
Volume 66, No.2, (2016) 2016 SjF STU Bratislava 5 

 

 

SIMPLE PLANAR TRUSS (LINEAR, NONLINEAR  

AND STOCHASTIC APPROACH) 

FRYDRÝŠEK Karel1, JANČO Roland2 

1 Department of Applied Mechanics, Faculty of Mechanical Engineering, VŠB–Technical University of Ostrava, 

17. listopadu 15/2172, 708 33 Ostrava, Czech Republic, e-mail karel.frydrysek@vsb.cz 
2 Slovak University of Technology in Bratislava, Faculty of Mechanical Engineering, Institute of Applied 

Mechanics and Mechatronics, Nám. slobody 17, 812 31 Bratislava, Slovakia, e-mail: roland.janco@stuba.sk 

Abstract: This article deals with a simple planar and statically determinate pin-connected truss. It demonstrates 

the processes and methods of derivations and solutions according to 1st and 2nd order theories. The article applies 

linear and nonlinear approaches and their simplifications via a Maclaurin series. Programming connected with 

the stochastic Simulation-Based Reliability Method (i.e. the direct Monte Carlo approach) is used to conduct a 

probabilistic reliability assessment (i.e. a calculation of the probability that plastic deformation will occur in 

members of the truss). 
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1 Introduction 

Planar truss structures appear to be the easiest ways of introducing, explaining and solving 

geometrical and material nonlinearities; see [1], [2], [3] and [4]. In mechanics, for small 

deformations, tasks of this type (displacements, strains and stresses) can be solved according 

to the simple 1st order theory or the more precise but more demanding 2nd order theory. 

However, there are special cases – such as the one presented in this article – which cannot be 

solved via the 1st order theory. 

The 2nd order theory always leads to a nonlinear equation or equations which can be solved 

via several numerical methods, such the Newton-Raphson Method, the Fixed Point Iteration 

Method, etc. However, there are some possibilities for simplifying it, for example via a Taylor 

series or a Maclaurin series. It can then be solved easily and directly with small acceptable 

error. 

If there are some possibilities to obtain simple solutions of complicated problems, the 

stochastic approach (Monte Carlo Method, Simulation-Based Reliability Assessment (SBRA) 

Method, probabilistic assessment) can also be easily applied. The SBRA Method is a fairly 

popular and modern trend in mechanics. Hence, a probabilistic reliability assessment can also 

be performed. For more information see [4], [5], [6] and [7]. 

This article presents a solution of a simple statically determinate pin-connected truss 

consisting of two members (i.e. derivation according to the 1st and 2nd order theories, possible 

simplifications, error estimation) together with their probabilistic inputs, outputs (histograms) 

and reliability assessment (i.e. calculating the probability that plastic deformation will occur 

in members of the truss). 
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2 Simple pin-connected truss consisting of two members (statically determinate) 

The simple pin-connected planar truss consisting of two members is loaded by vertical 

force F; see Fig. 2.1a. Expressions are derived for angle 
*
 /rad/, normal forces, stresses and 

elongations in both members and vertical displacement v
A
 according to the theory of small 

deformations for 1st and 2nd order analyses. The material of the members is isotropic, linear 

and elastic. The truss is loaded in a force-controlled manner. The given inputs are force F /N/, 

length of members L /m/, modulus of elasticity E = E1 = E2 /Pa/ of the material of the 

members, and area of the cross-sections A = A1 = A2 /m
2/ of the members. 

a)    b)    c)  

Fig. 2.1 Simple pin-connected truss consisting of two members. 

Initially, members “1” and “2” of the truss are in an ideal horizontal position, and the 

deformed shape is caused by added vertical force F (force-controlled manner of loading). 

Hence, the angle 
*
 is unknown and is connected with the deformed structure. By applying 

the method of joints at point “A
*
” of the deformed structure, see Fig. 2.1b, the normal forces 

N /N/ can be derived in both members as 
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Undeformable structure. Impossible to 

solve via 1st order analysis, which gives 

incorrect results. 

Conclusion: Possible to solve via 2nd order 

analysis, which gives acceptable results. 

Tab. 2.1 Results of the theory of small deformations (1st and 2nd order theory). 

Hence, the solution according to the 1st order theory is given in the first column of Tab. 2.1 

(i.e. the simplification that the angular changes are neglected, i.e. 
*
 = 0 rad), where  /Pa/ is 
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axial stress in the members and 
L
 /m/ is elongation of the members. However, the results 

obtained according to the 1st order theory are presenting a solution with absolutely rigid 

(undeformable) members “1” and “2”. The 1st order theory gives incorrect results, and it 

cannot be applied in solutions of such a truss (i.e. no deformations in the truss, infinite 

stresses etc.). 

