can be neglected for many applications, in some cases can have 

a strong influence on the fatigue crack behaviour.  

During last few decades, several authors investigated effects of this vertex singularity, see 

e.g.[4]–[10]. Generally, they found that stress singularity exponent depends on Poisson’s ratio. 

In case of a straight crack, the value of the stress singularity exponent in the intersection 

between crack front and free surface is always smaller then 0.5 [4], [5]. Lower value of the 

stress singularity causes a decrease of the fatigue crack propagation rate [6], [9]. Main effect of 

the free surface is that the fatigue crack does not grow as a straight line, but the crack front is 

typically curved. Despite all previous research and present knowledge, accurate definition of 

the area influenced by the free surface or an interaction between two free surfaces in case of 

thin structures are still open questions.  

Aim of this paper is to describe the singular stress field of the fatigue crack front and explain 

typical curvature of the fatigue crack in the experimental specimens. First, the straight crack 

front stress field in the relatively thick Single Edge Notched Bend (SENB) specimen is 

accurately described by finite element simulation and stress singularity exponent was 

numerically estimated. Then, obtained data were compared with literature. The angle in the 
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intersection between crack front and free surface was experimentally measured for EA4T steel 

and aluminium alloy to confirm numerical results experimentally.  

2 Model 

Numerical model of the standard SENB specimen was created in order to study the stress 

field in the region close to vertex point. Specimen (fig. 1) was of a thickness 2B = 20 mm, 

length 2L = 210 mm, height W = 50 mm and with a crack length of a = 15 mm. Material model 

was considered as isotropic linear elastic with Young’s modulus E = 200 GPa and varying 

Poisson’s ratio 𝜈=0 – 0.499. Force, applied on the SENB to induce Mode I loading of the crack 

was F = 8000 N and corresponds to the experimental tests. Since the evaluation of the stress 

singularity exponent is very sensitive to the mesh of finite elements, very fine mapped mesh of 

linear SOLID185 elements was generated along the crack front. Elements were refined even 

more in the vicinity of the free surface. Given geometry allows to use an advantage of existing 

symmetry, only one-quarter of the specimen was modelled.  

 
 

Fig. 1 Single Edge Notched Bend (SENB) specimen used  

for numerical modelling and detail of refined mesh 

3 Vertex point singularity 

Fracture mechanic usually describes elastic stress field near the crack tip as [1]: 

 𝜎𝑖𝑗 =
𝐾𝐼

𝑟1/2 𝑓𝑖𝑗  (𝜃), (1) 

where 𝜎𝑖𝑗 are the elastic stress components, 𝑟 and 𝜃 are polar coordinates with origin at the 

crack tip. 𝐾 is the stress intensity factor (subscripts stands for denoting mode I) and 𝑓𝑖𝑗(𝜃) is 

corresponding shape function. Concept of the stress intensity factor is based on the assumption 

of two-dimensional singular elastic stress field with the square-root singularity. 

When the analysis is extended to the third dimension, the crack tip (point) becomes a crack 

front (line). Square-root singularity is valid in the middle of the body, where plane strain 

conditions exist. However, different singular field appears in the area where the crack front 

intersects the free surface, so called vertex point. Many authors put their effort to describe this 

singularity with different techniques, e.g. Bažant and Estenssoro [4] presented variational 

principles and Benthem [5] finite difference method. They found the vertex singularity is not 

of a power 0.5, but it changes. Based on their results, the power of the vertex singularity p is 

a function of Poisson’s ratio and the value is in range between0.5 (for 𝜈=0) and 0.33 (for𝜈=0.5). 

The assumption of this solution is crack in semi-infinite plate. 

