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Abstract: In this paper, a meshless local Petrov-Galerkin (MLPG) method is proposed to calculate mechanical 

and electrical responses of three-dimensional piezoelectric semiconductors under static load. The analyzed solid 

is discretized by a set of generally distributed nodal points distributed over 3D geometry. Local integral 

equations (LIEs) are derived from the weak form of governing equations over small local subdomains. The 

subdomains have a spherical shape with a nodal point located in its centre. A unit step function is used as the test 

functions in the local weak-form. The moving least-squares (MLS) method is adopted for the approximation of 

the physical quantities in the LIEs. The proposed MLPG method is verified by using the corresponding results 

obtained with the finite element method. Numerical examples are presented and discussed for various boundary 

conditions and loading scenarios to show the performance of the developed MLPG method for analysis 

piezoelectric semiconducting solids. 

KEYWORDS: piezoelectric semiconductors, meshless local Petrov-Galerkin (MLPG) method, MLS 
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1. Introduction 

Smart materials and especially piezoelectric materials have received great attention in 

recent years [4]. These materials are extensively utilized as transducers, sensors and actuators 

in many engineering fields. Piezoelectric materials have anisotropic properties. Except this 

complication, electric and mechanical fields are coupled each other and the governing 

equations are much more complex than those in the classical elasticity. The approach usually 

adopted in treating piezoelectric media is to simplify Maxwell's equations by neglecting 

magnetic effects, conduction, displacement currents and free charges. This classical, 

electrically quasistatic theory of piezoelectric bodies, which is sufficient for nearly all 

engineering applications, is clearly formulated for plate problems in a book by Tiersten [2]. 

In most cases, piezoelectric crystals and ceramics are treated as nonconducting dielectrics 

but in reality there is no sharp division separating conductors from dielectrics. Real materials 

more or less have some conduction [3]. Thus special interest should be devoted to 

piezoelectric composed materials exhibiting semiconducting properties. In such a case, the 

electric field produces currents and space charge resulting in dispersion of elastic waves. The 

interaction between a traveling acoustic wave and mobile charges in piezoelectric 

semiconductors is called an acoustoelectric effect. 

The acoustoelectric effect and amplification of acoustic waves can be achieved through 

composite structures of piezoelectric dielectrics and nonpiezoeletric semiconductors, which 

have led to the development of acoustoelectric devices. Usually, these kind devices are made 

of layered structure where a thin or thick layer is deposited on elastic or piezoelectric 

substrate [4]. Piezoelectric semiconductors have been used to make devices for acoustic wave 
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amplification [5, 6] and acoustic charge transport [7] based on the acoustoelectric effect. 

Fracture analysis of piezoelectric semiconductors was recently performed by Sladek et al. [8]. 

Numerical analysis of piezoelectric devices has been dominated by the mesh-based 

methods such as finite element method (FEM) and boundary element method (BEM). FEM is 

widely used in design of structures [9] incorporating piezoelectric materials, however it 

possesses some drawbacks, e.g. shear-locking of elements during modeling of thin-walled 

structures that is eliminated only at high computational cost and lower accuracy. BEM has 

been applied to analysis of piezoelectric materials [10, 11], however it is limited by the 

unavailability of fundamental solutions for 3-D problems in piezoelectric anisotropic 

materials. 

Meshless methods for solution of various boundary value problems are powerful 

alternative to mesh-based techniques. Meshless methods are also characterized by high 

adaptivity and low cost to prepare input and output data for numerical analyses. Many 

drawbacks of mesh-based methods can be efficiently eliminated if only nodal points are used 

instead of finite elements. The meshless local Petrov-Galerkin (MLPG) method is considered 

as a fundamental base for the derivation of many meshless formulations, since trial and test 

functions can be chosen from different functional spaces. The MLPG method introduced by 

Atluri [12] and Sladek et al. [13], using a Heaviside step function as the test functions, has 

been applied to solve 2-D homogeneous piezoelectric dielectric problems in paper by Sladek 

et al. [14]. Recently, meshless method (MLPG) was applied to analyze continuously 

nonhomogeneous piezoelectric solids under a mechanical or electrical load [15]. 

The MLPG has been successfully applied to various problems related to piezoelectricity 

including thermopiezoelectricity [16], piezoelectric rectangular and laminated plates [17, 18].  

