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Abstract: In this contribution, results of elastostatic analysis of spatial composite beam structmes are presented 
using ow- new beam finite element of double symmetric cross-section made of a Ftmctionally Graded Material 
(FGM). Material propett ies of the real beams vaty continuously in the longitudinal direction while variation with 
respect to the transversal and lateral dire.ctions is assumed to be symmetric in a continuous or discontinuous 
manner. Continuously longitudinal vruying spatial Winkler elastic fotmdations (except the torsional fotmdation) 
and the effect of axial and shear forces are considered as well. Homogenization of spatially vatying material 
propetties to effective quantities with a longitudinal variation is done by the multilayer method (MLM). For the 
homogenized beam finite element the local stiffness matrix is established by means of the transfer matrix 
method. By the conventional finite element procedw-e, the global element stiffness matrix and the global system 
of equation for the beam stmcture are established for calculation of the global displacement vector. The 
secondary variables (internal forces and moments) are then calculated by means of the transfer relations on the 
real beatns. Fwt her, the mechanical stress in the real beams are calculated. Finally, the numerical experiments 
are canied out concerning the elastic-static analysis of the single FGM beruns and beam structw-es in order to 
show the possibilities of ow- approach. 

KEYWORDS: 3D FGM beam, spatially vatying material properties, elastostatic analysis 

1 Introduction 

Imp01iant classes of stmctural components, where FGM is used, are beams and beam 
structures. FGM beams play an imp01iant role not only in classical structural applications, but 
we can find many applications in the1mal, electr·ic-theimal or electr·ic-theimal-structural 
systems (e.g. micro-electro-mechanical systems (MEMS) as sensors and actuators and other 
mechatr·onic devices). In all these applications, using new materials like FGM can greatly 
improve the efficiency of the systems. FGM is built as a mixture of two or more constituents 
whose pa1iicles have almost the similar f01m and dimensions (powder, plasma pruiicles, etc.). 
The continuous or multilayered vru·iation of macroscopic material propeliies can be caused by 
vruying the volume fraction of the constituents and with vruying the constituents material 
prope1iies (e.g. by a non-homogeneous temperature field). In the literature a huge amount of 
papers can be found which deal with modeling and simulation of static and dynamic problems 
of FGM beams. In [1], a review of the principal developments in FGM is processed with an 
emphasis on the recent work published since 2000. A cmTent state in the elasto-static analysis 
of the FGM beam can be pruiiculru·ly documented by following papers: In [2] , bending and 
free vibration of FGM beams resting on Winkler - Pastemak elastic foundation based on the 
two-dimensional the01y of elasticity ru·e presented. Exponentially varying material propeliies 
along the thickness direction were considered. In [3], high-order flexural theories for sh01i 
functionally graded symmetr·ic beams under three-point bending ru·e presented. Transversal 
continuous vru·iation of material prope1iies was considered. In [4], displacement field based 
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on higher order shear deformation theory is implemented. FGM beams with variation of 

volume fractions of constituents based on power law exponent were considered. In [5], 

several axiomatic refined theories are proposed for the linear static analysis of beams made of 

materials whose properties are graded along one or two directions. In [6], the analysis of the 

large deformation of a non-linear planar cantilever FGM beam is made. In [7], a novel 

analytic approach is presented to solve the buckling instability of Euler – Bernoulli columns 

with arbitrarily axial inhomogeneity and/or varying cross-section. In [8], a size-dependent 

formulation is presented for Timoshenko FGM beams. The formulation is developed through 

the modified couple stress theory. In [9], non-linear static analysis of a cantilever Timoshenko 

beam composed of FGM under non-follower transversal uniformly distributed load is studied 

with large displacements and rotations. Material properties change in the thickness direction 

according the power-law function. In [10], an investigation of the dynamic stability of 

functionally graded ordinary beam and functionally graded sandwich beam on Winkler’s 

foundation is presented. The material properties are assumed to follow both exponential and 

power law. In [11], a closed-form solution is obtained for the nonlinear static response of 

beams made of FGM subjected to uniform in-plane thermal loading. Transversal variation of 

the material properties has been considered. In [12], using the energy equivalence principle, a 

general expression is derived for the static shear correction factor in FGM beams. In [13], 

relationship between bending solutions of FGM Timoshenko beam and homogeneous Euler-

Bernoulli beam is studied. In [14], the equation of large deflection of FGM beam subjected 

arbitrary loading conditions is derived. The longitudinal variation of elasticity modulus is 

assumed. In [15], the direct approach to the theory of rods and beams is employed. Non-

homogeneous, composite and FGM beams made of isotropic or orthotropic materials have 

been considered. In [16], evaluation of static and dynamic behavior of FGM ordinary beam 

and FGM sandwich is presented. Transversal variation of material properties is considered. In 

[17], a symplectic framework for the analysis of plane problems of bi-directional FGM beam, 

in which the elastic modulus varies exponentially both along the longitudinal and transverse 

coordinates while the Poisson’s ratio remains constant. In [18], thermal buckling and post-

buckling of FGM Timoshenko beams resting on non-linear elastic foundation are examined. 

In [19], the bending, buckling and free vibration responses of Timoshenko micro-beams made 

of FGM with transversal variation of material properties is presented. In [20], nonlinear 

bending analysis of FGM beams based on physical neutral surface and high order shear 

deformation theory are investigated. Transversal variation of material properties is 

considered. In [21], bending solutions of Timoshenko FGM beams are derived analytically in 

terms of the homogeneous Euler-Bernoulli beams. In [22], stability of FGM micro-beam with 

transversal variation of material properties, subjected to nonlinear electrostatic pressure and 

thermal changes, is studied. In [23], elastoplastic analysis of micro FGM beam based on 

mechanism-based strain gradient plasticity theory is presented. Transverse variation of 

material properties has been assumed. In [24], based on modified couple stress theory, a FGM 

micro beam under electrostatic forces is studied. Variation of material properties through 

beam thickness was considered. In [25], the buckling behavior of size-dependent FGM micro 

beams with transverse variation of material properties is investigated. In [26], a curved micro 

beam model made of FGM is developed based on the strain gradient elasticity theory and n 

shear deformation theory. The material properties vary in the thickness direction and are 

estimated through Mori-Tanaka homogenization technique. In [27], thermal post-buckling and 

non-linear vibration behaviors of FGM are analyzed. Material properties are assumed to be 