According to paper [9], stress field along the crack front, vertex point included, can be 

described in each single plane perpendicular to the crack front by generalized stress intensity 

factor using relation generally approximated as 2D solution in the form: 
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 𝜎𝑖𝑗 ≈
𝐻𝐼

𝑟𝑝
𝑓𝑖𝑗(𝑝, 𝜃), (2) 

where 𝐻𝐼 is the generalized stress intensity factor, 𝑝 is the stress singularity exponent and 

𝑓𝑖𝑗(𝑝, 𝜃) is corresponding shape function. In this case, the stress and displacement components 

depend on the distance r from the crack front as 𝜎𝑖𝑗 ≈ 𝑟−𝑝 and 𝑢𝑖 ≈ 𝑟1−𝑝. Based on this 

relation, stress singularity exponent 𝑝 can be estimated numerically. The methodology is 

presented on the fig. 2. An opening displacement 𝑢𝑥 is plotted against the distance from the 

crack front 𝑟, both in logarithmic form. The stress singularity exponent is estimated by equation 

p = 1-A, where A is the slope of the line. As the mesh sensitivity of the direct method is high, 

very fine mesh along the crack front (especially near the free surface) must be employed.  

 

 

Fig. 2 Numerical estimation of stress singularity exponent 

By performing presented method in every node on the crack front we captured change of the 

stress singularity exponents, see fig. 3. As it was mentioned above, in the middle of the 

specimen the stress singularity exponent is equal to 0.5. Close to the intersection between crack 

front and free surface stress singularity exponent decrease in dependence with Poisson’s ratio, 

see fig. 3. In case of 𝜈 = 0, the stress singularity exponent p has constant value of 0.5 along the 

whole crack front. With increasing Poisson’s ratio, p significantly decrease at the free surface 

(especially in the region 0-3 mm). However, behind thickness of about 3 mm, p becomes 

constant and equal to 0.5, regardless of Poisson’s ratio. 

Values of the stress singularity exponent for models with various Poisson’s ratio in the vertex 

point were already published (tab. 1). Researchers applied different techniques, but got very 

similar results. Benthem [5] used for the evaluation finite difference, Bažant & Estenssoro [4] 

used variational principles and Burton et al [8] used FEM. The results obtained in this paper are 

in a very good agreement with those already published. 

 

Tab. 1 Comparison of the singularity exponent at vertex point obtained by different techniques 

Source 𝝁 = 𝟎 𝝁 = 𝟎. 𝟏𝟓 𝝁 = 𝟎. 𝟑 𝝁 = 𝟎. 𝟒 

Finite difference by Benthem [5] 0.500 0.484 0.452 0.414 

Variational principles by 

Bažant&Estenssoro [4] 
0.500 0.484 0.452 0.413 

FEM by Burton et al [8] 0.499 0.485 0.445 0.370 

FEM of SENB 0.497 0.480 0.449 0.414 
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Fig. 3 Stress singularity exponent p for different Poisson’s ratios (only range of 0 - 3 mm is 

shown, because the rest until the middle of the specimen at 10 mm is constant) 

Question about the size of the area influenced by the free surface remains. If we take a look 

on fig. 4, there is a part of a FEM model with presented opening stress 𝜎𝑥. In case of 𝜈 = 0, the 

stress field is the similar through the thickness of the model. However, in case of 𝜈 = 0.3, 

distribution of stress differs close to the free surface, while in the middle of the body is similar 

to the case of 𝜈 = 0. The third figure shows the difference of both previous stress fields. One 

may notice, that most of the model has small difference of stresses. There is a very small area 

in the vicinity of the vertex point, where the difference of both stress fields is significant and 

where the crack propagation can be influenced. Size of this area is in agreement with area where 

stress singularity exponent differs from 0.5.  

 

 

 

 

Fig. 4 Opening stress 𝜎𝑥 for models with 𝜈 = 0, 𝜈 = 0.3  

and the difference of these stress fields 
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4 Fatigue crack front curvature 

Presence of the vertex point singularity has an important effect in the crack shape formation. 

Let’s assume a specimen with initial straight crack is loaded cyclically (see fig. 5). The vertex 

point singularity (at the free surface) causes the fatigue crack propagation rate (FCPR) decrease 

(in region of p < 0.5) [9]. The fatigue crack grows slower compared to the middle of the 

specimen (where p = 0.5) and characteristic curved shape with an angle 𝛾 between the crack 

front and the free surface is created. Once the angle 𝛾𝑟 is reached, FCPR is constant along the 

crack front. Also the square-root singularity is ensured along whole crack front, including the 

vicinity of vertex point. Characteristic angle can be determined by the Pook’s empirical 

expression [7] 

 𝛾𝑟 = 90° − arctan (
2−𝜐

𝜐
). (3) 

 

Fig. 5 Connection among the vertex point singularity, the fatigue  

crack propagation rate and the crack front shape 

Set of experiments on SENB specimen of thickness 2B = 20 mm subjected to cyclic loading 

with load ratio R = 0.8 was executed. Being in the range of only tension loading ensures that 

crack faces can not come into the contact with each other. It allows to eliminate the possibility 

of an appearance of the crack closure effect, which would influence the shape of the crack front. 

