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Abstract. The development of intelligent smart grids requires 

new electrical monitoring solutions in order to optimize 

power consumption. The implementation of intelligent 

energy-monitors leads to new technical developments to 

optimize consumption using intrusive and non-intrusive 

techniques. This paper makes a review of the main methods 

used for load monitoring systems, indicating their advantages 

and disadvantages. The emergence of high-harmonic 

consumer electronics in electrical networks such as LED 

lighting sources implies the choice of the appropriate method 

and equipment for optimizing energy consumption based on 

energy signatures. 
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1. INTRODUCTION 
 

For monitoring and controlling electrical energy 
consumption in smart buildings, home and residential 
places, is very important to know the load signature for 
individual consumers. The load signature is represented 
by the set of measurable electrical parameters which can 
be detected by the installed measurement apparatus at a 
given time. Besides monitoring it is also essential for the 
estimation of energy consumption, to track the power 
quality of the energy supplied. To achieve all this there 
are several solutions for monitoring the electrical 
appliances.  
 
The first solution involves the acquisition of the electrical 
parameters for different consumers at different operating 
levels by using a network of wireless sensors mounted 
inside the appliances (Intrusive Load Method ILM). In 
this case, each device of the electrical grid must be 
connected to a smart sensor that measures its 
consumption. The information thus obtained from the 
sensors is processed and sent to the central server 
generating a report [1], [2]. This solution involves 
different types of equipment and a high costs for 
acquisition and implementation. The advantage is 
represented by its accuracy and reliability of the 
measurements since only the errors of the measuring 
instruments are presented in the final results of energy 
measurement.  
 

Another solution refers to the use of a single intelligent 
monitoring device (Non-Intrusive Load Method - NILM), 
most frequently installed at the entrance of the home’s 
electrical network. Based on the load signature 
determined for each consumer, it is possible to determine 
which of them are turned on. By reducing the number of 
sensors and equipment needed for monitoring all 

consumers, the costs are minimized, implicitly reducing 
the complexity of the network [3], [4]. 
 
So far, from a practical point of view, there is an early 
development of monitoring equipment based on NILM. 
Simultaneously with the development of "smart home" 
systems, their users are increasingly expecting 
optimization of energy consumption, safety, and 
intelligent services [5]-[7]. 
 
The researchers aim, and motivation is to offer users the 
prospect of saving energy and money in the simplest way 
possible, preventing possible electrical malfunctions and 
recognizing the activity of the electrical installation 
components based on data recorded over a specified 
period. Another direction for researchers is to determine 
the aspects related to the quality of the electricity and to 
optimize the different types of consumers using their load 
signature.  
 
This paper presents actual directions to follow for 
researches and methods and equipment designated for 
load monitoring for consumers. 
 

2. NILM SOLUTIONS FOR THE LOAD 

SIGNATURE  
 

2.1 System structure 
 
The process of obtaining a consumer's load signature 
through NILM consists of two main steps: data 
acquisition and data processing (Figure 1).   

 

 
Figure 1. A general framework for NILM approach 

 
Generally, the hardware for the acquisition system has 
two transducers one for current and one for voltage. The 
power factor is calculated based on these values for the 
active power, the reactive power, and the apparent power. 
There are also other advanced measurements, such as 
measuring the harmonic distortion [8], [9], transient 
magnitudes, electromagnetic interferences all of these 
measurements leading to the achievement of NILM's 
primary objective, namely to estimate the operating status 
of individual consumers and their energy consumption. 
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The factors that affect NILM performance are a range of 
power measurement, sampling rate, A/D conversion 
resolution, etc. The NILM system has evolved over the 
years through improvements for its hardware features 
(such as higher sample sampling rates to manage such 
transitions), and improved algorithms to recognize a 
variety of appliances in residential buildings as well 
commercial buildings. Appliance feature extraction 
module, inference and identification module and learning 
module are the essential parts of NILM system structure. 
 
