
DOI: 10.1515/SBEEF-2019-0009

PERFORMANCE ANALYSIS OF TURBO CODES OVER AWGN CHANNEL

MOHANAD ABDULHAMID1, MBUGUA THAIRU2
1AL-Hikma University, Iraq, 2University of Nairobi, Kenya

E-mail: moh1hamid@yahoo.com, researcher12018@yahoo.com

Abstract. Turbo coding is a very powerful error correction

technique that has made a tremendous impact on channel

coding in the past two decades. It outperforms most known

coding schemes by achieving near Shannon limit error

correction using simple component codes and large

interleavers. This paper investigates the turbo coder in detail.

It presents a design and a working model of the error

correction technique using Simulink, a companion software

to MATLAB. Finally, graphical and tabular results are

presented to show that the designed turbo coder works as

expected.

Keywords: performance analysis, turbo codes, AWGN channel

1. INTRODUCTION

Communication in all its forms is an incredibly crucial

part of our world. Without effective and reliable

communication, information systems cease to function

and eventually break down. It is not surprise then that

the telephone is hailed as one of the most significant

inventions of the 20th century. The extensive research

and theories that we spurred on by its invention have a

significant way shaped the telecommunications

landscape we know today.

The ability to transmit information reliably over a noisy

channel at relatively low power made many innovations

that were simply not practical beforehand possible.

Communication devices could now be constructed

smaller, satellite communication systems could be more

energy efficient and information could be transmitted

further, in both wired and wireless channels with lower

error rates. This was achieved through the introduction

of error control codes.

As one of the error control codes, turbo codes made the
first big leap towards reaching the Shannon limit, the
highest transmission rate that can be achieved over a
noisy channel without errors. This enhanced research and
innovation in the field worldwide, with over 400 patents
involving its theory and applications being filed since its
development. Today turbo codes are at the center of high
speed wireless communication and are only rivaled in
performance by the low density parity check (LDPC).
Several researches which deal with turbo codes can be
found in literatures [1-6].

2. DESIGN METHODOLOGY

The simulation of a turbo code is carried out in

MATLAB-2016 in Simulink Version 8.7 (R2016a). The

turbo coding model is made up of MATLAB blocks,

user-defined MATLAB system blocks as well as user-

defined functions, all of which are necessary for its

functioning. The primary toolboxes used are the

communication system and discrete system processing

(DSP) toolbox. The model has the following

specifications:

 Code rate: 1/3;

 Encoder polynomials: 13, 15;

 Interleavers: QPP and RANDOM interleavers

 Modulation: QPSK (BPSK and 8-PSK used as

well);

 Frequency of source: 100kHz.

Figure 1 shows the complete turbo coding system model.

The system has been broken down into four main

sections, control block, transmitter, channel, and

receiver.

Figure 1. Block diagram of turbo coded transmission

2.1 Control block

The block shown in Figure 2 which is model parameters,

is an empty port-less block that is used to set the

interleaver type, interleaver block length and trellis

structure for the entire model by changing its parameters.

It also displays these parameters before and after a

change is made. It therefore provides a central point

from which to change the system parameters.

43

mailto:moh1hamid@yahoo.com

Scientific Bulletin of the Electrical Engineering Faculty – Year 19 No.1 (40) ISSN 2286-2455

Figure 2. Model of control block

2.2 Transmitter

As illustrated in Figure 1, the transmitter is made up of

the Bernoulli binary generator, the turbo encoder and the

modulator.

2.2.1 Bernoulli binary generator

This block acts as the source of the transmission system

and transmits ‘0’s and ‘1’s with equal probabilities. It is

compared against the output of the turbo decoder to

determine the error performance of the system. Its

sample time is set to 10ms which set its frequency at 100

kHz. However, its samples per frame are dependent on

the block length of the interleaver and is changed

automatically when the ‘blocklength’ property of the

control block is adjusted.

2.2.2 Turbo encoder

Figure 3 below shows the turbo encoder’s subsystem and

its sub-blocks are explained in the subsequent sections.

Figure 3. Turbo encoder’s subsystem

2.2.2.1 Convolutional Encoder

This is a communications system toolbox block that

performs the convolutional encoding using the polytrellis

function (polynomial 13,15). The function constructs the

trellis required by the encoder block and thus determines

the encoder type and configuration.

2.2.2.2 Dualinterleaver

This user-defined block performs either RANDOM or

quadratic permutation polynomial (QPP) interleaving

depending on the selection at the control block. The

RANDOM interleaving is performed using the

communications system toolbox’s RANDOM

interleaver.

