Is galectin-3 a promoter of ventricular dysfunction?

Open access

Abstract

Heart failure is nowadays a common condition associated with high mortality and increased healthcare-related costs. Over the years, the research on heart failure management has been extensive in order to better diagnose and treat the condition. Since the progression of left ventricular dysfunction is a consequence of myocardial inflammation, apopotosis, and fibrosis leading to myocardium remodelling, several molecules that are involved in the inflammation pathways have been explored as possible biomarkers for the condition. The study of biomarkers and their key roles in inflammation could allow early identification of patients with heart failure, improve prognostic assessment, and provide a target for future therapies. Among currently studied biomarkers, extensive research has been conducted on galectin-3, a galactoside-binding lectin, which is synthetised and secreted when cardiomyocytes and fibroblasts are submitted to mechanical stress. Accordingly, it has been hypothesised that galectin-3 could be a promoter of left ventricular dysfunction. Galectin-3 has been shown to mediate inflammation by several different pathways which are further detailed in the current review. Also, we aimed to provide a comprehensive overview of existing evidence on the utility of galectin-3 in clinical settings associated with heart failure.

1. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2016 Aug; 18(8):891-975. DOI: 10.1002/ejhf.592

2. Kramer DG, Trikalinos TA, Kent DM, Antonopoulos GV, Konstam MA, Udelson JE. Quantitative evaluation of drug or device effects on ventricular remodeling as predictors of therapeutic effects on mortality in patients with heart failure and reduced ejection fraction: a meta-analytic approach. J Am Coll Cardiol. 2010 Jul; 56(5):392-406. DOI: 10.1016/j.jacc.2010.05.011

3. Gandhi MS, Kamalov G, Shahbaz AU, Bhattacharya SK, Ahokas RA, Sun Y, et al. Cellular and molecular pathways to myocardial necrosis and replacement fibrosis. Heart Fail Rev. 2011 Jan; 16(1):23-34. DOI: 10.1007/s10741-010-9169-3

4. Gattoni S, Røe ÅT, Aronsen JM, Sjaastad I, Louch WE, Smith NP, et al. Compensatory and decompensatory alterations in cardiomyocyte Ca2+ dynamics in hearts with diastolic dysfunction following aortic banding. J Physiol. 2017 Jun; 595(12):3867-89. DOI: 10.1113/JP273879

5. Ibe W, Saraste A, Lindemann S, Bruder S, Buerke M, Darius H, et al. Cardiomyocyte apoptosis is related to left ventricular dysfunction and remodelling in dilated cardiomyopathy, but is not affected by growth hormone treatment. Eur J Heart Fail. 2007 Feb; 9(2):160-7. DOI: 10.1016/j.ejheart.2006.06.002

6. Hynes B, Kumar AH, O’Sullivan J, Klein Buneker C, Leblond AL, Weiss S, et al. Potent endothelial progenitor cell-conditioned media-related anti-apoptotic, cardiotrophic, and pro-angiogenic effects post-myocardial infarction are mediated by insulin-like growth factor-1. Eur Heart J. 2013 Mar; 34(10):782-9. DOI: 10.1093/eurheartj/ehr435

7. Ohtani T, Mohammed SF, Yamamoto K, Dunlay SM, Weston SA, Sakata Y, et al. Diastolic stiffness as assessed by diastolic wall strain is associated with adverse remodelling and poor outcomes in heart failure with preserved ejection fraction. Eur Heart J. 2012 Jul; 33(14):1742-9. DOI: 10.1093/eurheartj/ehs135

8. Wang TJ, Larson MG, Levy D, Benjamin EJ, Leip EP, Omland T, et al. Plasma natriuretic peptide levels and the risk of cardiovascular events and death. N Engl J Med. 2004 Feb; 350(7):655-63. DOI: 10.1056/NEJMoa031994

9. Sharma UC, Pokharel S, van Brakel TJ, van Berlo JH, Cleutjens JP, Schroen B, et al. Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation. 2004 Nov; 110(19):3121-8. DOI: 10.1161/01. CIR.0000147181.65298.4D

10. Lok DJ, Van Der Meer P, de la Porte PW, Lipsic E, Van Wijngaarden J, Hillege HL, et al. Prognostic value of galectin-3, a novel marker of fibrosis, in patients with chronic heart failure: data from the DEAL-HF study. Clin Res Cardiol. 2010 May; 99(5):323-8. DOI: 10.1007/s00392-010-0125-y