temperature dependent and vary along the beam thickness. In [28], a unified and self-

consistent treatment of a FGM micro beam, with varying thermal conductivity subjected to 

non-uniform and uniform temperature field, is provided. In [29], the large amplitude 

vibration, nonlinear bending and thermal postbuckling of FGM beams resting on an elastic 
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foundation in thermal environments is investigated. In [30], a higher order shear deformation 

beam theory is developed for static and free vibration analysis of FGM beams. In [31], 

geometrically nonlinear analysis of planar beam and frame structures made of FGM by using 

the finite element method is presented. In [32], a model of FGM beams resting on nonlinear 

elastic foundation is put forward by physical neutral surface and high-order shear deformation 

theory. In [33], a large deflection of nonlinearly elastic FGM beams is presented. Transverse 

variation of material properties is assumed. In [34], the postbuckling analysis of a nonlinear 

beam composed of axial functionally graded material is investigated. In [35], the double 

cantilever beam model is extended to FGM based on two-dimensional theory of elasticity. In 

[36], static analyses of FGM beams by various theories and finite elements are presented. In 

[37], a new beam finite element is developed to study the thermos-elastic behavior of FGM 

beam structures. The element is based on the first-order shear deformation theory and its 

accounts for varying elastic and thermal properties along its thickness. [38], dynamic 

characteristics of a functionally graded beam with axial or transversal material gradation 

along the thickness on the power law have been studied with a semi-analytical method. 

In [39, 40, 41], we present an analysis of free vibration of a single 2D FGM beam with 

continuous planar polynomial variation of material properties (in axial and transversal 

direction)by a fourth-order differential equation of the second order beam theory. The aim of 

this publication was to present a new concept for expanding the second order bending beam 

theory considering the shear deformation according to Timoshenko beam theory. The shear 

deformation effect in FGM beams with planar continuous variation of material properties is 

there originally included by means of the average shear correction factor that has been 

obtained by an integration of the shear correction function [42]. The continuous polynomial 

variation of the effective elasticity modulus and mass density is considered by continuous 

polynomial spatial variation of both the volume fraction and material properties of the FGM 

constituents. The choice of a polynomial gradation of material properties enables an easier 

integration of the derived differential equation and allows to model practically realizable 

variations of material properties. The effect of consistent inertia and rotary inertia and the 

effect of axial forces were taken into account as well. 

As mentioned above, many papers deal with static analysis of the FGM single 2D beams 

with transverse variation of material properties only. Less attention is paid to longitudinal and 

lateral variation of material properties. However, the authors did not find papers which 

consequently deal with all the longitudinal, transversal and lateral variation of material 

properties by single beams or beam structures built of such FGM. 

The presented contribution is the continuation of our previous work dealing with the 

analysis of beam structures made of planar varying FGM. This approach is extended to spatial 

variation of material properties and spatial FGM beam structures. Effect of the axial and shear 

forces (transversal and lateral) and spatial Winkler elastic foundations (except the torsional 

foundation) are included, as well. The biaxial bending and uniform torsion are considered as 

well. Homogenization of the spatial varying material properties in the real FGM beam and the 

calculation of effective parameters are done by the multilayer method (MLM) [43]. If only 

transversal and lateral variations of material properties are considered in the real FGM beam, 

longitudinally constant effective material properties arise from the homogenization. This 

method can also be used in the homogenization of multilayer beams with discontinuous 

variation of material properties in transversal and lateral direction. Numerical experiments are 

performed to calculate the elastostatic response of chosen spatial FGM beam structures with 

rectangular and hollow cross-sections with symmetrically lateral and transversal variations of 

material properties. The continuous spatial variation of material properties in tree directions is 

considered in the last example, as well. The solution results are discussed and compared to 
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those obtained by means of very fine 3D – solid and beam finite element mesh of the 

commercial code. 

2 Main equations of the 3D beam finite element 

Let us consider a 3D straight finite beam element (Timoshenko beam theory and Saint-

Venant torsion theory) of doubly symmetric cross-section – Figure 1. The warping effect by 

non-uniform torsion will be considered in our future work. The nodal degrees of freedom at 

node i are: the displacements ui, vi, wi in the local axis direction x, y, z, and the cross-sectional 

area rotations – 
iziyix ,,, ,,  . The degrees of freedom at the node j are denoted in a similar 

manner. The internal forces at node i are: the axial force Ni, the transversal forces 
iyR ,
 and 

izR ,
, the bending moments 

iyM ,
 and 

izM ,
, and the torsion moment 

ixM ,
. The first derivative 

with respect to x of the relevant variable is denoted with an apostrophe “´”. 

Furthermore,  xnn xx  is the axial force distribution,  xqq zz   and  xqq yy   are the 

transversal and lateral force distributions,    xmmxmm yyxx  ,  and  xmm zz  are the 

distributed moments, A is the cross-sectional area, yI and zI  are the second area 

moments,
zyp III   is the polar area moment,      ,,, xkkxkkxkk zzyyxx   

   xkkxkk zzyy
 ,  are the elastic foundation modules (the torsional elastic foundation is 

not considered). The effective homogenized and longitudinally varying stiffness reads: 

 AxEEA NH

L  is the axial stiffness (   NH

L

NH

L ExE  is the effective elasticity modulus for 

axial loading),   y

HM

Ly IxEEI y  is the flexural stiffness about the y-axis (   HM

L

HM

L
yy ExE   is 

the effective elasticity modulus for bending about axis y),   z

HM

Lz IxEEI z  is the flexural 

stiffness about the axis z, (   HM

L

HM

L
zz ExE   is the effective elasticity modulus for bending 

about axis z),   AkxGAG sm

y

H

Lyy   is the reduced shear stiffness in y – direction (   H

Ly

H

Ly GxG   

is the effective shear modulus and sm

yk  is the average shear correction factor in y – direction), 

  AkxGAG sm

z

H

Lzz   is the reduced shear stiffness in z – direction (   H

Lz

H

Lz GxG   is the effective 

shear modulus and sm

zk  is the average shear correction factor in z – direction),   T

HM

L IxG x  is 

the effective torsional stiffness (   HM

L

HM

L
xx GxG   is the torsional elasticity modulus and TI  is 

the torsion constant). 

   For establishing of the FGM 3D beam finite element equation we use the following 

differential equations for axial, transversal, lateral and torsional loading (according the Figure 

1). 

