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Abstract. Turbo coding is a very powerful error correction 

technique that has made a tremendous impact on channel 

coding in the past two decades. It outperforms most known 

coding schemes by achieving near Shannon limit error 

correction using simple component codes and large 

interleavers. This paper investigates the turbo coder in detail. 

It presents a design and a working model of the error 

correction technique using Simulink, a companion software 

to MATLAB. Finally, graphical and tabular results are 

presented to show that the designed turbo coder works as 

expected. 
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1. INTRODUCTION  
 

Communication in all its forms is an incredibly crucial 

part of our world. Without effective and reliable 

communication, information systems cease to function 

and eventually break down. It is not surprise then that 

the telephone is hailed as one of the most significant 

inventions of the 20th century. The extensive research 

and theories that we spurred on by its invention have a 

significant way shaped the telecommunications 

landscape we know today. 

 

The ability to transmit information reliably over a noisy 

channel at relatively low power made many innovations 

that were simply not practical beforehand possible. 

Communication devices could now be constructed 

smaller, satellite communication systems could be more 

energy efficient and information could be transmitted 

further, in both wired and wireless channels with lower 

error rates. This was achieved through the introduction 

of error control codes. 
 
As one of the error control codes, turbo codes made the 
first big leap towards reaching the Shannon limit, the 
highest transmission rate that can be achieved over a 
noisy channel without errors. This enhanced research and 
innovation in the field worldwide, with over 400 patents 
involving its theory and applications being filed since its 
development. Today turbo codes are at the center of high 
speed wireless communication and are only rivaled in 
performance by the low density parity check (LDPC). 
Several researches which deal with turbo codes can be 
found in literatures [1-6]. 

 

2. DESIGN METHODOLOGY  
 

The simulation of a turbo code is carried out in 

MATLAB-2016 in Simulink Version 8.7 (R2016a). The 

turbo coding model is made up of MATLAB blocks, 

user-defined MATLAB system blocks as well as user-

defined functions, all of which are necessary for its 

functioning. The primary toolboxes used are the 

communication system and discrete system processing 

(DSP) toolbox. The model has the following 

specifications: 

 Code rate: 1/3;

 Encoder polynomials: 13, 15; 

 Interleavers: QPP and RANDOM interleavers

 Modulation: QPSK (BPSK and 8-PSK used as 

well);

 Frequency of source: 100kHz.

 

Figure 1 shows the complete turbo coding system model. 

The system has been broken down into four main 

sections, control block, transmitter, channel, and 

receiver.  

 

 
Figure 1. Block diagram of turbo coded transmission 

 

2.1 Control block 

 

The block shown in Figure 2 which is model parameters, 

is an empty port-less block that is used to set the 

interleaver type, interleaver block length and trellis 

structure for the entire model by changing its parameters. 

It also displays these parameters before and after a 

change is made. It therefore provides a central point 

from which to change the system parameters. 
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Figure 2. Model of control block 

 

2.2 Transmitter  

 

As illustrated in Figure 1, the transmitter is made up of 

the Bernoulli binary generator, the turbo encoder and the 

modulator. 

 

2.2.1 Bernoulli binary generator 

 

This block acts as the source of the transmission system 

and transmits ‘0’s and ‘1’s with equal probabilities. It is 

compared against the output of the turbo decoder to 

determine the error performance of the system. Its 

sample time is set to 10ms which set its frequency at 100 

kHz. However, its samples per frame are dependent on 

the block length of the interleaver and is changed 

automatically when the ‘blocklength’ property of the 

control block is adjusted. 

 

2.2.2 Turbo encoder 

 

Figure 3 below shows the turbo encoder’s subsystem and 

its sub-blocks are explained in the subsequent sections. 

 

Figure 3. Turbo encoder’s subsystem 
 

2.2.2.1 Convolutional Encoder 

 

This is a communications system toolbox block that 

performs the convolutional encoding using the polytrellis 

function (polynomial 13,15). The function constructs the 

trellis required by the encoder block and thus determines 

the encoder type and configuration. 

 

2.2.2.2 Dualinterleaver 

 

This user-defined block performs either RANDOM or 

quadratic permutation polynomial (QPP) interleaving 

depending on the selection at the control block. The 

RANDOM interleaving is performed using the 

communications system toolbox’s RANDOM 

interleaver. 