11. Zile MR, Jhund PS, Baicu CF, Claggett BL, Pieske B, Voors AA, et al. Plasma biomarkers reflecting profibrotic processes in heart failure with a preserved ejection fraction: data from the prospective comparison of ARNI with ARB on management of heart failure with preserved ejection fraction study. Circ Heart Fail. 2016 Jan; 9(1). pii: e002551. DOI: 10.1161/CIRCHEARTFAILURE.115.002551

12. Lopez-Andrès N, Rossignol P, Iraqi W, Fay R, Nuée J, Ghio S, et al. Association of galectin-3 and fibrosis markers with long-term cardiovascular outcomes in patients with heart failure, left ventricular dysfunction, and dyssynchrony: insights from the CAREHF (Cardiac Resynchronization in Heart Failure) trial. Eur J Heart Fail. 2012 Jan; 14(1):74-81. DOI: 10.1093/eurjhf/hfr151

13. Gullestad L, Ueland T, Kjekshus J, Nymo SH, Hulthe J, Muntendam P, et al. Galectin-3 predicts response to statin therapy in the controlled rosuvastatin multinational trial in heart failure (CORONA). Eur Heart J. 2012 Sep; 33(18):2290-6. DOI: 10.1093/eurheartj/ehs077

14. de Boer RA, Lok DJ, Jaarsma T, van der Meer P, Voors AA, Hillege HL, et al. Predictive value of plasma galectin- 3 levels in heart failure with reduced and preserved ejection fraction. Ann Med. 2011 Feb; 43(1):60-8. DOI: 10.3109/07853890.2010.538080

15. Grandin EW, Jarolim P, Murphy SA, Ritterova L, Cannon CP, Braunwald E, et al. Galectin-3 and the development of heart failure after acute coronary syndrome: pilot experience from PROVE IT-TIMI 22. Clin Chem. 2012 Jan; 58(1):267-73. DOI: 10.1373/clinchem.2011.174359

16. Sharon N, Lis H. History of lectins: from hemagglutinins to biological recognition molecules. Glycobiology 2004 Nov; 14 (11):53R-62R. DOI: 10.1093/glycob/cwh122

17. Barondes SH, Cooper DN, Gitt MA, Leffler H. Galectins. Structure and function of a large family of animal lectins. J Biol Chem. 1994 Aug; 269 (33):20807-10.

18. Boscher C, Dennis JW, Nabi IR. Glycosylation, galectins and cellular signaling. Curr Opin Cell Biol. 2011 Aug; 23 (4):383-92. DOI: 10.1016/j.ceb.2011.05.001

19. Miller MC, Ippel H, Suylen D, Klyosov AA, Traber PG, Hackeng T, et al. Binding of polysaccharides to humangalectin- 3 at a noncanonical site in its carbohydrate recognition domain. Glycobiology. 2016 Jan; 26(1):88-99. DOI: 10.1093/glycob/cwv073

20. Barboni EA, Bawumia S, Henrick K, Hughes RC. Molecular modeling and mutagenesis studies of the N-terminal domains of galectin-3: evidence for participation with the C-terminal carbohydrate recognition domain in oligosaccharide binding. Glycobiology. 2000 Nov; 10(11):1201-8. DOI: 10.1093/glycob/10.11.1201

21. Halimi H, Rigato A, Byrne D, Ferracci G, Sebban-Kreuzer C, Elantak L, et al. Glycan dependence of galectin- 3 self-association properties. PLoS One. 2014 Nov; 9(11):e111836. DOI: 10.1371/journal.pone.0111836

22. Liu FT, Rabinovich GA. Galectins: regulators of acute and chronic inflammation. Ann N Y Acad Sci. 2010 Jan; 1183:158-82. DOI: 10.1111/j.1749-6632.2009.05131.x

23. Diehl C, Engström O, Delaine T, Håkansson M, Genheden S, Modig K, et al. Protein flexibility and conformational entropy in ligand design targeting the carbohydrate recognition domain of galectin-3. J Am Chem Soc. 2010 Oct; 132(41):14577-89. DOI: 10.1021/ja105852y

24. Mazurek N, Conklin J, Byrd JC, Raz A, Bresalier RS. Phosphorylation of the beta-galactoside-binding protein galectin-3 modulates binding to its ligands. J Biol Chem. 2000 Nov; 275(46):36311-5. DOI: 10.1074/jbc.M003831200