2.1 Axial tension – compression 

By combination of the main equations for the axial loading of the FGM beam  

 ,uknN xx   (1) 

 
EA

N
u  , (2) 

we get the differential equation with non-constant polynomial coefficients 

 xuuu nuuu  012  , (3) 

 



· -I.v'(x) 

-k.w(x) 

z 

Figure 1: The local intem al variables and loads. 

with 7]211 = EA, J71u = E'A, 77ou = - kx, N' denotes the first derivative of N; u = u(x) is the axial 

displacement and u' = u'(x) conesponds to its first derivative and u" = u"(x) is its second 

derivative; EA = EfH (x )A is the homogenized beam stiffness in axial direction and E' is the 

first derivative of E~ (x) . 
The homogeneous solution of equation (3) can be express by the polynomial transfer 

functionsbjN=bjN(x),(;E(O,I)) for axial loading (these depend of the axial stiffness 

variation) [44, 45] : 

[
u(x)] [hem ~N] [ui ] 
u'(x) = b~N ~~ . u; · (4) 

Here, ui is the axial displacement and u; is the value of its first derivative at node i. 

If the u'(x) and u; are replaced with the constitutive equationu' = N and u; = Ni , we get: 
EA EjA 

(5) 

where Ei is the initial value of the homogenized elasticity modulus EfH (x) at node i. By 

setting x = L in (5) the dependence of the nodal variables at node j on the nodal variables at 
node i are obtained. By appropriated mathematical operations the local fmite element equation 
for axial loading is obtained 
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with the local stiffness matrix terms: 
 
 

AE
b

b
K NH

Li

N

LxN

Lx



1

0

1,1 , 
 

Lx
N

NH

Li

b

AE
KK


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1

1,77,1  and 

 
 

AE
b

b
K NH

Lj

N

LxN

Lx






1

1

7,7 . The variables NH

LiE  and 
NH

LjE  denote the values of the homogenized 

elasticity modulus at point i and j. Values of the polynomial transfer functions for Lx   are 

called transfer constants for axial loading, which can be calculated analytically or by simple 

numerical algorithm [45]. Indices in the stiffness matrix K are deliberately numbered in order 

to indicate the position of members of the local axial stiffness matrix in the local matrix of 3D 

beam finite element (its dimension is 1212 ), which will be established later. 

2.2 Flexural loading about the y and z axis 

The differential equation of 4th order with non-constant coefficients of the homogenized 

FGM beam flexural deformation (about the y-axis) (Figure 1) has the form [41], 

 ywwwww mwwwww  01234  . (7) 

Here  xww   is the deflection curve in the zx plane. Its derivatives with respect to x are 

denoted by an apostrophe. 

Derivation of the non-constant coefficients w0  to w4 and appropriated parameters of the 

differential equation (7) from the main coupled equations (8) and (9) of the 2
nd

 order beam 

theory (including the shear and axial force effects) using the relation between the transversal 

and shear force (10) is described in [40], [41] and [42] in detail. 

 wkqR zzz  ,      yzy mQM  , (8) 

e

yyyyy

e

y

y

y

y EIEIM
EI

M
  , 

yzzz
z

z
y AGwAGQ

AG

Q
w   , (9) 

   z

II

zz RwNkQ  . (10) 

Here, zq  is the distributed transversal load; 
ym  is the distributed bending moment; e

y is the 

applied beam curvature; zk  is the modulus of elastic Winkler foundation; zR  is the 

transversal force; zQ  is the shear force; 
yM  is the bending moment; 

y  is the angle of cross-

section rotation; w is the beam deflection; EIy is the bending stiffness and zAG  is the reduced 

shear stiffness of the homogenized FGM beam. NN II  is the resultant axial force of the 2
nd

 

order beam theory. Finally, yk is the elastic foundation modulus for flexural beam rotation. We 

assume that all the above quantities are the polynomial functions of x. 

If the variation of the beam parameters is polynomial, the homogeneous solution of the 

differential equation (7) based on the transfer functions [44] can be written as, 
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There, 
jwb ,

jwb , 
jwb   and 

jwb  , ( 3,0j ) are the solution functions (transfer functions for 

flexural deformation (in the z-axis)) of the differential equation (7). Those depend on the 

variation of the homogenized bending and shear stiffness of the homogenized beam. The 

dependence of the  xww  ,  xww   and  xww   on the    xMMx yyyy  , and 

 xRR zz   is described in [40], from which the transfer matrix expression is obtained 
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The kinematical and kinetic variables at node i are denoted by index i in (12). By setting 

Lx   in (12) the dependence of the nodal variables at node j on the nodal variables at node i 

will be obtained.  

By appropriate mathematical operations the local finite element equation for bending in the x 

– z plane is obtained: 
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Analogically to the axial loading, the local stiffness matrix terms contain the transfer 

constants for bending which can be calculated analytically or by the simple numerical 

algorithm [45]. The stiffness terms of the matrix K are evaluated numerically, and the indexes 

are deliberately numbered so as to indicate the position of the terms of the matrix in the local 

stiffness matrix of the 3D beam finite element, which will be established later. 

Differential equation of the 4th order with non-constant coefficients for the homogenized 

FGM beam flexural deformation (about the z-axis), (Figure 1), can be derived similarly to the 

previous case,  

 zvvvvv mvvvvv  01234  . (14) 

By appropriate mathematical operations the local finite element equations for flexural 

deformation (in the yx  plane) are obtained, 
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2.3 Uniform torsion 

The differential equations of uniform torsion of the FGM beam are formulated according 

the Figure 1and have a form, 
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 xx mM  , (16) 

 
T

HM

L

x
x

IG

M
x

 . (17) 

There, IT is the torsion constant (IT = Ip for the circular cross-section and 
pI  is the polar area 

moment);  xxx    is the torsion angle of rotation; x  is a first derivative of the torsion 

angle. An elastic foundation for torsion is not considered. 

By a combination of equations (16) and (17) and after some mathematical manipulations 

the differential equation for uniform torsional loading has been obtained 

 xxTxT m  12 , (18) 

with non-constant parameters T

HM

LT IG x1 ; T

HM

LT IG x2 . According to [44], the 

homogeneous solution of the differential equation (18) reads: 
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In equation (19), the jTb  and jTb ,  1,0j , are the transfer functions (of x) and their first 

derivatives, respectively. Those are the solution functions of the differential equation (18). 

