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Abstract – The study is focused on analysis of climate 

considerations of electricity supply systems in a pellet industry. 

The developed analysis model consists of two modules: statistical 

data of active power losses evaluation module and climate aspects 

evaluation module. 

The statistical data module is presented as a universal 

mathematical model of electrical systems and components of 

industrial load. It forms a basis for detailed accounting of power 

loss from the voltage levels. On the basis of the universal model, a 

set of programs is designed to perform the calculation and 

experimental research. It helps to obtain the statistical 

characteristics of the power losses and loads of the electricity 

supply systems and to define the nature of changes in these 

characteristics. Within the module, several methods and 

algorithms for calculating parameters of equivalent circuits of 

low- and high-voltage ADC and SD with a massive smooth rotor 

with laminated poles are developed.  

The climate aspects module includes an analysis of the 

experimental data of power supply system in pellet production. It 

allows identification of GHG emission reduction parameters: 

operation hours, type of electrical motors, values of load factor 

and deviation of standard value of voltage. 
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I. INTRODUCTION 

The role of renewable energy resources is increasing due to 

climate considerations, energy independence and security 

reasons. Pellet production is considered a relatively high 

energy (electricity and heat) consumption industry [1–3]. 

However, methods for modeling and optimization of specific 

power systems, algorithms for calculating the characteristics 

of ADC and SD in the pellet industry are not well developed 

yet – mostly economic sustainability and total energy 

efficiency of the pellet production process and plant are 

examined [3–7] and rarely energy intensity [8]. Most existing 

algorithms for power systems analysis represent networks that 

are complex in structure and configuration, but normally are 

limited in voltage – 380 V. In addition, the existing algorithms 

do not fully consider changes in parameters of the equivalent 

circuit diagram of ADC and SD [9–11]. 

Power units P(U) and Q(U) characterize the dependence of 

the active and reactive power load on the voltage at the node 

in the steady state. P and Q are widely used to solve a number 

of urgent problems of power supply (selecting and 

compensating devices and their management, voltage 

regulation at the nodes’ load, etc.).Whereas, the selection of 

the statistical characteristic of active power losses P(U) in 

the elements of electrical network and receivers (most of 

which- electric motors) powered by the node load has gained a 

significant interest [12–14, 16–17]. 

The ratio of the components (which ultimately determine 

the utilization rates of electric motors) depends strongly on the 

form of statistical characteristics of the power loss. Applied to 

guild system power supply (up to 1000 V), they deserve 

special attention for the following reasons: 

1. Conductor cross-section on a floor of sections or 

workshops of an industrial plant is not chosen by the 

economic current density, the permissible load current or 

the allowable voltage drop. Therefore, the maximum load 

creates higher values of the total power losses in the grid 

cell. Lengths of the craft networks are small, but 

sometimes the number of connections is large: for 

example, load of the transformer within a section of 

industrial plant is Snom= 1000 kVA on average and has 

more than 100 connected power users by collectors. 

2. A greater share of load in the electricity supply system 

(SES) is generated from asynchronous motors (AM) with 

squirrel cage capacity of 1 kW – 4 kW and synchronous 

motors (SM) with a massive rotor, the efficiency of 

which is in the range 0.75 – 0.90. It means that the losses 

of power in the fractions of the power consumption are 

commensurate with the total power losses in all previous 

stages of transformation. 

3. The average load factor of AM and SM of electricity 

supply systems’ sections (active power) is in the range of 

K3 = 0.5  0.7. 

Analysis of statistical data of power consumption at the 

pellet production industry was investigated by H.Vigants et.al. 

[18]. The study focuses on use of correlation analysis to define 

a mathematical model for the energy consumption analysis at 

the plant aimed to introduce cleaner production at the industry. 

The authors concluded that the amount of electricity produced 

at the pellet production-related cogeneration plant depends on 

the cogeneration plant power consumption and the power 

consumption of the pellet production facility.  

Determination of the statistical characteristics of the power 

losses by physical experiments is feasible in practise. Some 

issues are connected with branching of the workshop’s 

electrical network, others – with the differences in number of 

lengths. However there is a great variety of types of power end 

user technologies: for example from several tens to several 

hundreds of different types of electric motors with a wide 

range of output (0.3 kW to 400 kW). 

II. METHODS 

Analysis of climate considerations of electricity supply 

systems in a pellet industry is divided in two parts: (1) 

technical analysis of statistical data of electrical systems for 
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definition of power losses and (2) relocation of the technical 

electrical systems data to climate parameter. 

Analysis of the statistical characteristics of the power losses 

is based on the following measures: 

• normalisation process: determination of the parameters of 

equivalent circuits of electric motors from the list of 

industrial equipment and technical document data; 

• assessment of assumptions: calculation of the steady 

regime of electricity supply system with arbitrary values 

of configuration and structure of system;  

• creation of data base: the particular package of mapping 

of equipment placement area and service programs on the 

PC. 

A detailed algorithm for calculating the parameters of the 

equivalent circuit is described in [9, 11]. 

Analysis of climate considerations, expressed in the paper 

through greenhouse gas (GHG) emissions, observed in the 

paper through unwelcomed power losses. Calculation of the 

GHG is based on equation (1). 

  CO2 = R Р t, tCO2/year                    (1) 

where 

CO2 - annual increase of GHG emissions created by power 

losses, tCO2/year; 

R – GHG emission factor, for coal R = 0.342 tCO2/MWh; 

Р – power losses, MW, 

t – operation hours per year, h/year. 

Since the heat and electricity supplied to the pellet 

production plant is generated from coal, the GHG emission 

factor of coal is used in the calculations.  

III. EXPERIMENTAL MODEL 

The power supply system of the pellets production 

workshop (PPW) substations TP-26 JSC "SSGPO" (Figure 1) 

is selected for studies of statistical characteristics of power 

loss. 