The QPP interleaver uses a table of 19 polynomial and

their inverses to calculate the permutations. The table

limits the block lengths that can be used to 19 values

between 40 and 8192.

2.2.2.3. Concatenation

This is a user-defined block that concatenates the

systematic bits with the 2 sets of parity bits from the

encoders. Its parameters are obtained from the function

‘enTrellisParameters’ which retrieves the parameters of

the trellis from the polytrellis object in the encoder and

makes them available to all the blocks within the turbo

encoder block.

The block takes in the two convolutional codewords,

removes the interleaved systematic bits and concatenates

its parity bits with the codeword of the upper encoder.

The two sets of termination bits are then added to the

end of the new (3, 1) codeword.

2.2.3 Modulator

The primary modulator used in this system is the

quadrature phase shift keying (QPSK) because it has

good error performance. However, binary phase shift

keying (BPSK) and 8-PSK are also used to test the turbo

coder’s performance when using different modulation

schemes. The shifts between QPSK, BPSK and 8-PSK

are performed programmatically using the function

‘berSimulation’.

2.3 Channel

An additive white Gaussian noise (AWGN) channel is

used as a communication channel. Its signal-to-noise

ratio (Eb/N0) values are set by the function

‘berSimulation’, while the symbol period is updated

automatically by the model itself each time the

simulation is run.

2.4 Receiver

As illustrated in Figure 1, the receiver is made up of the

demodulator and the turbo decoder.

2.4.1 Demodulator

The demodulators used are the QPSK, BPSK and 8-PSK

with preference to the former. They are set with the

decision type; log-likelihood, because the decoder

requires soft inputs. They however use -1 to represent a

one and +1 to represent a zero, the inverse of what the

decoder expects.

2.4.2 Turbo decoder

The Figure 4 illustrates the different parts of the turbo

decoder. The different colors represent components with

different sample rates where red is the highest rate, green

44

Scientific Bulletin of the Electrical Engineering Faculty – Year 19 No.1 (40) ISSN 2286-2455

is the lowest and gold represents a block that has

components running with different sample rates within

it.

Figure 4. Turbo decoder’s subsystem

2.4.2.1 Sign interchange

This block inverts the signs of the log likelihood ratio

(LLRs) being received from the demodulator by

multiplying the bits by ‘-1’.

2.4.2.2 Deconcatenation

This user-defined block performs the de-concatenation

of the received noisy codeword. It separates the

codeword into systematic and parity bits for A Posteriori

Probability (APP) decoder 1 and parity bits alone for

APP decoder 2 with their respective tail bits reattached.

Its parameters are obtained from the function

‘decTrellisParameters’ which retrieves them from the

APP decoder’s polytrellis object and makes them

available to the blocks within the turbo encoder block.

2.4.2.3 APP decoder

This communications system toolbox block accepts the

channel information (systematic and parity bits) and a

priori information and outputs an updated version of the

a priori information which, in this model, is the extrinsic

information. It uses the algorithms True APP, Max* and

Max which are analogous to the MAP BCJR, LOG MAP

BCJR and MAX LOG MAP BCJR algorithms

respectively. The block parameters are entered using the

turbo decoder block or by the function ‘berSimulation’.

2.4.2.4 Interleaving and deinterleaving

Figure 5 and Figure 6 below show the interleaving and

de-interleaving areas in the decoder. They are largely

identical apart from the dualinterleaver/dualdeinterleaver

block at their center. The submatrix block removes the

tail bits before the interleaving is performed while the

‘Vector Concatenate’ block reattaches a set of zeros

equal in number to the tail bits. This is to satisfy the a

priori information input length constraints of the APP

decoder.

Figure 5. Block diagram of interleaving in decoder

Figure 6. Block diagram of de-interleaving in decoder

2.4.2.5 Loop control

These set of blocks control the a priori information being

received by the APP decoders. The ‘Unit Delay’ delays

the set of k bits by one sample. This holds back the

output of ‘APP decoder 2’ so that its first output LLR is

due the output of APP decoder 1 that ran at the first

sample. ‘Unit Delay1’ however, delays the ‘Pulse

Generator’ to keep the output from ‘APP decoder 2’

synchronized with the pulses generated. Figure 7 shows

the loop control of turbo decoder.