The transfer functions depend on the longitudinal variation of the torsional shear modulus. By 

inserting (16) and (17) into (19) the transfer matrix relations (20) for uniform torsion is 

obtained after some mathematical manipulations, 
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By setting x = L in (20) a dependence of the state variables at point j on the state variables at 

initial point i for modal analysis reads: 
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By simple mathematical manipulations we get the local finite element equation for uniform 

torsion: 
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with the finite element stiffness matrix terms: 
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can be calculated with a simple numerical algorithm [44, 45]. The 
HM

Li
xG  and 

HM

Lj
xG  are the 

values of the homogenized torsional shear modulus at point i and j.  

2.4 Local 3D FGM finite beam element equation 

The local finite element equation of the 3D – FGM beam is obtained by superposition of 

the axial (6), flexural transversal (13), flexural lateral (15) and torsional (22) stiffness 

equations, and it reads, 
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   (23) 

In (23), the bending terms of the stiffness matrix K  consist of linear and linearized geometric 

non-linear stiffness terms. The linearized terms consider the axial force IIN  influence only 

(according to the assumptions of the second order beam theory). The global stiffness matrix of 

the beam finite element and the beam structure can be established by a conventional method. 

Algorithm for establishing of the local and global stiffness matrices as well as the whole 

procedure for the global and local nodal displacements calculation we have coded in the 

MATHEMATICA [46] software environment, by which the numerical experiments were 

done. The secondary variables (internal forces and moments) on the real beams are then 

calculated by means of the transfer relations (5), (12), (20). Again, the normal and shear stress 

can be calculated [54] on the real beams. In order to show the accuracy and effectiveness of 

proposed 3D FGM finite beam element, numerical experiments are made concerning the 

elastic-static analyses of the single beams and beam structures made of spatially varying FGM 

properties. 

3 Homogenization of spatial varying material properties for the 3D beam 

applications by the multilayering method 

One important goal of mechanics of heterogeneous materials is to derive their effective 

properties from the knowledge of the constitutive laws and complex micro-structural behavior 

of their components. Microscopic modeling expresses the relation between the characteristics 

of the components (constituents) and the average (effective) properties of the composite. In 

the case of FGM beam, it is the relation between the material properties of the beam 

components and the effective material properties of the homogenized beam. 

The methods, based on the homogenization theory (e.g. the mixture rules [47], [48]; self-

consistent methods [49]), have been designed and successfully applied to determine the 

effective material properties of heterogeneous materials from the corresponding material 

behavior of the constituents (and of the interfaces between them) and from the geometrical 
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arrangement of the phases. In this context, the microstructure of the material under 

consideration is basically taken into account by a representative volume element (RVE). 

Mixture rules are one of the methods for micromechanical modeling of heterogeneous 

materials. Extended mixture rules [50] are based on the assumption that the constituents 

volume fractions (formally only denoted here as fibres – f and matrix – m) continuously vary 

as polynomial functions,  zyxv f ,,  and  zyxvm ,, . The condition     1,,,,  zyxvzyxv mf has 

to be fulfilled. The appropriated material property distribution in the real FGM beam (Figure 

2a) then reads 

          zyxpzyxvzyxpzyxvzyxp mmff ,,,,,,,,,,   (24) 

Here,  zyxp f ,, and  zyxpm ,,  are the spatial distributions of material properties of the FGM 

constituents. The extended mixture rule (24) can be analogically used for FGM material made 

of more than two constituents. The assumption of a polynomial variation of the constituent’s 

volume fractions and material properties enables an easier establishing of the main 

appropriated field equations and allows the modeling of many common realizable variations.  

In literature and in practical applications, mostly the one directional variation of the FGM 

properties is considered. There, an exponential law for transversal variation of the constituents 

volume fractions is often presented, e.g. in [51], [52], [53] and in references therein. 

For the FGM beams and shells the transversal variation (continuously or discontinuously, 

symmetrically or asymmetrically) has been mainly considered. The homogenization of such 

material properties variation is relatively simple. If the material properties vary only with 

respect to the longitudinal direction, the homogenization is frequently not needed since there 

are new FGM beam and link finite elements established that consider such variations in a very 

accurate and effective way, e.g. in [54], [55]. A more complicated case is, if the material 

properties vary in three directions - namely in transversal, lateral and longitudinal direction of 

the FGM real beam and the torsion is included as well. 

In this contribution, the homogenization techniques for spatially varying (continuously or 

discontinuously and symmetrically in transversal and lateral direction, and continuously in 

longitudinal direction) material properties of FGM beams of selected doubly-symmetric 

cross-sections are presented. The expressions are proposed for the derivation of effective 

elasticity modules for axial loading, the transversal and lateral bending, the shear modules for 

transversal and lateral shear and for uniform torsion by the extended mixture rules (EMR) and 

the multilayer method (MLM). The case of non-uniform torsion will be considered in our 

future work. 

Let us consider a two nodded 3D straight beam element with double symmetric cross-

sectional area A (Figure 2). The composite material of this beam arises from mixing two 

components. The continuous polynomial spatial variation of the elasticity moduli and mass 

density can be caused by continuous polynomial spatial variation of both the volume fraction 

(  zyxv f ,,  and  zyxvm ,, ) and material properties of the FGM constituents (  zyxp f ,,  

and  zyxpm ,, ).  

In our case the elasticity modulus  zyxE ,, , the Poisson ratio for the real beam have been 

calculated by expression (24). The FGM shear modulus can be calculated by expression: 

  
 
  zyx

zyxE
zyxG

,,12

,,
,,


 . (25) 

If the constituents Poisson’s ratio are approximately of the same value and the constituent 

volume fractions variation is not strong, then the FGM shear modulus can by calculated using 

a simplification [42]: 



G( )- E(x,y,z) x,y, z - , s (26) 

where .; is an average value of the function s(x, y, z) = 2(1 + v(x,y, z )) 

s=-i - f s(x,y,z)dA X . 1 Ll l } 
L 0 A (A) 

(27) 

a) real beam lf(y,z) 

j 
h 

L 

b) multilayer beam 

z k=n 

c) homogenized beam b 

j y 

z 

Figure 2: FGM beam with rectangular cross-section. 