As a special case of 3-D problems axisymmetric solids and axisymmetric circular plates 

[19, 20]. Axial symmetry of assumed geometry reduces the original 3-D problem into a 2-D 

problem in the angular cross section. Present paper thus gives an extension of the MLPG 

method to 3-D piezoelectric semiconducting solids, since previous works only included 3-D 

elastic and piezoelectric dielectric solids [21, 22]. The coupled electro-mechanical fields for 

piezoelectric semiconducting material are described by constitutive relations and governing 

partial differential equations (PDEs). Nodal points are spread on the analyzed domain without 

any limitations on their mutual position. Small local subdomain of spherical shape is 

introduced around each nodal point. Local integral equations (LIEs) constructed from 

governing PDEs are defined over these spherical subdomains. Heaviside unit step function is 

applied as a test function in each local subdomain [23]. Numerical integrations can be easily 

carried out over the local subdomains if a simple shape like a sphere is chosen for their 

geometry. Moving Least-Squares (MLS) approximation scheme [12, 24] is used to 

approximate the spatial variations of all physical fields in terms of specific nodal values. The 

essential boundary conditions on the global boundary are specified by the collocation of the 

MLS approximations for prescribed field quantities at the boundary nodes. Numerical 

examples are presented for the piezoelectric semiconductor of cylindrical shape to assess the 

applicability of the proposed MLPG method. 

2. Basic equations for piezoelectric semiconductors 

Governing equations describing the stationary behavior of 3D piezoelectric 

semiconducting body   under static loading are given by the force equilibrium equation, the 

first scalar Maxwell’s equation and the equation of conservation of charge of electrons [5] as  

   , 0ij j iX  x x               (1) 
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   ,i iD qMx x               (2) 

 , 0i iJ x                (3) 

where  ij x is the stress tensor,  iD x is the vector of electric displacements,  iJ x is the 

vector of electric current,  iX x  is vector of body forces, q is the electric charge of the 

electron (assuming n-type semiconductivity) and  M x is the change of the electron density 

producing a net space charge (density of free electric charge). Cartesian coordinates are 

specified for 3D case as  1 2 3, ,x x xx .  Recall that in stationary problems, the Maxwell 

equations are reduced to the Gauss law, provided that the magnetic field is not present and the 

intensity of electric field is expressed as the gradient of a scalar potential.  

Constitutive equations of the piezoelectric material represent the coupling of the 

mechanical and electrical fields. The piezoelectric constitutive equations given by White [5] 

are representing the coupling of the mechanical and electrical fields and also electrical 

current. In the case of stationary problems, the constitutive relationships become  

( ) ( ) ( ) ( ) ( )ij ijkl kl kij kc e E  x x x x x                   (4) 

( ) ( ) ( ) ( ) ( )j jkl kl jk kD e h E x x x x x             (5) 

0 ,( ) ( ) ( ) ( ) ( ) ( )i ij j ij jJ qM E qd M x x x x x x                        (6) 

where ( )ijklc x , ( )ijke x , ( )ijh x , ( )ij x  and ( )ijd x  are the elastic, piezoelectric, dielectric, 

electron mobility and carrier diffusion material coefficients, respectively. Recall that 0 ( )M x is 

the density of electrons in unloaded state and producing no net space charge in contrast to 

( )M x . 

The strain tensor ij  and the electric field vector jE  are related to the displacements iu  and 

the electric potential   by 

 , ,

1

2
ij i j j iu u   ,                                                                                                                (7) 

,j jE   .                                                                                                                           (8) 

For the mechanical field following essential and natural boundary conditions are assumed:  

 ( ) ( )i iu ux x ,                 on     u , 

 ( ) ( )i ij j it n t x x ,      on     t , 

 for the electrical field: 

 ( ) ( ) x x ,           on     p , 

( ) ( )i in D qMx x ,      on     q , 

and finally for the electrical current field: 

( ) ( )M Mx x ,             on     a ,    
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 ( ) ( ) ( )i iJ n Sx x x  ,     on     b , note that  a b   , 

where jn  is the unit vector normal to the boundary and u  is the part of the global boundary  

  with prescribed displacements, while on t , p , q , a , and b   the traction vector, 

electric potential, surface density of the free charge, electron density, and the electric current 

flux are, respectively, applied.  