Depending on the data acquired on the sampling rate are 
two broad sets of hardware used for NILM [10]-[12]. 
Equipment with low sampling rate (1Hz) which is a 
standard and cheap equipment [13], and equipment with 
high sampling rate (> 5 kHz) requiring a complex 
structure and therefore high costs. 
 

2.2 Appliance types 
 
Depending on the structure and operating regime of the 
electrical appliance, they can consume different amounts 
of energy. The resistive loads use the power exactly as it 
comes from the source. The current being in phase with 
the voltage, the power is taking positive values and is 
being consumed entirely by the device. The inductive and 
capacitive loads consume the energy differently, due to 
the phase shift between the two components, power 
taking positive and negative values. In this case, only the 
active power, the positive value, is used by the device 
while the remaining power, reactive power, is stored and 
then returned to the source. The traditional 
electromagnetic equipment uses a sinusoidal current from 
a sinusoidal source; new equipment converts the 
alternating current into DC so a non-sinusoidal current 
appears, thus introducing new high frequencies, called 
harmonics. To be able to configure an electrical device 
detection algorithm, we need to know the types of 
electrical appliances. 
 
“Permanent appliances devices” are those type of 
electrical devices that remain active through the entire 
day consuming energy at a continuous rate and therefore 
referred to as permanent [13], [14]. Appliances such as 
the hardwired smoke detector, telephone sets, cable TV 
receivers are amongst the devices belonging to this 
category [12]. 
 
The next category of appliances are on/off devices which 
change power consumption when switched on or off. For 
these devices the power changes when switching from the 
off state to the on state having the same value but 
opposite sign. By identifying combinations of power 
changes that satisfy these conditions, it is easy to 
identifying on/off consumers as well as estimating their 
consumption.  
 
A problem may occur if many appliances change their 
state at the same time. As a solution, the Switch 
Continuity Principle was introduced in [15]. The 
sampling frequency of the acquisition system must be 
large enough to detect the power transitions of the 
equipment at short intervals. It is assumed that within a 
short time we have no power transitions. Thus, between 

two acquisition intervals, in which we have total fixed 
power, we can identify the equipment that changes its 
operating state [16]. 
 
Appliances with multiple states of operation are a special 
case of on/off type. After they are started they may 
perform several operations, each of which causes 
different power variations. In this category, we can find 
simple consumers or compounds. From the category of 
simple consumers belong these consumers who perform 
only one function, but have different energy levels. The 
typical example of this category is a fan with several 
gears it performs the same function, rotating the blades, 
but it can do it at different levels - rotation speeds. 
Compound consumers are those with multiple 
functionalities and can accommodate more simple 
consumers. An example would the washing machine, 
which can be seen as a combination between an electric 
machine drive, a water pump and possibly a heating 
component used for drying.  
 
A standard way to represent this class of appliances is the 
finite state machine (FSM) model. Thus, the state of the 
finite automaton defines the state of operation for a 
device, while the transitions represent the passage for a 
consumer from one operating state to another.  
 
The finite automaton states, the power level characteristic 
of the respective state and the transitions accompanied by 
a change in the power value are enough to represent the 
functionality of any consumer. Due to noise, variations in 
supply voltage or other causes, changes in power 
recorded at a consumer's transition from one state to 
another may take different values. This implies the need 
to consider a tolerance in the analysis of the power 
changes corresponding to each consumer. Figure 2 
represents a finite state machine model with two states of 
operation, as illustrated. State A represents a power 
consumption of 500W and state B a consumption level of 
750W. At the transition from A to B, the power 
consumption of the appliance rises with 250W. In 
contrast to this, the power consumption decreases by 
250W when the changes occur from B to A. This is 
analogous to Kirchhoff's law, as the sum of the total 
power changes is zero [16]. 
 

 
Figure 2. A finite state machine (FSM) for an electric 

heater [16] 

 
Continuously variable electrical devices (CVD): the 
fourth class of electric device models are devices which 
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have an infinite number of states. Continuously varying 
electrical devices such as light dimmers, sewing 
machines, and variable speed vibrators do not consume 
constant power and therefore do not generate clear power 
level change signals. 
 