 

The QPP interleaver uses a table of 19 polynomial and 

their inverses to calculate the permutations. The table 

limits the block lengths that can be used to 19 values 

between 40 and 8192. 

 

2.2.2.3. Concatenation 

 

This is a user-defined block that concatenates the 

systematic bits with the 2 sets of parity bits from the 

encoders. Its parameters are obtained from the function 

‘enTrellisParameters’ which retrieves the parameters of 

the trellis from the polytrellis object in the encoder and 

makes them available to all the blocks within the turbo 

encoder block. 

 

The block takes in the two convolutional codewords, 

removes the interleaved systematic bits and concatenates 

its parity bits with the codeword of the upper encoder. 

The two sets of termination bits are then added to the 

end of the new (3, 1) codeword. 

 

2.2.3 Modulator 

 

The primary modulator used in this system is the 

quadrature phase shift keying (QPSK) because it has 

good error performance. However, binary phase shift 

keying (BPSK) and 8-PSK are also used to test the turbo 

coder’s performance when using different modulation 

schemes. The shifts between QPSK, BPSK and 8-PSK 

are performed programmatically using the function 

‘berSimulation’. 

 

2.3 Channel 

 

An additive white Gaussian noise (AWGN) channel is 

used as a communication channel. Its signal-to-noise 

ratio (Eb/N0) values are set by the function 

‘berSimulation’, while the symbol period is updated 

automatically by the model itself each time the 

simulation is run. 

 

2.4 Receiver 

 

As illustrated in Figure 1, the receiver is made up of the 

demodulator and the turbo decoder. 

 

2.4.1 Demodulator 
 

The demodulators used are the QPSK, BPSK and 8-PSK 

with preference to the former. They are set with the 

decision type; log-likelihood, because the decoder 

requires soft inputs. They however use -1 to represent a 

one and +1 to represent a zero, the inverse of what the 

decoder expects. 

 

2.4.2 Turbo decoder 

 

The Figure 4 illustrates the different parts of the turbo 

decoder. The different colors represent components with 

different sample rates where red is the highest rate, green 
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is the lowest and gold represents a block that has 

components running with different sample rates within 

it. 

 

 
Figure 4. Turbo decoder’s subsystem 

 

2.4.2.1 Sign interchange 

 

This block inverts the signs of the log likelihood ratio 

(LLRs) being received from the demodulator by 

multiplying the bits by ‘-1’. 

 

2.4.2.2 Deconcatenation 

 

This user-defined block performs the de-concatenation 

of the received noisy codeword. It separates the 

codeword into systematic and parity bits for A Posteriori 

Probability (APP) decoder 1 and parity bits alone for 

APP decoder 2 with their respective tail bits reattached. 

Its parameters are obtained from the function 

‘decTrellisParameters’ which retrieves them from the 

APP decoder’s polytrellis object and makes them 

available to the blocks within the turbo encoder block. 

 

2.4.2.3 APP decoder 

 

This communications system toolbox block accepts the 

channel information (systematic and parity bits) and a 

priori information and outputs an updated version of the 

a priori information which, in this model, is the extrinsic 

information. It uses the algorithms True APP, Max* and 

Max which are analogous to the MAP BCJR, LOG MAP 

BCJR and MAX LOG MAP BCJR algorithms 

respectively. The block parameters are entered using the 

turbo decoder block or by the function ‘berSimulation’. 

 

2.4.2.4 Interleaving and deinterleaving 

 

Figure 5 and Figure 6 below show the interleaving and 

de-interleaving areas in the decoder. They are largely 

identical apart from the dualinterleaver/dualdeinterleaver 

block at their center. The submatrix block removes the 

tail bits before the interleaving is performed while the 

‘Vector Concatenate’ block reattaches a set of zeros 

equal in number to the tail bits. This is to satisfy the a 

priori information input length constraints of the APP 

decoder. 