Therefore, this example must be solved via the 2nd order theory. From the triangle A, A*, B 

(deformed structure), see Fig. 2.1c, it is possible to derive 

NEA
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From eq. (2.1) and (2.2) follows 

*
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  , and after simplification the 

following nonlinear expression can be derived: 
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. (2.3) 

A reasonably good initial estimate of angle 
*
 (i.e. *

0 ) can be derived by simplification 

via a Maclaurin series where 
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Thus, the iterative scheme with recursive relation (i.e. the application of the Fixed Point 

Iteration Method) can be derived as 
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Hence, with small and acceptable error (for small deformations), this can be written as 
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; see the second 

column of Tab. 2.1 (i.e. the solution according to the 2nd order theory). The correctness of the 

derived results obtained according to the 2nd order theory can be checked via Pythagoras’ 

theorem, see Fig. 2.1c (i.e. the equation   22
A

2
L LL  v  is satisfied). 
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The same results can be derived in many other ways; one of these ways is based on the 

minimum of total potential energy  /J/ of the truss (i.e. on equation 0




*
). Thus 

 = U – W
F
, (2.6) 

where U = 
V
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E

2
2

2
 /J/ is the strain energy (potential energy of strain, i.e. an integral over 

volume V /m3/ of the members for elastic and isotropic material behaviour and constant cross-

section of members, see reference [8]) and W
F
 = Fv

A
 /J/ is the work of external force F. 

According to Fig. 2.1c, the axial (engineering) strain ε /1/ in the members can be derived as 
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and the derivative of total potential energy can be performed as 
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Equation (2.9) is satisfied only for 0F1
1

2 



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




*

*

cos
sinEA


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eq. (2.3); the correctness of the acquired expressions in the second column of Tab. 2.1 is 

proven. 

Another interesting ideas and approaches for treatments with nonlinearities are written in 

[1], [2], [3], [9] and [10] 

3 Probabilistic inputs 

For a solution using a stochastic approach, calculating the probability that plastic 

deformation will occur and performing a probabilistic reliability assessment, the probabilistic 

inputs must be defined; see the upper part of Tab. 3.1. Anthill software (i.e. the SBRA 

Method) was applied in this stochastic modelling; see references 4, 6 and 7. 

Five chosen probabilistic inputs (i.e. mutually independent variables) of random type, and 

their notation via histograms, are shown in Tab. 3.1. These random variables cover real 

variabilities and fluctuations in technical practice for the truss presented here. 

Tab. 3.1 presents all basic statistical information (i.e. minimum, maximum, median and 

mean values) and histograms. In Anthill software, the histogram "Uniform" means truncated 

uniform distribution, "n1-05.dis" means truncated normal distribution ±5%, "dead1.dis" 

means dead load truncated distribution 
+0%

−18.9%
 , and "a36-m-cont.dis" means yield stress 

truncated distribution for carbon steel A36.  
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Random 

inputs 
Description 

Histogram applied in Anthill 

software 
Min. Max. Median Mean 

L /m/ 

Length of 

members 

“1” and “2” 

"Uniform" distribution 

 

0.95 1.05 1 1 

E /Pa/ 

Modulus of 

elasticity of 

members 

“1” and “2” 

Modified (truncated) normal 

distribution 2.08×1011*"n1-05.dis" 

 

1.976×1011 2.184×1011 2.080×1011 2.080×1011 

A /m2/ 

Area of 

cross-section 

of members 

“1” and “2” 

Modified (truncated) normal 

distribution 0.022*"n1-05.dis"

 

0.0209 0.0231 0.0220 0.0220 

F /N/ 

External 

vertical 

force acting 

in joint “A*” 

Modified (truncated) dead 

distribution 550000*"dead1.dis"

 

449900 550000 500147 499950 

Rp /MPa/ 

Yield limit 

for material 

of members 

“1” and “2” 

Measurement for A36-M steel 

(truncated user defined distribution) 

"a36-m-cont.dis" 

 

248 500 338.29 339.15 

PALLOWABLE = 7×10-5 = 0.007 % is the allowable working probability that plasticity will occur in members “1” 

or “2” 

Definition of probabilistic inputs:

 
 

Notation in Anthill software 

; Probabilistic solution - statically determinate simple pin-connected truss according to the 2nd order theory 

RF = Rp-sigma                                                                      ; reliability function /MPa/ 

vA = L*tan(alfa)                                                                    ; displacement of point “A” /m/ 

sigma = 1e-6*N1/A                                                               ; stress in members /MPa/ 

N1 = 0.5*F/sin(alfa)                                                              ; normal forces in members /N/ 

alfa = acos( 1 - 0.5*F / ( E*A*tan( (F/(E*A))^(1/3) ) ) )   ; angle /rad/ 

F = F0*Fvar                                                                           ; loading vertical force /N/ 

E = E0*Evar                                                                          ; modulus of elasticity /Pa/ 

A = A0*Avar                                                                         ; area of cross-section of members /m2/ 

L = Lvar                                                                                ; length of members /m/ 

Rp = Rpvar                                                                            ; yield limit of members /MPa/ 

Tab. 3.1 Stochastic inputs and their basic characteristics (simple pin-connected truss) and 

programming in Anthill software. 