The energy consumption pattern of the different type of 
appliances has been shown in Figure 3, which is further 
interpreted as an appliance feature to discriminate 
between different appliance classes. New studies tend to 
focus on defining load signatures tailor-made to the 
appliance classes listed above to characterize them in a 
best possible way for identification. However recently in 
[10], an author has argued that appliances can have a 
multi-working model based on user customization and 
working styles; therefore this must be accounted into the 
feature extraction process [12]. 
 

 
Figure 3. Different load classes based on their energy 

consumption pattern. 

 

3. THE ISSUE OF THE ELECTRICAL 

APPLIANCE SIGNATURE  

 
At the heart of every approach for monitoring and 
detecting, different appliances are the need to understand 
their electrical behaviour [17], [18]. NILM systems 
identify individual electrical devices based on their load 
signature [17], [19], and [20]-[22]. 
 
Electrical appliance signature can be defined as the 
behaviour of an electrical device during operation which 
is different for every device. Each electrical device 
contains unique features during operation similar to 
human footprint (hence the name of the electrical load 
signature of the device) [19]. Parameters that can be used 
to describe the electrical load signature include current, 
voltage, power measurements, harmonics, transient 
signal, on/off states, etc. Generally, for the identification 
of electrical appliances, NILM systems use two different 
types of load signature, steady-state and transient modes - 
Figure 4, but recently there is a greater concern in 
obtaining consumer characteristics through so-called non-
traditional methods. 
 

 
Figure 4. Classification of load signatures based on 

investigation methods [20] 

 

3.1 Load signature in steady state mode 
 
Steady-state analysis refers to the step changes in power 
signals (active power and reactive power) that occur 
when a particular electrical appliance stops or starts – 
Figure 5 [15], [24].  
 
Steady state analysis requires the use of changes that 
occur between two stable power states for the detection of 
electrical consumers. Over time, these changes have been 
used by various researchers to implement algorithms that 
allow non-intrusive detection of consumers [2], [14], 
[18], [25], [26], [27], [28], and [29]. Initially, G. W. Hart 
implemented a clustering system for consumer detection 
with two states: On/Off [15]. The values of active and 
reactive power  during changes are determined and then 
analyzed for identifying variations that can be associated 
with passing a consumer from one state to another. In 
addition, permanently operating devices for continuous 
consumption cannot be detected by this method; the 
devices remain active 24 hours a day, 7 days a week, with 
constant active and reactive power values. Also, electrical 
devices that consume similar power, a computer and 
incandescent bulb, cannot be separated by this method 
[24] and [30]. The matching algorithm of this method is 
based on the assumption that the positive power shift 
(switch on) matches the negative power change 
(deactivation). However, the impedance load of many 
electrical devices changes over time, resulting in changes 
in energy consumption; a mismatch may arise due to this 
power deviation.  
 
In [32] and [33] the authors proposed a different method 
using the V-I trajectory to classify a set of appliances. For 
each appliance, the V-I trajectory has been conspired 
using the normalized current and voltage values. The V-I 
trajectory method divides the class of appliances into 
eight categories, providing further sub-division within 
each one. It has been shown that the V-I based method is 
more accurate than existing methods based on power 
measurements, for building a taxonomy of electrical 
appliances due to their sharp V-I curves. 
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Figure 5. An aggregated load data obtained using a single 

point of measurement 

 

3.1.1 Loads signatures based on electricity 

measurement on the fundamental frequency 
 
Another approach to determine consumers is by 
analyzing their harmonic distortion content. By analyzing 
the current harmonic spectrum consumers can be 
classified as linear or non-linear – Figure 6. Starting from 
this the method can be taken further and based on the 
present harmonics the devices can be identified. 

 

 
Figure 6. The current draw of linear vs. non-linear loads 

[19]. 