25. Raimond J, Zimonjic DB, Mignon C, Mattei M, Popescu NC, Monsigny M, et al. Mapping of the galectin- 3 gene (LGALS3) to human chromosome 14 at region 14q21-22. Mamm Genome. 1997 Sep;8(9):706-7. DOI: 10.1007/s003359900548

26. Gaudin JC, Mehul B, Hughes RC. Nuclear localisation of wild type and mutant galectin-3 in transfected cells. Biol Cell. 2000 Jan; 92(1):49-58. DOI: 10.1016/S0248- 4900(00)88763-8

27. Davidson PJ, Davis MJ, Patterson RJ, Ripoche MA, Poirier F, Wang JL. Shuttling of galectin-3 between the nucleus and cytoplasm. Glycobiology. 2002 May 12(5):329-37. DOI: 10.1093/glycob/12.5.329

28. Liu FT, Patterson RJ, Wang JL. Intracellular functions of galectins. Biochim Biophys Acta. 2002 Sep; 1572(2- 3):263-73. DOI: 10.1016/S0304-4165(02)00313-6

29. Patterson RJ, Haudek KC, Voss PG, Wang JL. Examination of the role of galectins in pre-mRNA splicing. Methods Mol Biol. 2015; 1207:431-49. DOI: 10.1007/978-1-4939-1396-1_28

30. More SK, Chiplunkar SV, Kalraiya RD. Galectin-3-induced cell spreading and motility relies on distinct signaling mechanisms compared to fibronectin. Mol Cell Biochem. 2016 May; 416(1-2):179-91. DOI: 10.1007/s11010-016-2706-1

31. Hsu DK, Yang RY, Saegusa J, Liu FT. Analysis of the intracellular role of galectins in cell growth and apoptosis. Methods Mol Biol. 2015; 1207:451-63. DOI: 10.1007/978-1-4939-1396-1_29

32. Di Lella S, Sundblad V, Cerliani JP, Guardia CM, Estrin DA, Vasta GR, et al. When galectins recognize glycans: from biochemistry to physiology and back again. Biochemistry. 2011 Sep;50(37):7842-57. DOI: 10.1021/bi201121m

33. Zhu W, Sano H, Nagai R, Fukuhara K, Miyazaki A, Horiuchi S. The role of galectin-3 in endocytosis of advanced glycation end products and modified low density lipoproteins. Biochem Biophys Res Commun. 2001 Feb; 280(4):1183-8. DOI: 10.1006/bbrc.2001.4256

34. Karlsson A, Christenson K, Matlak M, Bjorstad A, Brown KL, Telemo E, et al. Galectin-3 functions as an opsonin and enhances the macrophage clearance of apoptotic neutrophils. Glycobiology. 2009 Jan; 19(1):16-20. DOI: 10.1093/glycob/cwn104

35. Chen HY, Weng IC, Li CS, Wan L, Liu FT. Examination of galectins in phagocytosis. Methods Mol Biol. 2015; 1207:201-13. DOI: 10.1007/978-1-4939-1396-1_13

36. Lin X, Yang P, Reece EA, Yang P. Pregestational type 2 diabetes mellitus induces cardiac hypertrophy in the murine embryo through cardiac remodeling and fibrosis. Am J Obstet Gynecol. 2017 Aug; 217(2):216.e1-216.e13. DOI: 10.1016/j.ajog.2017.04.008

37. Fukumori T, Takenaka Y, Yoshii T, Kim HR, Hogan V, Inohara H, et al. CD29 and CD7 mediate galectin-3-induced type II T-cell apoptosis. Cancer Res. 2003 Dec 1; 63(23):8302-11.

38. Danella Polli C, Alves Toledo K, Franco LH, Sammartino Mariano V, de Oliveira LL, Soares Bernardes E, Roque-Barreira MC, et al. Monocyte migration driven by galectin3 occurs though distinct mechanisms involving selective interactions with the extracellular matrix. ISRN Inflamm. 2013 Feb; 2013:259256.