Following figures show the fracture surface with beach marks, which allow a recognition of 

experimentally obtained crack front shapes. The first figure corresponds to a steel specimen 

(EA4T) with Poisson ratio 𝜐 = 0.3, the second one corresponds to an aluminium alloy 7075 

with Poisson’s ratio 𝜐 = 0.395. Chemical composition of steel and aluminium alloy may be seen 

in the tables below. 

 

 

Tab. 2 Chemical composition of aluminium alloy 7075 

component Al Cr Cu Fe Mg Mn Si Ti Zn 

min 87.1 0.18 1.2 0.0 2.1 0.0 0.0 0.0 5.1 

max 91.4 0.28 2.0 0.5 2.9 0.3 0.4 0.2 6.1 
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Tab. 3 Chemical composition of steel EA4T 

component C Si Mn P S Cr Cu Mo Ni V 

min 0.22 0.15 0.5 0.00 0.000 0.90 0.0 0.0 0.0 0.0 

max 0.29 0.40 0.8 0.02 0.015 1.20 0.3 0.3 0.3 0.06 

 

 

  

Fig. 6 Beach marks show the shape of the fatigue crack  

front on steel SENB specimen (ν = 0.3) 

 

 

  

Fig. 7 Beach marks show the shape of the fatigue crack  

front on aluminium SENB specimen (ν = 0.395) 

Same technique was used for the angle determination for both specimens. Line between two 

points was constructed and the angle between it and horizontal line was evaluated. Starting 

point lies 0.1 mm from the free surface, ending point lies 1 mm from the free surface. 

Averages of measured angles of both materials lie in a range between Pook’s [7] and 

Heyder’s curve [10]. Fig. 6 shows steel specimen with average angle of crack front curvature 

𝛾 = 11.0 °. Fig. 7 shows aluminium alloy specimen with averaged angle of crack front curvature 

𝛾 = 15.1 °. 

 



Volume 67, No. 2, (2017) 2017 SjF STU Bratislava 75 

 

 

Fig. 8 Fatigue crack front angle dependency on Poisson’s ratio  

according to Pook’s expression and Heyder’s results 

5 CONCLUSIONS 

Numerical model of the standard SENB specimen was created in order to study the stress 

field in the region close to vertex point. It was found, that stress singularity exponent is 

dependent on Poisson’s ratio and decreases in the vicinity of the vertex point in the case of the 

straight crack. Values of the stress singularity exponent in the vertex point for various Poisson’s 

ratio, estimated by FEM, are in a very good accordance with already published results [4], [5], 

[8]. 

Effect of singularity causes the decrease of the fatigue crack propagation rate in the region 

close to the free surface, which is followed by a curvature of the fatigue crack. Once the critical 

angle 𝛾𝑟 between the free surface and the crack front is reached, the process of fatigue crack 

shaping is finished and the FCPR is constant along the whole crack front. Critical angle 𝛾𝑟 is 

a function of Poisson’s ratio and can be estimated by simple Pook’s expression [7].  

A series of experimental work on steel and aluminium alloy SENB specimens, subjected to 

cyclic loading with load ratio R = 0.8, was presented. The measurement of the angle of the crack 

front curvature 𝛾 was performed on both materials. Average angle on steel specimen is 𝛾 = 11.0 

°, average angle on aluminium alloy specimen is 𝛾 = 15.1 °. Both angles lie in the range between 

Pook’s estimation [7] and Heyder’s results [10]. 

The presented results are the first step to model numerically fatigue crack curvature and help 

to describe accurately three-dimensional stress field around crack front. 
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