 

 
Figure 5. Block diagram of interleaving in decoder 

 

 
Figure 6. Block diagram of de-interleaving in decoder 

 

2.4.2.5 Loop control   
 

These set of blocks control the a priori information being 

received by the APP decoders. The ‘Unit Delay’ delays 

the set of k bits by one sample. This holds back the 

output of ‘APP decoder 2’ so that its first output LLR is 

due the output of APP decoder 1 that ran at the first 

sample. ‘Unit Delay1’ however, delays the ‘Pulse 

Generator’ to keep the output from ‘APP decoder 2’ 

synchronized with the pulses generated. Figure 7 shows 

the loop control of turbo decoder. 

 

 
Figure 7. Loop control of turbo decoder 

 

Figure 8 shows the signal stream from the ‘Product1’, 

’Unit Delay’ and ‘Unit Delay 1’ blocks for a single bit 

from the set of k bits entering each block. The letters B, 

C, D and E indicate the progressive step-wise increase of 

the a priori LLRs to the APP decoder 1 when set to 3 

iterations. 

 

The ‘Pulse Generator’ block controls the duration of the 

feedback by resetting the LLR to zero when a new set of 

samples is received as indicated by the letter A below. 

Each sample, B – E initiate new iteration. However, the 

final iteration initiated by E is ignored by the decoder, 

resulting in 3 instead of 4 iterations. 
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Figure 8. Control of a priori information to decoder at 2nd 

set of samples (between 0.00320 and 0.00576) 

 

2.4.2.6 Addition and hard limiter 

 

Figure 9  shows the component blocks that perform 

addition and make a hard decision on the LLR when the 

iterations end. The two delays, ‘Unit Delay’ and ‘Unit 

Delay1’ select the previous iteration’s LLR rather than 

the most recent. With reference to Figure8, they allow E 

to be ignored and the 3rd’s iteration LLR from ‘APP 

Decoder 2’ (D) to be taken. 

 

The ‘Rate Transition blocks’, RT4 and RT5 interface the 

two sections of different sample rates. They select the 

final LLR at the end of the iterations (D) to be outputted 

to the ‘Add’ block. 

 

The ‘Add’ block adds the extrinsic information going to 

the APP decoder 2 with the a priori information going to 

the APP decoder 1. This is equivalent to the de-

interleaved BCJR algorithm output from decoder 2.  

 

 
Figure 9. Addition and hard limiter blocks of the decoder 

 

The ‘Relational Operator’ compares the value of the 

LLR with ‘0’. If it is greater than 0 (or positive), it 

outputs a 1 and if it’s less than 0 (negative), it outputs a 

0. In this way, a hard decision is made on the LLR. 

 

2.5 Performance testing 

 

There are several blocks, systems and functions used for 

performance testing of the turbo coding system. Figure 1 

shows the ‘Error Rate Correction’ block which is a 

communications system toolbox block that compares the 

transmitted and received signal and calculates the bit 

error rate (BER) from the comparisons. 

The function ‘berSimulation’ generates all the BER 

curves required. It uses the results from the error 

correction block, parameters entered into the function as 

well as a second Simulink model (Figure 10) to plot the 

BER curves. 

 

 
Figure 10. Uncoded transmission model 

 
The model above is used to plot the BER curve when 
turbo coding isn’t applied using the ‘berSimulation’ 
function when this option is chosen. 

 

3. RESULTS  
 

In this section, the performance of the turbo coder is 

illustrated and evaluated. For the turbo coder, the 

parameters of interest are the interleaver block length, 

the number of iterations, the algorithm or interleaver 

used. The BER performance of the system is 

investigated with regard to these parameters. The time 

elapsed during the decoding and the effect of different 

modulation schemes on turbo code performance are also 

investigated. The BER curves are plotted by varying 

these parameters. Each BER point on the curve is 

obtained by running the model through 8.192 × 106 bits. 

The table under each figure give the simulation time of 

each curve, where simulation time here can be viewed as 

a measure of the decoding speed of the decoder under a 

predetermined set of parameters. 