Homogenization of the spatially vmying material properties (the reference volume is the 
volume of the whole beam) m·e done in two steps. In the first step, the real beam (Figure 2a) is 
transf01med into a multilayer beam (Figure 2b ). Material prope1ties of the layers are 
calculated with the EMR [56]. We assume that each layer cross-section at position x has 
constant material prope1ties. They are calculated as an average value from their values at the 
boundaries of the respective layer cross-section. Polynmnial variation of these properties 
appem·s in the longitudinal direction of the layer. Sufficient accuracy of the proposed 
substitution of the continuous transversal and lateral variation of material prope1ties by the 
layer-wise constant distribution of material prope1ties is reached if the division to layers is 
fine enough. In the second step, the effective longitudinal material prope1ties of the 
homogenized beam m·e derived using the MLM [57]. These homogenized material prope1ties 
are constant through the beam's height and depth but they vary continuously along the 
longitudinal beam axis. Accordingly, the beam finite element equation are established for the 
homogenized beam (Figure 2c) in order to calculate the p1imary beam unknowns - the 
displacements and intemal forces and critical buckling force in our case. The stress has to be 
calculated on the real beam. 

The homogenized elasticity moduli for: tension-compression -EfH (x) , bending about axis 

y -E~ylf (x), bending about axis z -Elj,H (x) , shem· in y direction - G~ (x) , shem· in z direction 

- GZ (x ), and torsion Glj.H (x )can be calculated, respectively: 
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Here, Ak is the cross-sections area, Ek(x) is the elasticity modulus, Iy,k and Iz,k are the second 

moments of area, Gk(x) is the shear modulus, IT,k is the torsion constant of the kth layer, 

respectively. Again, sm

kyk ,  and sm

kzk ,  and sm

yk  and sm

zk are the average shear correction factors 

[58]. 

Exact expressions for homogenization of spatial varying (continuously or discontinuously and 

symmetrically in transversal and lateral direction, and continuously in longitudinal direction) 

material properties for the FGM beams depend of the cross-section shape. In the following 

chapters, we present derivation of the corresponding expressions for rectangular cross-section. 

By similar way the effective material properties can be calculated for the hollow, circular and 

ring cross-sections [59]. 

3.1 Rectangular cross-section 

A straight beam of rectangular cross-sectional area bhA  (Figure 2) is made of a FGM 

which properties vary in the y and z direction continuously and symmetrically according the 

main inertial planes: yx   and zx  , and continuously in longitudinal beam direction x . 

Further, 
12

3bh
I y   and 

12

3hb
I z  are the second moments of area, zyp III   is the cross-

sectional area polar moment, AkA sm

yy   and AkA sm

zz   are the reduced cross-sectional areas 

– by the average shear correction factors sm

yk and sm

zk [20], and 3hbIT   is the torsion 

constant (  bhf /  is the rectangular cross-section parameter). According to (24) the real 

material properties are the elasticity modulus  zyxE ,, , the Poisson’s ratio  zyx ,,  and the 

shear modulus        zyxvzyxEzyxG ,,12/,,,,  . For the homogenization of spatially 

varying material properties the rectangular cross-sectional area is divided into n parts, where 

nht 2/  refers to the flange thickness and nbs 2/  denotes the web thickness (Figure 2b). 

Again, tsAn 22  and the hollow area of the kth part   1,1 nk  

is      122122  kthsksbtAk . The second moments of area of the nth part are: 

  12/22
3

, tsI ny   and   12/22
3

, stI nz  . The second moments of area of the kth part are:  

         12/2212/2222
33

, kthksbkthksbI ky  ,

          12/2212/2222
33

, kthksbkthksbI kz  . 

The torsion constant of the nth rectangular part is:  3, 22 tsI nnT  . The torsion constant of 

the kth hollow part   1,1 nk  is: 
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Volume 65, No.1, (2015) 2015 SjF STU Bratislava 39 

 

We assume, that the considered material property is constant in all parts  1,1 nk  of the 

cross sectional area A and it varies in the x-axis direction only: 
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 ,, . (31) 

There, according to Figure 2, 
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2/tyn   and 2/szn  . 

The effective homogenized material properties, like the elasticity modules, have been 

calculated under the assumption, that the relevant stiffness of the homogenized beam is equal 

to the stiffness of the real beam virtually divided in the rectangular and hollow parts. So we 

get the effective elasticity modulus for axial loading 
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The effective elasticity modulus for uniform torsion reads, 
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with     
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 ,, .The effective shear modulus in y 

direction is given by 
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with the average shear correction factors, sm

yk for whole rectangular cross-section, sm

nyk ,  for nth 

part and sm

kyk , for kth part. 

The shear modulus in z direction reads analogically 
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with the average shear correction factors: sm

zk for whole rectangular cross-section, 
sm

nzk ,  for nth 

part and 
sm

kzk , for kth part[58].  

 

3.2 Hollow cross-section 



A sn·aight beam of hollow cross-sectional area A = hl11 - biln (Figure 3) is made of FGM 

that prope1ties vary in the y and z direction continuously and symmen·ically according the 
main ine1tial planes, x - y and x - z, and continuously in longitudinal beam direction x . 

3 bh3 3 hb3 
Fmther, I = b1 h1 - ___!!___!!____ and I = h1b1 - ___!!___!!____are the second moments of area, 

y 12 12 z 12 12 

IP = IY + I
2 

is the polar moment of area, AY = k;m A and A
2 

= k;m A are the reduced cross-

sectional areas - by the average shear con ection factors k;m and k;m [50], and 
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_ 1_ + _1 __ 

s t 
cross-section walls. 

For the homogenization of spatially vruying material prope1ties the hollow cross-sectional 

ru·ea is divided into n hollow pruts, where tk = (h1 - hJ! 2n is the flange thickness and 

sk = (b1 - bJ! 2n is the web thickness (Figme 4), respectively. The hollow ru·ea of the kth pmt 

(k E (1, n)) is: Ak = 2tk(b1 - sk(2k - 1))+ 2sk(h1 - tk(2k - 1)). The second moments of area of 

the kth prut are: IY.k = (b1 - sk(2k - 2)Xh1 - tk(2k - 2)Y 112 - (b1 - 2kskXh - 2ktkY 112, 

Iz,k =(b1 - sk(2k - 2)Y(h1 - tk(2k - 2))112 - (b1 - 2kskY(h1 - 2ktk)112 . 

