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Abstract. Due to the ISM band being unlicensed for
communication applications, a lot of applications have been
developed in this band and a good example is WiFi IEEE
802.11a, b, g, n of Bluetooth. This numeracy of applications
motivated this paper. The paper is concerned with the design
of a low distortion 20dBm 2.4GHz class-J power amplifier
(PA) since PAs are indispensable in radio communications.
The design is based on the AVAGO ATF-52189 transistor
with a transition frequency of 6GHz. The design is done as a
hybrid circuit network realized using microstrip elements and
surface mount device (SMD) capacitors. The schematic
design, and simulation are carried out using Keysight’s
Advanced Design System version 2016.01. The simulated PA
exhibited a drain efficiency of 69% and a power output of
21dBm.
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1. INTRODUCTION

Modern communication systems have evolved over the
recent past and are still evolving largely in favor of
wireless links especially at the last hop i.e. the access
network. This is majorly because of the demand for
mobility.

Wireless communication operates in the radio frequency
(RF) range. The RF actually implies frequencies at
which electromagnetic (EM) radiation is practical for
communication purposes. These frequencies range from
about 3 kHz to about 300 GHz.

A very recent concept is the internet of things that
arguably increases the demand for wireless
communication by orders of magnitude. It is justifiably
estimated that the number of smart devices connected to
communication networks will far outnumber the human
population in a few years’ time.

This demand means that the PA designer at RF
frequencies has to keep PAs performing exceptionally
well especially in terms of bandwidth and efficiency.
Wide bandwidth is required to support the various
applications, services and capabilities from new mobile
equipment. Obviously mobile equipment is battery
powered and this makes power efficiency a very crucial
consideration in RFPA design.

The power amplifier has a power output that necessarily
far outweighs the input power driving the amplifier.
Strictly speaking however, there is no such thing as

power amplification and a more accurate description
would be that a ‘PA’ is really an AC controlled DC to
AC power converter.

PAs differ from small signal amplifiers by way of quality
and quantity of signal emphasized by the designer. Small
signal amplifier designers are concerned with low noise
and low distortion amplification i.e. linear amplification.
In short, small signal amplifier designers are obsessed
with linearity. PA designers on the other hand seek to
maximize power output as efficiently as possible even at
the expense of linearity. The load line matching concept
at the output is therefore preferred to conjugate matching.
Aptly then, PA designers are obsessed with power
efficiency. Recent works on PA design can be found in
[1-8].

2. DESIGN METHODOLOGY

2.1 Active device

The ATF-52189 GaAs transistor was selected as the
active device in the amplifier design. From the
manufacturer AVAGO technologies, the datasheet was
obtained from which some of the important absolute
maximum ratings were extracted and are illustrated in
Figure 1. All parameters in Figure 1 were adopted from
AVAGO technologies [9] (the new name of AVAGO
technologies is Broadcom Corporation).
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Figure 1. ATF-52189 absolute maximum rating

2.2 Active device nonlinear model

An open parasitic model of the packaged ATF52189 was
obtained from the manufacturer as an ADS schematic
hierarchy illustrated in Figure 2, Figure 3, and Figure 4.
All parameters in these figures were adopted from
AVAGO technologies [9].
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Figure 2. Extrinsic model of the ATF-52189 obtained from AVAGO Technology
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Figure 3. Schematic symbol of the ATF-52189
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Figure 4. Intrinsic model of the ATF-52189 obtained from
AVAGO technologies

2.3 DCIV characteristics and waveform prediction
from a class B load-line

The schematic for obtaining the DCIV characteristics is
illustrated in Figure 5. From the DCIV characteristics, a
class B load-line was constructed from which the voltage
swing and current swing were obtained. Based on these
swings, class-J waveforms were predicted and plotted.
The requisite fundamental and second harmonic
impedances were obtained by Fourier techniques. These
were the target impedances to be presented to the
intrinsic drain of the device. Figure 3-5 illustrates the
data display.
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Figure 5. DCIV characteristics schematic capture and class
J prediction

2.4 Parasitic tune

The impedances obtained from the load line are required
at the device intrinsic node, therefore, we expect
different load terminations at the extrinsic (package)
node. For this reason, a parasitic tune was carried out as
shown in Figure 6. Here, an equation based ideal load
was presented at the output and a low power source was
connected to the input of the biased device. Using
harmonic balance simulation, we swept the ideal load
over reasonable impedance values. The resultant
intrinsic impedance was calculated from voltage and
current measured at the intrinsic node.

By data display methods, the appropriate external loads
for the target internal fundamental, second and third
harmonic impedances were found.
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Figure 6. Parasitic tune schematic and the swept parameters

To improve the tune, the input was conjugate matched to

a 50 ohm source and the input power was adjusted so

that the drain current swung over the whole dc load-line. Intrinsic Z from sweeping extrnsic Load
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Figure 7, Figure 8 and Figure 9 illustrate the data display
for the swept impedances at fundamental, 2" and 3"
harmonics.
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Figure 9. 37 harmonic tune

The circuit schematic in Figure 10 was used to determine
the input impedance so that a conjugate matching
network can be designed between the device and the
driver
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Figure 10. Input impedance measurement and matching
schematic

2.5 Output network optimization
The external load obtained in the parasitic tune was

approximated by the distributed element network
illustrated in Figure 11.
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Figure 11. Output impedance optimization schematic

By defining the desired harmonic characteristics of the
network as goals, the ADS optimization engine was used
to fine tune each element within realizable ranges so as
to closely match the desired impedances. Figure 12
captures the optimization cockpit as it runs through 40
000 iterations.
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Figure 12. Opiimization in progresé '

2.6 Complete design simulation

The complete schematic design shown in Figure 13 was
simulated in order to compare its performance and
waveforms with the load line prediction.

2.7 Layout design

The schematic design was converted into an FR4
substrate based layout design in readiness for
fabrication. It was assumed that since the design was a
simple single layer layout, EM simulation was not
necessary. Figure 14 illustrates the layout design.
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Figure 13. Complete schematic design

Figure 14. 2.4 GHz layout design

3. SIMULATION RESULTS

The simulation results are shown in Figure 15(a) and
Figure 15(b). The power output and drain efficiency
almost matching the predicted values from the dc load-
line.
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4. CONCLUSION

The simulated 2.4 GHz PA closely achieved the predicted
class-J waveforms, power output and efficiency
performance. The slight discrepancy observed was
attributed to the device parasitic other than the output
capacitance which was absorbed in the design. The
output power designed for, 20dBm, was slightly
surpassed to yield a 21dBm output. The simulation results
show that the PA exhibited a drain efficiency of 69% and
a power output of 21dBm with low distortion.
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