The constitutive equations for piezoelectric semiconductors (4-6), representing the 

coupling of mechanical and electrical voltage and current fields, may be written for 

transversally isotropic 3-D piezoelectric semiconducting body poled in 3x  direction in a 

compact matrix form as 

11 12 1311 11 31

12 11 1322 22 31

13 13 3333 33 33

4423 23 15
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6612 12
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0 0 0 0 0
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                                (9) 
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2 15 11 2
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D e h E
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,                                     (10) 

 

1 11 1 11 ,1

2 0 22 2 22 ,2

3 33 3 33 ,3

0 0 0 0

0 0 0 0

0 0 0 0

J E d M

J qM E q d M

J E d M







        
        

          
                 

,                                             (11) 

where 66 11 12

1
( )

2
c c c  . 

3. Formulation by the MLPG method 

The MLPG method is based on the local weak form of the governing equations (1-3) that is 

written over local subdomain s . Local subdomain is shown in Fig. 1. Local subdomain is a 

small region taken for each node inside the global domain [12]. The local subdomains could 

be of any geometrical shape; in this paper spherical shape is used just for simplicity.  
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Fig. 1.  Local boundaries and sub-domain for weak formulation and support domain for MLS 

approximation. 

The local weak-form of the governing equations (1-3) can be written as 

*

, ( ) ( ) ( ) 0

s

ij j i ikX w d


     x x x          (12) 

*

, ( ) ( ) ( ) 0

s

i iD qM w d


     x x x          (13) 

*

, ( ) ( ) 0

s

i iJ w d


     x x            (14) 

where 
* ( )ikw x and 

*( )w x  are test functions. 

Heaviside step function is chosen as the test function * ( )ikw x  and 
*( )w x  in each subdomain 

as 

  *
at

( ) ,
0 at

ik s

ik

s

w
 
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

x
x

x
 

*
1 at

( ) .
0 at

s

s

w

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

x
x

x
       (15) 

Local integral equations (LIEs) are formed from the local weak forms (12-14) with the use 

of Gauss divergence theorem and properties of selected test functions (15). Assuming the 

body forces  iX x  to be vanishing in the present case, LIEs take the following form  

    0

S

ij jn d


  x x              (16) 
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      0

S S

i iD n d qM d
 

   x x x            (17) 

    0

S

i iJ n d


  x x               (18) 

where  jn x  is the unit outward normal vector to the boundary S  of local subdomain. 

There is no requirement in the MLPG method on the test and the trial functions to be 

necessarily from the same functional spaces. For internal nodes, the test function is chosen as 

the Heaviside step function with its support on the local subdomain. The trial functions, on 

the other hand, are chosen in this paper to be the moving least-squares (MLS) approximation 

[12] over a number of nodes spread within the domain of influence. The MLS approximation 

is used for the approximation of displacements, electric potential field and the change of 

electron density in terms of scattered nodal points as 

1

ˆ( ) ( )
n

i i

j j

i

u u


x x , 
1

ˆ( ) ( )
n

i i

i

  


x x ,  
1

ˆ( ) ( )
n

i i

i

M M


x x         (19) 

where the nodal values ˆ i

ju , ˆ i and ˆ iM  are so called fictitious parameters for the mechanical 

displacements ,electric potential and the change of electron density, respectively. The MLS 

shape function  i x  is defined over a set of n  nodes located in the support domain x [12]. 

C
1
-continuity of the MLS approximation is ensured by the fourth-order spline type weight 

function used for the construction of the shape function given as 

2 3 4

1 6 8 3 0
( )

0

a a a
a a

a a a a

a a

d d d
d r

v r r r

d r

      
                 




x        (20) 

where 
a ad  x x  and 

ar  is the radius of the circular support domain. The value of n in 

Eq. (19) is determined by the number of nodes lying in the support domain with radius
ar .  

The partial derivatives of field quantities are approximated with the use of the shape function 

derivatives  ,

i

k x  and original fictitious parameters as 

, ,

1

ˆ( ) ( )
n

i i

j k k j

i

u u


x x , , ,

1

ˆ( ) ( )
n

i i

k k

i

  


x x , , ,

1

ˆ( ) ( )
n

i i

k k

i

M M


x x      (21) 

Applying Eqs. (19), (21) to approximation of trial functions ( )ju x , ( ) x , ( )M x  and their 

derivatives in constitutive relations (4-6) and their subsequent insertion into local integral 

equations (16-18) is leading to discretized local integral equations in the following form 
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         

       
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       (26) 

Equations (22-26) are considered on the sub-domains adjacent to interior nodes as well as 

to the boundary nodes on st , sq  and sb . Complete system of partial differential equations 

for the computation of the nodal unknowns can be obtained by collecting the discretized local 

boundary-domain integral equations together with the discretized boundary conditions. 