Power supply of PPW is provided from the substations – SS 

№ 34 (SS 110/6 and 35/6). Power supply of the mechanical 

plot is provided by a double transformer substation № 26 6/0, 

4 kV transformers through 1,000 kVA each. In turn, substation 

№ 26 is powered by a mutual reserve current distributor, laid 

on the ground, from double transformer substation № 34. The 

substation № 34 set 2x(40 MVA) transformer 110/6 and 35/6 kV, 

power supply of substation № 34 is provided from OL Sarbai-

Agglomerat № 1 with voltage 110 kV from substation "Sarbai" 

JSC «KEGOC» and by OL voltage 35 kV from the heat power 

station. [15] 

The total number of electricity supply system elements is 

352, including cables (117 connections with total length of 

about 9 000 m, range of lengths of connections – from 10 m to 

180 m, range cable cross sections are from 2  (3  240) to 

3  4 mm2) and also 91 AM and 12 SM with a total installed 

capacity of 18 kW; and the average engine power 174 kW 

(twenty have a capacity of over 100 kW: 2 of 2000, 10 of 800, 

4 of 500 and 4 of 400 kW minimum power – 0.5 kW). Other 

(non-motor) load, equal to 0.38 kV, consists of the lighting, 

alarms and thyristor stimulating devices (TSD) of the SD. 

 
Fig. 1. Design diagram TP-26 JSC «SSGPO». 
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IV. RESULTS 

Figure 2 shows the statistical characteristics of the total 

active power losses versus deviation of voltage standard value 

for the load factor (K3) – 0.9 and 0.8 AM and SM. The 

notation: РSM – total active power losses in the SD 

(including losses in the motor circuit connection); РAM – the 

total loss of active power in in the fractions of the power 

consumption (including losses in the chain connecting 

engines); Рnetwork – active power losses in the networks; 

Рtransformer – total active losses in transformers; Р - the total 

active power loss in the SES, including active power losses in 

the network, AM and SM. 

Figure 3 shows the statistical characteristics of the total 

active power losses in this scheme versus deviation of voltage 

standard value for the load factor Кз = 0.9 and 0.8. The 

notation: РAM – the total active power losses in AM (which 

includes losses in the motor circuit connection); Р12AM – total 

active power losses in the steel magnet systems of AM;  

Р1AM − total active power losses in the stator windings of AM;  

Р2AM – total active power losses in the rotor windings of AD;  

РAMcab – total active power losses in joining AM. 

 

 
а) 

 
b) 

Fig. 2. Statistical characteristics of the active power losses for TP-26: a) when Кз = 0.9, b) when Кз = 0.8. 

 
а) 

 
b) 

Fig. 3.Statistical characteristics of losses active power in AM: а) when Кз = 0.9 b) when Кз = 0.8. 

  
а) 

  
b) 

Fig. 4.Statistical characteristics of losses active power in SM: а) when Кз = 0.9; b) when Кз = 0.8 
Similar structural properties were built for the TP-26 JSC "SSGPO" at Кз = 0.7, 0.6, 0.5, AM and SM. 
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Figure 4 shows the statistical characteristics of the total 

active power losses SM in this scheme versus deviation of 

voltage standard value for the load factor Кз = 0.9 and 0.8. The 

notation: РSM – total losses of active power SM (including 

losses in the motor circuit connection);  Р12SM – total active 

power losses in magnetic systems of SM;  Р1SM – total active 

power losses in the stator windings of SM;  РfAM – total active 

power losses in the windings of the excitation SM; РSMcab – 

total active power losses in joining to SM. 

V. DISCUSSION 

The completed numerical and experimental investigation of 

the statistical characteristics of power capacity and power 

losses in the power supply system showed that the total active 

power losses in the workshop SES are from 6.5 % to 9.1 % of 

the total power consumption, however the proportion of active 

power losses in AM are in the range from 70 % to 85 % of the 

losses in the SES.  

The overall efficiency of the electric motor load reaches 

89.8 % – 95.6 % and most of the active power consumption of 

AM and SM relates to a high efficiency process (Pnom > 100 kW). 

1. Terminal voltage transformers T1, T2 TP-26 (JSC 

"SSGPO"), at which the minimum of the total active power 

losses occurs, depends essentially on the load factor and varies 

with the load factor of 1 to 0.5 in the range of 1.1 to 0.85 of 

nominal. 

2.  In the active load TP-26, the overwhelming share ( 80 %) 

of power consumed by AM and SM, so the consumption of 

active power, depends strongly on the voltage at the 

transformer station TP. When the voltage is 10 % of active 

power, consumption at AM is reduced by 3 % – 5 %. 

Power losses in the electricity network system create an 

increase in greenhouse gas (GHG) emissions in power 

production in condensing power plants fueled by coal.  

 

 
Fig. 4. Reduction of GHG emissions in Substation TP-26. 

As shown in Fig. 4, deviation from the standard voltage 

creates not only energy losses in the electricity supply system, 

but also creates an effect whereby GHG emissions increase. It 

is significant to note, that increase of load factor K causes an 

increase of unjustified GHG emissions to the environment.  

 

 
Fig. 5. Reduction of GHG emissions form asynchronous (AM) and 
synchronous (SM) motors. 

Similar impact on climate change results from the use of 

asynchronous and synchronous motors where the reduction of 

GHG emissions is larger in cases when an asynchronous 

motor is used.  

The modeling of reductions in climate change impact is 

associated with the management and optimization tasks of the 

operations of the electricity supply system. The analysis of 

experimental data of the power supply system in pellet 

production allowed to identify GHG emission reduction 

parameters: operation hours, type of electrical motors, values 

of load factor and deviation of standard value of voltage.    
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