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Abstract: The paper presents the numerical simulation of thermo-hydraulic behaviour of coolant in the VVER-

440 nuclear reactor under standard outage conditions. Heating-up and flow of coolant between the reactor pressure 

vessel and spent fuel storage pool are discussed.  
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1 Introduction 

Thermo-hydraulic conditions in nuclear reactors are important not only in the operation 

mode but also under refuelling and outage conditions. During outages, several components of 

the nuclear reactor system (NR) are flooded by coolant [1]. These interconnected components 

are the reactor vessel (RV), reactor pool (RP) and spent fuel storage pool (SFSP). Values of 

pressure and temperature are significantly lower than in the operating mode (above 12 MPa), 

because the system is operated under atmospheric pressure conditions. For the thermal 

behaviour, only residual heat of fuel assemblies is considered. This residual heat is caused by 

decay of the secondary fission products and it is necessary to ensure that the cooling process 

during outages of the reactor continues. The thermo-hydraulic conditions are important also for 

outage conditions, because: 

• reactor vessel is interconnected with reactor pool and spent fuel storage pool (flooded 

by coolant) 

• fuel assemblies with their residual heat are situated in the reactor vessel and in the spent 

fuel storage pool 

• thermal and hydraulic influence between reactor vessel and pools occurs 

• transfer of impurities may occur 

The paper presents thermo-hydraulic conditions calculated using Computational Fluid 

Dynamics - CFD code [2, 3] ANSYS CFX in nuclear reactor VVER-440 [4] during outage 

conditions where the above mentioned phenomena are discussed. 

2 CFD Analysis 

The CFD analysis was performed considering the geometric model in Fig. 1, that represents 

the volume of the coolant in the system during outage conditions.  
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Fig. 1 Geometric model of the system during outage conditions 

 

The fuel assemblies and their residual thermal power were situated in the RV (residual 

thermal power from fuel assemblies that were in operation right before the outage) and in SFSP 

(residual thermal power from fuel assemblies stored from previous operations and outages). 

The residual thermal power within the RV had a value of approx. 4.4 MW total. Cooling of the 

RV was provided by natural convection using loop through one steam generator (over 40 kg/s 

of coolant flow, temperature at the cold nozzle was 35 °C). Forced convection was considered 

only in SFSP represented by two inlets and two outlets, with mass flow approx. equal to 100 

kg/s in total and inlet temperature of 35 °C, Fig. 2. Residual thermal power in the fuel 

assemblies within the SFSP with a value of only approx. 0.25 MW in total due to the fuel 

assemblies being stored in SFSP for longer periods of time resulting in reduced activity. The 

parts of the system with fuel assemblies (RV and SFSP) were not modelled in detail but they 

were modelled as two components with porous properties. These simplifications were 

necessary due to the complexity of the computationally intensive model. 

 

Fig. 2 Boundary conditions of the model 
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The model was discretized by approx. 2.1 mil. elements, Fig. 3.  

 

Fig. 3 Model mesh 

 

The parameters of the simulations were: 

• steady-state analysis  

• shear stress transport turbulent model [5] 

• 1 second physical timescale for fluid 

• convergence control by value 1×10-4 residual RMS 

Numerical solution of the CFD is based on calculation of Reynolds Averaged Navier Stokes 

differential equations for continuity, momentum and energy of the fluid flow. Turbulent 

behaviour of the flow was not modelled at the level of finite volume mesh but was modelled 

numerically by shear stress transport turbulent model. However, the analysis was a steady-state 

case (it was calculated using pseudo-time iterative method where thousands of iterations were 

necessary to achieve a converged solution). The obtained results are show in Fig. 4, 5 and 6. 

Fig. 4 shows the temperature distribution at the longitudinal cross-section of the model. Fig. 5 

shows temperature distribution at the chosen lateral cross-sections of the model. Fig. 6 shows 

the velocity distribution. 
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Fig. 4 Temperature distribution at longitudinal cross-section 

 

 

Fig. 5 Temperature distribution at chosen lateral cross-sections 
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Fig. 6 Velocity distribution at cross-section 

 

As it can be seen from these results, the flow of coolant is relatively slow and mixing of 

coolant between SFSP, RP and RV is subtle. But there is considerable bidirectional flow 

through the interconnecting channel between RP and SFSP where the coolant from RP enters 

into the SFSP at the top part and leaves the SFSP at the bottom part of the channel. Maximum 

heat-up of the coolant is approx. 23 °C located right above the core of the reactor. As it can be 

assumed from the values of residual heat in R and in SFSP dominant thermal effect is caused 

by reactor core, the influence of SFSP is low.  

3 Discussion of results 

The results show that a mutual influence between RV, RP and SFSP is evident especially in 

coolant temperature distribution, but the flow of coolant is relatively slow across the whole 

system and mixing of the coolant between SFSP, RP and RV is subtle. 

4 Conclusion 

The paper presented computational analysis of the thermo-hydraulic conditions of coolant 

during outages. The results show that flow of coolant under these conditions is relatively slow 

and mixing of the coolant between individual components of the interconnected system is not 

significant.  
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