The polar moment of area of kth pmt is Ip,k = I y,k + Iz,k. 

a) real beam 'i(y,z) 

L 

) multilayer beam 

l 
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Figme 3: A sn·aight FGM beam of hollow cross-section. 
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According to (24) the real material properties are:  zyxE ,,  is the elasticity modulus, 

 zyx ,,  is the Poisson’s ratio,        zyxvzyxEzyxG ,,12/,,,,   is the shear modulus 

and  zyx ,,  is the mass density:  

  2/,2/,2/,2/,,0 11 bbzhhyLx nn . 

The effective homogenized material properties, like the elasticity modules, are calculated 

under assumption, that the relevant stiffness of the homogenized beam is equal to the stiffness 

of the real beam virtually divided on the hollow parts. So we get the effective elasticity 

modulus for axial loading 

  
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AxE
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kk
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with     
k

k
zz
yy

k zyxExE

 ,,  and the effective elasticity modules for bending about the y and z 

axis, 
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The effective elasticity modulus for uniform torsion reads, 
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with     
k

k
zz
yy

k zyxGxG

 ,, . The torsion constant of the kth hollow part   nk ,1  can be 

evaluated as 
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The effective shear modulus in y direction is given by, 
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with the average shear correction factors: 
sm

yk  for whole rectangular cross-section and 
sm

kyk ,  for 

kth part. 

The shear modulus in z direction then reads, 
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, (42) 

with the average shear correction factors: 
sm

zk  for whole rectangular cross-section and 
sm

kzk ,  for 

kth part. 



4 Numerical experiments 

4.1 Example 1 - FGM cantilever beam- rectangular cross-section 

The clamped FGM beam has been considered (as shown in Figure 4), which is loaded at its 
free end by forces FY =Fz = ION and Fx =-5 kN and by torsion moment Mx = 10Nm. Its 

rectangular cross-section is constant with height h = 0.005 m and width b = 0.01 m. The 
length of the beam is L = 0.1 m. The local coordinates system is denoted by the axis x, y, and 
z. 

Figure 4: FGM beam with spatial variation of material properties. 

Material of the beam consists of two components: Aluminum Al6061-TO - denoted with 
index m and Titanium carbide TiC - denoted with index f The material propeities of the 
components are assumed to be constant and their values are: Aluminum Al6061-TO - the 
elasticity modulus Em = 69.0GPa, the Poisson 's ratio v m = 0.33 ; Titanium carbide TiC - the 

elasticity modulus E
1 

= 480.0GPa, the Poisson 's ratio v 
1 

= 0.20. 

The TiC volume fraction varies in the y and z direction linearly and symmetrically 
according to the x-y and x-z planes: [v 

1
(y,z )}=<> = o,[v

1
(y,z )hht2 = 1- the core of the beam is 

z=O z=±b/ 2 

made from pure Al6061-TO and linearly varies to the edges that are made from pure TiC. 
Constant effective material propeities are considered in the local x - direction of the beam. 
The average shear conection factors in y - direction k;m = 5 I 6 and in z - direction 

k;m = 5 I 6 have been considered (constant Poisson ratio has been assumed in the example). 

Using the EMR and MLM, the homogenized elasticity modules (in [GPa]) for: axial 
loading - E{'H , bending about axis y - E: yH and about axis z - Elj·H , shear- GJ!, and Gf:z, and 

torsion - Glj•H have been calculated. The influence of the number of divisions n to the layers 
on the homogenized material prope1i ies are shown in the Table 1. 

Table 1: Homogenized material prope1iies for n = 2, 5, 10, 15 and 20 layers 

layers ENH E:YH;;;;.Elj·H GH ;;;;.GH GM·H 
n L Ly Lz L 

2 300.19 357.98 121.27 145.10 
5 338.62 392.28 137.11 160.59 
10 342.11 396.43 138.58 162.23 
15 342.64 397.19 138.81 162.52 
20 342.80 397.46 138.88 162.62 
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The FGM beam, clamped at the node i, has been studied by the elastic-static and buckling 

analysis. All the calculations were done with our 3D FGM beam finite element (NFE) which 

we have implemented into the code MATHEMATICA [46]. Additionally, the effect of axial 

force was considered. It has to be pointed out that the entire structure is discretized using only 

one herein proposed finite element. The critical buckling force is 28.10II

KiN kN. In the 

elasto-static analysis the axial force (tension and compression) NN II  have been chosen as a 

part of the critical buckling force II

KiN . The effective material properties were used from the 

last line in the Table 1. The deformations and internal forces and moments are found in the 

example. 

The same problem has been solved using a very fine mesh – 28889 of SOLID186 elements of 

the FEM program ANSYS [60] (geometric nonlinear). The results of ANSYS as well as the 

results of the NFE are presented in Tables 2. The average relative difference  [%] between 

displacements calculated by our method and the ANSYS solution has been evaluated. 
 

Table 2: Displacements at the free beam end 

Displacements 

[mm], [rad] 

NFE 

Fx = 0 N 

ANSYS 

Fx= 0 N 
 [%] 

NFE 

Fx=-5kN 

ANSYS 

Fx=-5kN 
 [%] 

ju  0 0 --- -0.029230 -0.029385 0.53 

jv  0.020349 0.020271 0.38 0.022281 0.022173 0.49 

jw  0.080879 0.080645 0.29 0.158012 0.157130 0.56 

jx,  0.021533 0.021844 1.42 0.021534 0.021185 1.47 

yj  -0.001211 -0.001206  0.43 -0.000346 -0.000344 0.75 

zj  0.000303 0.000302  0.03 0.002417 0.002410 0.26 

 

As is shown in Table 2, the accuracy of our results is excellent compared to the ANSYS 

solution. 

The Figures 5, 6, 7 and 8 show the total deformation of FGM beam, torsion moment and 

bending moment about the y and z – axis, respectively. The Figures 9 and 10 show the 

transversal force in y and z – axis. The comparison of the bending moments  0xM y , 

 0xM z  and transversal forces  LxRy  ,  LxRyz   for the case Fx=-5kN calculated by 

our approach and by ANSYS are compared in Table 3.  
 