Figure 7. Loop control of turbo decoder

Figure 8 shows the signal stream from the ‘Product1’,

’Unit Delay’ and ‘Unit Delay 1’ blocks for a single bit

from the set of k bits entering each block. The letters B,

C, D and E indicate the progressive step-wise increase of

the a priori LLRs to the APP decoder 1 when set to 3

iterations.

The ‘Pulse Generator’ block controls the duration of the

feedback by resetting the LLR to zero when a new set of

samples is received as indicated by the letter A below.

Each sample, B – E initiate new iteration. However, the

final iteration initiated by E is ignored by the decoder,

resulting in 3 instead of 4 iterations.

45

Scientific Bulletin of the Electrical Engineering Faculty – Year 19 No.1 (40) ISSN 2286-2455

Figure 8. Control of a priori information to decoder at 2nd

set of samples (between 0.00320 and 0.00576)

2.4.2.6 Addition and hard limiter

Figure 9 shows the component blocks that perform

addition and make a hard decision on the LLR when the

iterations end. The two delays, ‘Unit Delay’ and ‘Unit

Delay1’ select the previous iteration’s LLR rather than

the most recent. With reference to Figure8, they allow E

to be ignored and the 3rd’s iteration LLR from ‘APP

Decoder 2’ (D) to be taken.

The ‘Rate Transition blocks’, RT4 and RT5 interface the

two sections of different sample rates. They select the

final LLR at the end of the iterations (D) to be outputted

to the ‘Add’ block.

The ‘Add’ block adds the extrinsic information going to

the APP decoder 2 with the a priori information going to

the APP decoder 1. This is equivalent to the de-

interleaved BCJR algorithm output from decoder 2.

Figure 9. Addition and hard limiter blocks of the decoder

The ‘Relational Operator’ compares the value of the

LLR with ‘0’. If it is greater than 0 (or positive), it

outputs a 1 and if it’s less than 0 (negative), it outputs a

0. In this way, a hard decision is made on the LLR.

2.5 Performance testing

There are several blocks, systems and functions used for

performance testing of the turbo coding system. Figure 1

shows the ‘Error Rate Correction’ block which is a

communications system toolbox block that compares the

transmitted and received signal and calculates the bit

error rate (BER) from the comparisons.

The function ‘berSimulation’ generates all the BER

curves required. It uses the results from the error

correction block, parameters entered into the function as

well as a second Simulink model (Figure 10) to plot the

BER curves.

Figure 10. Uncoded transmission model

The model above is used to plot the BER curve when
turbo coding isn’t applied using the ‘berSimulation’
function when this option is chosen.

3. RESULTS

In this section, the performance of the turbo coder is

illustrated and evaluated. For the turbo coder, the

parameters of interest are the interleaver block length,

the number of iterations, the algorithm or interleaver

used. The BER performance of the system is

investigated with regard to these parameters. The time

elapsed during the decoding and the effect of different

modulation schemes on turbo code performance are also

investigated. The BER curves are plotted by varying

these parameters. Each BER point on the curve is

obtained by running the model through 8.192 × 106 bits.

The table under each figure give the simulation time of

each curve, where simulation time here can be viewed as

a measure of the decoding speed of the decoder under a

predetermined set of parameters.

3.1 Decoding iterations

Figure 11 below shows the decoder’s error performance

as the number of iterations are increased. It shows good

convergence at lower Eb/N0, however it also shows a

mediocre asymptotic gain. For the iteration 18 BER

curve, it’s about 1.25dB. Table 1 shows time elapsed

when iterations are varied.

46

Scientific Bulletin of the Electrical Engineering Faculty – Year 19 No.1 (40) ISSN 2286-2455

Figure 11. Performance at different iterations

Table 1. Time elapsed when iteration are varied

Turbo Coder Iteration Curves (02:00:18.035)

1024QPPMax*1/4-PSK 00:13:18.227

1024QPPMax*2/4-PSK 00:09:59.357

1024QPPMax*3/4-PSK 00:12:32.457

1024QPPMax*4/4-PSK 00:15:02.973

1024QPPMax*6/4-PSK 00:19:57.040

1024QPPMax*18/4-PSK 00:49:05.290

3.2 Interleaver block length

The error performance when the interleaver and de-

interleaver block length is varied is shown in Figure12.

The error floor is shown to lower as the block length

increases.

The flat result shown by the 8192 and 2048 block length

curves is due to the limit to the number of bits that could

be used for the simulation. A greater number, if used,

would have displayed the error floor more clearly.

However, it still indicates the presence of an error floor.