 

3.1 Decoding iterations 

 

Figure 11 below shows the decoder’s error performance 

as the number of iterations are increased. It shows good 

convergence at lower Eb/N0, however it also shows a 

mediocre asymptotic gain. For the iteration 18 BER 

curve, it’s about 1.25dB. Table 1 shows time elapsed 

when iterations are varied. 
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Figure 11. Performance at different iterations 

 
Table 1. Time elapsed when iteration are varied 

Turbo Coder Iteration Curves (02:00:18.035) 

1024QPPMax*1/4-PSK 00:13:18.227 

1024QPPMax*2/4-PSK 00:09:59.357 

1024QPPMax*3/4-PSK 00:12:32.457 

1024QPPMax*4/4-PSK 00:15:02.973 

1024QPPMax*6/4-PSK 00:19:57.040 

1024QPPMax*18/4-PSK 00:49:05.290 

 

3.2 Interleaver block length 

 

The error performance when the interleaver and de-

interleaver block length is varied is shown in Figure12. 

The error floor is shown to lower as the block length 

increases. 

 

The flat result shown by the 8192 and 2048 block length 

curves is due to the limit to the number of bits that could 

be used for the simulation. A greater number, if used, 

would have displayed the error floor more clearly. 

However, it still indicates the presence of an error floor. 

Table 2 shows time elapsed when block length is varied. 

 

 
Figure 12. Performance with different interleaver block 

lengths 

 

 

 

Table 2. Time elapsed when bloc length is varied 

Turbo Coder Block Length Curves (02:01:52.176) 

128QPPMax*6/4-PSK 00:25:45.068 

256QPPMax*6/4-PSK 00:22:40.831 

512QPPMax*6/4-PSK 00:20:44.180 

1024QPPMax*6/4-PSK 00:19:28.221 

2048QPPMax*6/4-PSK 00:17:53.846 

8192QPPMax*6/4-PSK 00:15:05.421 

 

3.3 Decoding algorithm 

 

Figure 13 shows the performance of the three algorithms 

that are available. The error and simulation time 

performance of the Max* algorithm indicate why it is 

used for generating the rest of the results. Table 3 shows 

time elapsed when algorithm is varied. 

 

Figure 13. Performance with different algorithms 
 

Table 3. Time elapsed when algorithm is varied 

Turbo Coder Algorithm BER Curves 

(00:52:14.787) 

1024QPPTrueAPP 6/4-PSK 00:25:47.991 

1024QPPMax*6/4-PSK 00:15:02.286 

1024QPPMax 6/4-PSK 00:11:13.943 

 

3.4 Interleaver and deinterleaver 

 

The performance of the two integrated interleavers at 

low and high iteration values is shown in Figure 14. The 

QPP interleaver shows superior performance to the 

RANDOM interleaver in both the decoding speed and 

level of error floor. Table 4 shows time elapsed when 

interleaver is varied. 
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Figure 14. Performance with different interleavers 

 
Table 4. Time elapsed when interleaver is varied 

Turbo Coder Interleaver BER Curves 

(01:21:34.429) 

1024QPPMax*2/4-PSK 00:09:41.547 

1024RANDOMMax*2/4-PSK 00:22:47.760 

1024QPPMax*6/4-PSK 00:19:19.912 

1024RANDOMMax*6/4-PSK 00:29:30.851 

 

3.5 Modulation schemes 

 

The performance of the decoder when BPSK, QPSK and 

8-PSK are used can be seen in Figure 15. The BPSK and 

QPSK are shown to have similar performance, as 

expected from theory. However, the QPSK’s marginally 

better performance at low values of Eb/N0 show why it 

is used as the default modulation scheme. Table 5 shows 

time elapsed when modulation scheme is varied. 

 

 
Figure 15. Effect of different modulation schemes 

 

 

 

 

 

 

 

Table 5. Time elapsed when modulation scheme is varied 

Turbo Coder Modulation Scheme BER Curves 

(01:22:56.186) 

1024QPPMax*6/2-PSK 00:20:41.384 

1024QPPMax*6/4-PSK 00:26:34.156 

1024QPPMax*6/8-PSK 00:35:40.127 

 

4. CONCLUSION  
 

This paper was established to investigate and describe 

the turbo codes in detail, to design turbo codes and to 

demonstrate its performance. The performance of turbo 

codes is measured by considering several parameters 

including decoding iterations, interleaver block length, 

decoding algorithm, interleaver and deinterleaver, and 

modulation schemes. 
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