Collocation approach is used to impose essential boundary conditions directly, using MLS 

variable approximations (19). For natural boundary conditions local integral equations are 

written for the nodes on the appropriate segments of the global boundary as explained in [12]. 

4. Numerical examples 

Results of numerical experiments are presented in this section to show applicability of the 

proposed MLPG formulation for the analysis of piezoelectric semiconducting cylindrical 
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body. Variety of piezoelectric devices (sensors) have cylindrical shape. A three dimensional 

cylinder with radius 0.015mR   and height 0.001mh   is considered. Homogeneous 

material properties are selected to test the present computational method. The material 

coefficients of the cylinder are considered for aluminum nitride (AlN) according to [8]: 

10 2

11 22 40.3 10c c Nm   , 
10 2

12 14.3 10c Nm  , 
10 2

13 23 10.4 10c c Nm   ,   

10 2

33 38.2 10c Nm  ,   
10 2

44 55 3.53 10c c Nm   , 

2

15 0.39e Cm  ,    
2

31 0.66e Cm  ,    
2

33 1.57e Cm , 

10 1

11 22 33 0.8092 10 ( )h h h C Vm     ,  
2 2 1

11 22 33 3.0 10 ( )m Vs        ,   

4 2 1

11 22 33 7.0 10d d d m s     , 
191.602 10q C   

The geometry of the cylinder is discretized with using 1204 nodal points as shown on Fig. 

2. The radius of the MLS support domain is chosen as 0.007mir  . The bottom of the 

assumed cylinder is clamped corresponding to state when it is placed on a rigid support, thus 

all components of mechanical displacements are set to zero. Vanishing electric potential and 

the change of electron density are prescribed at the bottom side that corresponds to the 

grounding electrode attached there. Vertical displacements, induced electric potential and the 

change of electron density are measured at the top of the cylinder. Three initial electron 

densities 0M  are considered in numerical examples corresponding to conducting (

6 7

0 1 ,1M e e [m
-3

]) and non-conducting/dielectric ( 0 0.0M  [m
-3

]) cases. 

 

Fig. 2. Distribution of 1204 nodal points over the considered cylinder. 

In the first numerical example a uniform electric potential load 1 2 3( , , ) 100x x x h V    is 

defined at the top of the cylinder. As noted in [22] a uniform load will cause axially 

symmetric response and thus axisymmetric analysis can also be performed. Obtained results 

are compared to FEM-Comsol solution that is using 3900 elements. Variation of vertical 

displacement 3u  along the line on the top of the cylinder ( 1 2 3; 0;x x x h  ) is depicted on 

Fig. 3. One can see that the initial electron density 0M has almost vanishing influence on the 
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resulting vertical displacement. Variation of electron density M with 1x  coordinate is shown 

on Fig. 4. Initial electron densities have in this case significant influence on the resulting 

electron density M. For the vanishing initial electron density (dielectric piezoelectric material) 

we obtain also vanishing resulting electron density.  

 

 

Fig. 3. Variation of vertical displacement 3u with 1x  coordinate for the case of conducting and 

non-conducting piezoelectric material under electric potential load. 

 

Fig. 4. Variation of change of electron density M with 1x  coordinate for the case of 

conducting and non-conducting piezoelectric material under electric potential load. 
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In the second numerical example a non-uniform mechanical traction load is prescribed at 

the top of the cylinder. In general engineering applications the applied load have non-uniform 

distribution. Then 3D numerical analysis is required. In the case considered here, the 

distribution of the vertical traction field over the nodal points on the top side of the cylindrical 

cylinder is governed by formula 

  1
3 1 2 3, , sintop x b

T x x x h a
R


 

    
 

            (27) 

where ,a b are arbitrary constants. For the compressive load considered here the constants are 

taken as 
41.0 10a    and 0.01b  . Fig. 5 shows the schematic variation of the prescribed 

traction in 1x  direction over the top side of cylinder. 

 

Fig. 5. Variation of the prescribed traction field over the cylinder. 

 

Obtained results are again compared to FEM-Comsol solution that is using 3900 elements. 

Variation of vertical displacement 3u  along the line on the top of the cylinder (

1 2 3; 0;x x x h  ) is depicted on Fig.6. The response of induced electric potential to the 

applied non-uniform compressive load is shown in Fig. 7 and induced electron density in Fig. 