10 2016 SjF STU Bratislava Volume 66, No. 2, (2016) 

 

4 Probabilistic outputs 

The stochastic (probabilistic) results (i.e. stochastic outputs), see Tab. 4.1, can be used for 

the probabilistic reliability assessment of the solved truss (Anthill software, SBRA Method).  

Stochastic 

outputs 
Description Min. Max. Median Mean 


*
 /rad/ 

Angle in deformed structure 0.04780.0029

 

0.0449 0.0507 0.0478 0.0478 

v
A
 /m/ 

Displacement of point “A” 0.0478−0.0048
+0.0050 

 

0.0430 0.0528 0.0478 0.0478 

N /N/ 

Normal forces in members “1” and “2” 

5231785−518605
+528656  

 

471318

0 
5760441 5231785 5231544 

 /MPa/ 

Stresses in members “1” and “2” 

237.83−25.29
+26.71 

 

212.54 264.54 237.83 237.84 

Tab. 4.1 Stochastic outputs and their basic characteristics (simple pin-connected truss). 

Thus, the given stochastic inputs are used to calculate the stochastic outputs 
*
, v

A
, N and 

 via histograms and distributed functions, as presented in Tab. 3.1. All calculations are 

performed and evaluated for NTOTAL = 107 Monte Carlo random simulations. 

In this case, the reliability function R
F
 /MPa/ can be defined as 

R
F
 = Rp – . (4.1) 

The reliability function and 2D histogram  vs. Rp are presented in Fig. 4.1. Hence, it is 

evident that if R
F
 > 0 (i.e. yield limit Rp is greater than normal stress ), the stress is below the 

yield limit (safe loading, no plasticity occurs). Otherwise, if R
F
  0, then plasticity occurs (i.e. 

an unsafe and undesirable situation). 

The probability Pf of an unsafe situation (i.e. a situation when R
F
  0) is calculated in 

Anthill software by the expression 

Pf =  0FRP  = 
 N

N

TOTAL

f
, (4.2) 

where Nf is the number of unfavourable states (i.e. states when R
F
  0). 
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Fig. 4.1 Probabilistic reliability assessment (SBRA Method, Anthill 2.6 software). 

From the presented results it is calculated that Pf = 4.63410-5 (i.e. approx. 0.0046% of all 

possible random simulations cause plastic deformations). 

Finally, the probabilistic reliability assessment can be performed by checking the 

inequation 

P
f
  PALLOWABLE ,   i.e. 4.63410-5 < 7×10-5. (4.3) 

Inequation (4.3) is fulfilled; the solved truss therefore satisfies the probabilistic reliability 

condition. 

CONCLUSION 

Planar truss structures appear to be the easiest ways of introducing, explaining and solving 

geometrical and material nonlinearities (in this case, a simple pin-connected and statically 

determinate truss). The focus is on the understanding, step-by-step derivation, applications, 

possible simplifications, programming and solution of nonlinear problems which are widely 

applied mostly by civil and mechanical engineers. The solutions according to the 2nd order 

theory always lead to a set of nonlinear equations. However, there are possibilities to solve 

such a task directly via iterative approaches, or to linearize and simplify it (via a Maclaurin 

series in this case) and then to solve it easily with only small errors. Simplifying a relatively 

complicated nonlinear set of equations usually enables a relatively easy application. The 

stochastic approach (direct Monte Carlo Method, Simulation-Based Reliability Assessment 

(SBRA) Method, probabilistic reliability assessment) is a modern, quite popular trend in 

mechanics. Hence, the SBRA Method (i.e. stochastic inputs and outputs) was applied in order 

to determine the probability that plastic deformations will occur in the structure. Finally, a 

probabilistic reliability assessment was performed by checking the inequation P
f
  PALLOWABLE 

(i.e. the probability that plastic deformation will occur 4.63410-5 < 7×10-5; the solved truss 

satisfies the probabilistic reliability condition). 

This article was supported by the Czech project SP2016/145. 
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