Table 3: Bending moments and transversal forces 

 
NFE 

Fx=-5kN 

ANSYS 

Fx=-5kN 
 [%] 

 0xM y  [Nm] -1.781 -1.788 0.39 

 0xM z  [Nm] 1.123 1.116 0.59 

 LxRy   [N] 11.811 12.166 2.66 

 LxRz   [N] 22.102 21.756 1.56 

 

The high efficiency of our method is obvious since our results are evaluated using only one 

finite beam element compared to the large number of 41924 elements used in the continuum 

mesh.  

 



y 

- NFE 
• • ANSYS 

Figure 5: Total spatial def01m ation ofFGM beam (Fx = 0 N). 
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5 

0o~.oo~~~o-.o~2~~~o~.~~~~o~.M~~~o~.o~s~~~o.~tox[m] 

Figure 6: Torsion moment Mx(x) . 
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Figure 7: Bending moment about they - axis. 
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Figure 8: Bending moment about the z - axis. 
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Figure 9: Transversal force in y - axis 

R [N] 

• NFE-Fx=ON 
• NFE -Fx=-5 kN 
- ANSYS • • • • • • • • • • 

10 -=--.-~~~~~~-.----~~~~~~~~.-~ 

9 

~t:...l.oo~------'-~o----'.o-2~__.____~o-.04L______i_~------'--o.L_06___.__~__.____o.~o8~~~o.~10x[m] 
Figure 10: Transversal force in z - axis 

4.2 Example 2 - FGM beam structure-hollow cross-section 

The FGM beam stmcture with a constant rectangular hollow cross-section is considered -
Figure 11, which consists of two pruis - Beaml and Beam2. Its geometiy is given with: 
h1 = 0.005 m, hn = 0.00375 m, b1 = 0.01 m, bn = 0.0075 m and L = 0.1 m. The angle between 
the beams is B = 150° . The cross-sectional ru·ea is A = 2.1875 x 1 o-s m2

; the area moments of 

inetiia ru·ei =7. 12077 x10-11 m4 and I = 2.84831x10-10 m4
, the cross-sectional ru·ea polru· 

T y 

moment of inetiia is I P= I +I = 3.56038x10-10m4 and the torsion constant is 
y • z· 
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Ir = 1.6748x10-10m4
. The FGM beam stmcture is loaded by the ve1iical force Fky =-lOON 

and the torsion moment M kx = 100 Nm at point k. 
Material of the beams consists of two components: Aluminum Al6061-TO and titanium 
carbide TiC, that's material prope1iies are the same as in the Example 1. 

i 
y' 

Figure 11 : FGM beam stmcture. 

The TiC volume fraction varies in the local y· and z· direction linearly and symmetrically 

according to the x· - y andx· - z·planes: [v1 (y·,z·)}·=±h.n =0, [v1 (y·, z · )~=±~l2 =1- the z·=±b.l2 z•=±q 12 
inner edges of the cross-sectional area are made of pure Al6061-TO and the outer cross­
section edges are made of pure fibre. Constant effective material prope1iies are considered in 
the local x · - direction of both beams. Using EMR and MLM the effective elasticity modulus 
(in [GPa]) for axial loading E: H, for bending about axis y -E:yH and about axis z· -Elj·H 

the shear moduli GZ and GJ! , the torsional shear modulus have been calculated. The 

influence of the number of divisions n to the layers on the homogenized material propeliies 
are shown in Table 4. The shear conection factors k;m and k:m for n = 20 layers are 

k;'" =0.4712and k:m =0.2914. 

Table 4: Influence of the number of divisions n to the layers on the homogenized material 
prope1ties. 

layers ENH E:yB ;;;;. £1j•H GH-GH GM-lf 
n L Ly - Lz L 

2 281.839 296.151 112.716 120.614 
5 283 .894 302.229 113.901 124.066 
10 284.188 303 .098 114.071 124.561 
15 284.242 303 .259 114.102 124.653 
20 284.261 303 .315 114.113 124.685 

The FGM beam stmcture, clamped at the node i and}, is studied by elasto-static analysis. The 
effects of axial force is not considered by this example. The displacements according the 
global coordinate system at the point k are shown in Table 5 using the new FGM beam finite 
element (NFE) and homogenized material propeliies for n = 20. Only two of the herein 
proposed new FGM fmite elements were used - one for each prui. For comparison pmposes, 
the same problem is solved using a ve1y fine mesh- 21600 of SOLID186 elements of the 
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FEM program ANSYS [60]. The average relative difference  [%] between displacements 

calculated by our method and the ANSYS solution is evaluated. 

 

Table 5: Global displacements at point k. 

 

Displacements 

[mm], [rad] 

NFE 

without 

shear 

correction 

NFE 

with shear 

correction 

ANSYS 

 [%] 

without 

shear 

correction 

 [%] 

with 

 shear 

correction 

kv  -0.01135 -0.01137 -0.01140 0.39 0.27 

kw  -2.56285 -2.56285 -2.58651 0.91 0.91 

xk  0.19804 0.19804 0.20030 1.13 1.13 

 

The total deformation of the FGM beam structure is shown in Figure 12.  

 

Figure 12: Total deformation of the FGM beam structure. 

 

As can be seen in Table 4, a very good agreement of our results is obtained. 

4.3 Example 3 - FGM beam structure – square cross-section 

The system of three FGM beams that joint points i = (0, 0, 0), j = (0.1, 0, 0), k = (0, 0, 0.1) 

and l = (0.05, 0.1, 0.05) is considered (Figure 13). The coordinates of the points are given in 

[m]. The square cross-section of all beams is constant with dimensions b = h = 0.01m.  

 



0.10 

0.05 b 

Z,W 

Figure 13: FGM beam stmcture. 

The TiC volume fraction varies in the local Y' and Z' direction linearly and symmetrically 

according to thex' - Y' andx' - z'planes: [vA,y ,z' )},=o = 0 , [vA,y ,z' )}v,=±ht2 = 1 (similarly as 
Z' =0 Z'=±b/ 2 

in the Example 1) - the core of the beam is made from pure Al6061-TO and linearly varies to 
the edges that are made from pure TiC. Constant effective material properties are considered 
in the local x ' - direction of all beams. 

The average shear con ection factor in Y' - direction k;m = 5 I 6 and in Z ' - direction 

k:m = 5 I 6 is used assuming a constant Poisson ratio for simplicity. The beam stmcture is 

loaded by veitical force FY = -100 kN. 