 
It is possible to obtain a recognition equipment with a 
rich spectrum of harmonics by ratio of all the harmonics 
with the fundamental one – Figure 7. But for highly 
resistive loads, it is difficult to make an identification 
based on the spectrum of harmonics because they have a 
low level. 
 

 
Figure 7. Harmonic up to 50th order (electronic appliance) 

[34] 

3.2 Loads signatures based on the transient detection 
 

The primary electrical devices can be recognized from 
load signatures obtained from transient modes. The 
transient behaviour of an electrical device (during start-up 
and shut-off) is a good indicator for identifying the load. 
The characteristics of the transient load signatures are 
variable (time, shape, size) because transient 
measurements depend on the exact value of the voltage at 
the start/stop time – Figure 8 [34], [23]. Transient 
displays are used to identify electrical devices which have 
similar signatures to steady state (but unique transient 
characteristics when switching between stable states) 
[31], [35], and [36]. The major disadvantage of the 
transient analysis is the cost of the equipment used due to 
their high sampling frequency Also the development of a 
signature database of unique transient models is another 
step back. 
 

 
Figure 8. Simultaneous activation of appliances (A, B, C, 

and D) – transient demarcation on active power 

consumption [23] 

 
Transient start signal profiles are closely related to the 
nature of the physical load an electrical appliance needs 
to perform. For example, consumers using pumps have 
long-term transitions, while electronic consumers 
(personal computers, televisions) have short-term 
transitions of high amplitude. Since the physical tasks to 
be performed differ from one device to another, the 
transient start signals can be used for consumer detection. 
These signals are repetitive and tend to remain in shape 
even for consumers using power factor correction. A full 
analysis of the transient profile is difficult to implement 
and requires considerable resources, which is why an 
algorithm has been proposed to analyzes only those 
segments that produce substantial changes, called V-
sections. These V-sections are identified by using an 
average value change detector. The algorithm contains a 
learning phase in which the characteristic V-sections are 
identified, followed by the consumer detection stage. 
 

3.3 Optimal Sampling Frequency for Signature 

Detection 

 
The number and kinds of steady-state and transient 
appliance feature recognizable from an aggregated 
consumption sample are strongly connected to the 
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frequency of measurement in the earliest stages of 
disaggregation. As noted in [37], a wide range of utilized 
sampling frequencies is reported in past literature. Many 
of the steady-state appliance feature described above, 
such as current harmonics or V-I trajectories and 
especially transient features are more realistically 
attainable at higher sampling frequencies. With high 
frequencies, we usually mean several kHz, although 
select approaches have even employed MHz readings 
[38]. High-frequency sampling rates not only allow more 
fine-grained and detailed analysis of device-signatures 
but are also more flexible. The obvious benefit of having 
more samples available than very few is that when high-
resolution data is not required or too bulky to store, it can 
always be down-sampled to lower frequencies. On the 
other side, metering hardware for high sampling rates is 
practically non-existent in households today, making 
NILM techniques requiring sampling rates in the region 
of 1Hz more practical and immediately applicable. 1Hz 
readings as used by Hart’s algorithm [15] which has 
reasonably effectiveness in the examination of active and 
reactive power measurement. More recently attempts 
have been made to improve NILM algorithms for the 
low-frequency sampling of conventional smart meters 
[39]. For example, in [40] and [41] are developed a 
method to perform load disaggregation using 
discriminative sparse coding techniques on power 
samples provided only on an hourly basis. 
 

4. CONCLUSIONS 
 

Current power consumption monitoring solutions are 
based on the use of smart meters in order to know and 
control the individual consumption in smart buildings. 
The implemented methods are grouped into two main 
categories: intrusive and non-intrusive in the respective 
networks, each having specific advantages and 
disadvantages. The paper presents an assessment of the 
load monitoring solutions based on the analysis of the 
current situation in the field. Specific hardware / software 
elements that bring the exactness of each solution, as well 
as the economic aspects of physical implementation, are 
indicated. 
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