8. Excellent agreement between FEM and MLPG results is observed.  
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Fig. 6. Variation of vertical displacement 3u with 1x  coordinate for the case of conducting and 

non-conducting piezoelectric material. 

 

Fig. 7. Variation of electric potential  with 1x  coordinate for the case of conducting and 

non-conducting piezoelectric material. 
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Fig. 8. Variation of change of electron density M with 1x  coordinate for the case of 

conducting and non-conducting piezoelectric material. 

 

One can observe from Figs. 6 and 7 that the influence of the density of electrons in 

unloaded state 0M on the mechanical displacement and electric potential responses to 

considered loadings is negligible.  However, the variation of the change of electron density 

( )M x  along the 1x  coordinate is strongly influenced by the initial electron density 0M as can 

be seen on Fig. 8. This can be explained as follows. The r.h.s. in the governing equation (2) 

and the boundary condition ( ) ( )i in D qMx x can be approximately neglected, since the 

electric charge of the electron is very small as compared with other material coefficients. 

Furthermore, the constitutive laws (4) and (5) are independent on the density of electrons in 

unloaded state 0M as well as on the change of electron density ( )M x . Then, the boundary 

value problem for the primary fields ( )iu x  and ( ) x can be solved separately from the b.v.p. 

for the change of electron density ( )M x .  

Overall responses of the electric potential and the free electron density at the top of the 

cylinder are shown on Fig. 9 for the conducting piezoelectric case with 
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a) b) 

Fig. 9.Field variations at the top of the piezoelectric semiconducting cylinder under 

mechanical load: a) electric potential; b) electron density.  

 

Finally, combined mechanical and electron density load is considered to assess the 

influence of conducting piezoelectric properties on the response of the cylinder thus enabling 

us to observe interactions occurring in acoustoelectric effect. Mechanical traction load is has 

the same variation and value as in the previous example (see Eq. 27). Non-zero value of the 

free electron density 
15 3

1 2 3( , , ) 10M x x x h m   is prescribed on the top side of the cylinder. 

Initial electron density is kept as 
7

0 10M  m
-3

. Since electron density is prescribed as a 

boundary condition, initial electron density will have no influence on its value. Fig. 10 shows 

variation of vertical displacement 3u with 1x  coordinate while on Fig. 11 the variation of 

induced electric potential  with 1x  coordinate is shown for the case of the pure mechanical 

load and the combined mechanical and free electron density load. 

 

 
Fig. 10. Variation of vertical displacement 3u with 1x  coordinate for the case of pure 

mechanical and combined load. 
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Fig. 11. Variation of electric potential  with 1x  coordinate for the case of pure mechanical 

and combined load. 

Significant change of both vertical displacements and induced electric potentials can be 

observed on Figs. 10 and 11 if nonzero electron densities are prescribed indicating vast 

possibilities in control of mechanical and electrical response of piezoelectric structures if 

piezoelectric semiconductors are used instead of piezoelectric dielectric materials. 

Excellent agreement between FEM and MLPG results is again observed indicating that 

MLPG is a promising method for the analysis of piezoelectric semiconductors using much 

lower number of nodal points compared to FEM.  

Conclusion  

A meshless local Petrov-Galerkin method (MLPG) is proposed in this paper for the 

solution of boundary value problems for coupled electro-mechanical fields in 3D piezoelectric 

semiconductors. Proposed method is a truly meshless method as no discretization elements 

were used for the approximation or integration of unknowns. The MLS approximation 

scheme has been used for approximation of trial functions. Using the Heaviside unit step 

function as a test function pure boundary formulation on each local subdomain has been 

obtained.  

The main advantage of the present method is its simplicity and generality in comparison to 

other techniques such as the conventional BEM. The method is particularly promising for 

problems which cannot be solved by the conventional BEM in cases when the fundamental 

solutions are not available. 

Applicability of proposed meshless method is demonstrated on numerical example 

assuming non-uniform loading and conducing and non-conducting conditions. Results 

indicate that initial electron density has negligible influence on resulting mechanical 

displacement and electric potential responses under mechanical load. However significant 

difference has been observed in responses when a pure mechanical load was applied and 

when the mechanical load was combined with essential boundary conditions for the free 

electron density. Presented meshless method may be easily extended also to design of 

functionally graded piezoelectric semiconducting devices in the future. 
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