Using EMR and MLM the effective elasticity modulus for axial loading E:H, for bending 

about axis y - E:yH and about axis Z' - Elf•H, shear moduli GZ and Gfz , and the torsional 

shear modulus Glj•H have been calculated: 

E~ = 342.11 GPa; 
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 58.138 H

Lz

H

Ly GG  GPa;  23.162
HM

L
xG  GPa; 

The FGM beam structure clamped at the nodes i, j and k are studied by elasto-static analysis. 

The effect of axial force is not considered with in this example. The displacements according 

the global coordinate system are given in Table 6 using the new FGM beam finite element 

(only three finite elements are used). The same problem is solved using a mesh of 200 of 

BEAM188 elements of the FEM program ANSYS [60]. The average relative difference  [%] 

between displacements calculated by our method and the ANSYS solution has been 

evaluated. 

 

Table 6: Global displacements at node l. 

Displacements 

[mm], [rad] 
NFE ANSYS  [%] 

lu  0.2601 0.2606 0.21 

lv  -0.2601 -0.2606 0.21 

lw  0.2648 0.2651 0.10 

xl  0.00378 0.00375 0.73 

yl  0 0 0 

zl  -0.00378 -0.00375 0.73 

 

As can be seen in Table 6, a very good agreement of both solution results has been obtained. 

The deformed FGM beam structure calculated by ANSYS and NFE is shown in Figure 14. 

 

Figure 14: The deformed beam structure a) solution from ANSYS  

b) comparison of the ANSYS and NFE solution. 

 

4.4 Example 4 - FGM beam on vertical elastic foundation– spatial variation of material 

properties 

The clamped FGM beam (at node i) on varying vertical Winkler foundation has been 

considered (as shown in Figure 15). Its rectangular cross-section is constant with height h = 



0.005 m and width b = 0.01 m. The length of the beam is L = 0.1 m. Bending defonnations of 
the beam are found. 

j h 

z kJ..x) k:{x) 

Figure 15 : Clamped beam with spatially varying material prope1i ies. 

The beam is made of a mixture of two components: Aluminum Al6061-TO and Titanium 
Carbide TiC, constant constituent's material prope1iies are given in Example 1. The NiC 
volume fraction, in this case, varies linearly and symmetrically according to the x - y and 
x- zplanes: At node i is [v ft(y,z)}=0 = 1, [v ft(y,z)}=±hn = 0 and then vary continuous linearly 

z=O z=±b/ 2 

in the longitudinal direction to the constant value at node j ( v ..a = 1 ). 

Using EMR and MLM the effective elasticity modulus for axial loading - E~H , for 

bending about axis y - E:yB and about axis z -Elj,H , shear moduli G~ and Gfz , and torsional 

shear modulus Glj·H are calculated: 

E~ =342.109-2731.095x GPa; 

E~yR = E~,H = 396.429 - 3274.293x GPa; 

G~ = GJ! = 138.581- 1129.418x GPa; 

Glj.H = 162.233 - 1362.936x GPa; 

The FGM beam, clamped at the node i , resting on vmying vertical Winkler elastic 
foundation k

2 
= 5000- 30000x + 600000x2 kN/m2 and loaded by forces FY = Fz = 100 N at 

node j , is studied by elasto-static analysis. The def01mations at node j are evaluated using the 
new FGM beam finite element (NFE). Again, we only use one of the herein proposed finite 
elements. The effects of axial and shear forces were not considered in this example. The same 
problem is solved using a very fine mesh - 23015 of SOLID186 elements of the FEM 
program ANSYS [ 60]. The results of ANSYS as well as the results of the NFE are presented 
in Tables 7 and 8. The average relative difference .:1 [%] between displacements calculated by 
our method and the ANSYS solution is evaluated. 

50 

Table 7: Displacements at node} with and without shear conection factors 
(with elastic foundation). 

Displacements at node j 
NFE NFE .:1 [%] .:1 [%] 

without with ANSYS without with 
[mm], [rad] shear shear shear shear 

vi 0.2690 0.27196 0.27513 2.29 1.17 

wi 0.4333 0.43508 0.43998 1.54 1.13 
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Displacements at node j 
NFE NFE ~ [%] ~ [%] 

without with ANSYS without with 
[mm], [rad] 

shear shear shear shear 

vi 0.2690 0.27196 0.27513 2.29 1.17 

wi 0.4333 0.43508 0.43998 1.54 1.13 

fPyj -0.00867 -0.00870 -0.00903 4.02 3.67 

fPzj 0.00458 0.00461 0.00475 3.43 2 .84 

Table 8: Displacements at node j with and without elastic foundation. 

Displacements at node j 
NFE ANSYS NFE ANSYS 
with with without without 

[mm], [rad] foundation foundation foundation foundation 

vi 0.27196 0.27513 0.27196 0.27513 

wi 0.43508 0.43998 1.07584 1.08600 

rpyj -0.00870 -0.00903 -0.01846 -0.01898 

fPzj 0.00461 0.00475 0.00462 0.00475 

The comparison of the ve1i ical beam deflection cmve with and without elastic fmmdation is 
shown in Figure 16. 

1.0 

0.8 

0.6 

0.4 

0.2 

w[mm] 

• • NFE - with foundation 
• • NFE - without foundation 

ANSYS 

Figure 16: Comparison of the veliical beam deflection cmve with and without elastic 
foundation. 

Again, a good agreement of our results compared to ANSYS is indicated in Tables 7 and 8. 
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5 Conclusion 

The new 3D beam finite element for elasto-static analysis of the FGM single beam and 

beam structures has been established in this contribution. Continuous transversal, lateral and 

longitudinal variation of material properties has been considered. Effect of varying Winkler 

elastic foundations and shear force deformation effect is taken into account. The effect of 

axial force has been taken into account for the flexural loading. The axial force has a system 

character: if we set it to zero, the 1st order beam theory is obtained. The axial force of the 2nd 

order beam theory can be practically induced with structural, thermal or electro-magnetic 

loads. In analysis of a single straight beam the global finite element matrix coincides with the 

derived local finite element matrix. The global matrix of beam structures can be generally 

established by classical methods. For an elastic-static analysis, the load vector has to be 

established and applied. The obtained results have been studied and compared with results 

obtained using very fine continuum and beam meshes by the FEM program ANSYS. An 

excellent agreement of our solution results is obtained, which confirms respectable accuracy 

and effectiveness of our approach.  
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