Table 2 shows time elapsed when block length is varied.

Figure 12. Performance with different interleaver block

lengths

Table 2. Time elapsed when bloc length is varied

Turbo Coder Block Length Curves (02:01:52.176)

128QPPMax*6/4-PSK 00:25:45.068

256QPPMax*6/4-PSK 00:22:40.831

512QPPMax*6/4-PSK 00:20:44.180

1024QPPMax*6/4-PSK 00:19:28.221

2048QPPMax*6/4-PSK 00:17:53.846

8192QPPMax*6/4-PSK 00:15:05.421

3.3 Decoding algorithm

Figure 13 shows the performance of the three algorithms

that are available. The error and simulation time

performance of the Max* algorithm indicate why it is

used for generating the rest of the results. Table 3 shows

time elapsed when algorithm is varied.

Figure 13. Performance with different algorithms

Table 3. Time elapsed when algorithm is varied

Turbo Coder Algorithm BER Curves

(00:52:14.787)

1024QPPTrueAPP 6/4-PSK 00:25:47.991

1024QPPMax*6/4-PSK 00:15:02.286

1024QPPMax 6/4-PSK 00:11:13.943

3.4 Interleaver and deinterleaver

The performance of the two integrated interleavers at

low and high iteration values is shown in Figure 14. The

QPP interleaver shows superior performance to the

RANDOM interleaver in both the decoding speed and

level of error floor. Table 4 shows time elapsed when

interleaver is varied.

47

Scientific Bulletin of the Electrical Engineering Faculty – Year 19 No.1 (40) ISSN 2286-2455

Figure 14. Performance with different interleavers

Table 4. Time elapsed when interleaver is varied

Turbo Coder Interleaver BER Curves

(01:21:34.429)

1024QPPMax*2/4-PSK 00:09:41.547

1024RANDOMMax*2/4-PSK 00:22:47.760

1024QPPMax*6/4-PSK 00:19:19.912

1024RANDOMMax*6/4-PSK 00:29:30.851

3.5 Modulation schemes

The performance of the decoder when BPSK, QPSK and

8-PSK are used can be seen in Figure 15. The BPSK and

QPSK are shown to have similar performance, as

expected from theory. However, the QPSK’s marginally

better performance at low values of Eb/N0 show why it

is used as the default modulation scheme. Table 5 shows

time elapsed when modulation scheme is varied.

Figure 15. Effect of different modulation schemes

Table 5. Time elapsed when modulation scheme is varied

Turbo Coder Modulation Scheme BER Curves

(01:22:56.186)

1024QPPMax*6/2-PSK 00:20:41.384

1024QPPMax*6/4-PSK 00:26:34.156

1024QPPMax*6/8-PSK 00:35:40.127

4. CONCLUSION

This paper was established to investigate and describe

the turbo codes in detail, to design turbo codes and to

demonstrate its performance. The performance of turbo

codes is measured by considering several parameters

including decoding iterations, interleaver block length,

decoding algorithm, interleaver and deinterleaver, and

modulation schemes.

5. REFERENCES

[1] H. Sadjadpour, N. Sloane, M. Salehi, and G. Nebe,

"Interleaver design for turbo codes", IEEE Journal

on Selected Area in Communications, Vol.19, No.5,

2001.

[2] J. Kaza and C. Chakrabarti, "Design and

implementation of low-energy turbo decoders",

IEEE Transactions on Very Large Scale Integration

Systems, Vol. 12. No. 9, 2004.

[3] K. Sun, D. Yuan, X. Zhou, "Performance analysis of

turbo codes with different interleavers and decoding

methods", 2010 IEEE International Conference on

Information Theory and Information Security,

China, 2010.

[4] S. Jasim, and A. Abbas, " Performance of turbo

code with different parameters", Journal of Babylon

University of Engineering Sciences, Vol. 25, No.5,

PP.1684-1692, 2017.

[5] M. Devi, K. Ramanjaneyulu, and B. Krishna,

"Performance analysis of sub-interleaver based

turbo codes", Cluster Computing, Published Online

First in March, 2018.

[6] B. Ahn, S. Yoon, and Jun Heo, "Low complexity

syndrome-based decoding algorithm applied to

block turbo codes", Access IEEE, Vol. 6, PP.26693-

26706, 2018.

48

https://ieeexplore.ieee.org/author/38004714600
https://ieeexplore.ieee.org/author/37276438900
https://ieeexplore.ieee.org/author/37677168000
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5680738
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5680738