39. Gao X, Balan V, Tai G, Raz A. Galectin-3 induces cell migration via a calcium-sensitive MAPK/ERK1/2 pathway. Oncotarget. 2014 Apr; 5(8):2077-84. DOI: 10.18632/oncotarget.1786

40. Hsu DK, Chernyavsky AI, Chen HY, Yu L, Grando SA, Liu FT. Endogenous galectin-3 is localized in membrane lipid rafts and regulates migration of dendritic cells. J Invest Dermatol. 2009 Mar; 129(3):573-83. DOI: 10.1038/jid.2008.276

41. Roubille F, Busseuil D, Merlet N, Kritikou EA, Rhéaume E, Tardif JC. Investigational drugs targeting cardiac fibrosis. Expert Rev Cardiovasc Ther. 2014 Jan; 12(1):111-25. DOI: 10.1586/14779072.2013.839942

42. Sharma UC, Pokharel S, van Brakel TJ, van Berlo JH, Cleutjens JP, Schroen B, et al. Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation 2004 Nov; 110(19):3121-8. DOI: 10.1161/01. CIR.0000147181.65298.4D

43. Yu L, Ruifrok WP, Meissner M, Bos EM, van Goor H, Sanjabi B, et al. Genetic and pharmacological inhibition of galectin-3 prevents cardiac remodeling by interfering with myocardial fibrogenesis. Circ Heart Fail. 2013 Jan; 6(1):107-17. DOI: 10.1161/CIRCHEARTFAILURE. 112.971168

44. Frenay AR, Yu L, van der Velde AR, Vreeswijk-Baudoin I, López-Andrés N, van Goor H, et al. Pharmacological inhibition of galectin-3 protects against hypertensive nephropathy. Am J Physiol Renal Physiol. 2015 Mar; 308(5):F500-9. DOI: 10.1152/ajprenal.00461.2014

45. Calvier L, Miana M, Reboul P, Cachofeiro V, Martinez- Martinez E, de Boer RA, et al. Galectin-3 mediates aldosterone-induced vascular fibrosis. Arterioscler Thromb Vasc Biol. 2013 Jan; 33(1):67-75. DOI: 10.1161/ATVBAHA.112.300569

46. Kamal FA, Watanabe K, Ma M, Abe Y, Elbarbary R, Kodama M, Aizawa Y.A novel phenylpyridazinone, T-3999, reduces the progression of autoimmune myocarditis to dilated cardiomyopathy. Heart Vessels. 2011 Jan; 26(1):81-90. DOI: 10.1007/s00380-010-0018-z

47. Dvořánková B, Szabo P, Lacina L, Gal P, Uhrova J, Zima T, et al. Human galectins induce conversion of dermal fibroblasts into myofibroblasts and production of extracellular matrix: potential application in tissue engineering and wound repair. Cells Tissues Organs. 2011; 194(6):469-80. DOI: 10.1159/000324864

48. Henderson NC, Mackinnon AC, Farnworth SL, Poirier F, Russo FP, Iredale JP, et al. Galectin-3 regulates myofibroblast activation and hepatic fibrosis. Proc Natl Acad Sci U S A. 2006 Mar; 103(13):5060-5. DOI: 10.1073/pnas.0511167103

49. Henderson NC, Mackinnon AC, Farnworth SL, Kipari T, Haslett C, Iredale JP, et al. Galectin-3 expression and secretion links macrophages to the promotion of renal fibrosis. Am J Pathol. 2008 Feb; 172(2):288-98. DOI: 10.2353/ajpath.2008.070726

50. van Kimmenade RR, Januzzi JL, Jr., Ellinor PT, Sharma UC, Bakker JA, Low AF, et al. Utility of amino-terminal probrain natriuretic peptide, galectin-3, and apelin for the evaluation of patients with acute heart failure. J Am Coll Cardiol. 2006 Sep; 48(6):1217-24. DOI: 10.1016/j.jacc.2006.03.061

51. Edelmann F, Holzendorf V, Wachter R, Nolte K, Schmidt AG, Kraigher-Krainer E, et al. Galectin-3 in patients with heart failure with preserved ejection fraction: results from the Aldo-DHF trial. Eur J Heart Fail. 2015 Feb; 17(2):214-23. DOI: 10.1002/ejhf.203

52. Mueller T, Gegenhuber A, Leitner I, Poelz W, Haltmayer W, Dieplinger B. Diagnostic and prognostic accuracy of galectin-3 and soluble ST2 for acute heart failure. Clin Chim Acta. 2016 Dec; 463:158-64. DOI: 10.1016/j.cca.2016.10.034

53. Mohammed LA, Gafar HS, Hussien NR. Galectin-3 as Early Detector of Heart Failure in Children with Congenital Acyanotic Heart Disease. Clin Med Diagn. 2014: 4(5):90-8.

54. Tavazzi L, Maggioni AP, Marchioli R, Barlera S, Franzosi MG, Latini R, et al. Effect of rosuvastatin in patients with chronic heart failure (the GISSI-HF trial): a randomised, double-blind, placebo-controlled trial. Lancet. 2008 Oct; 372(9645):1231-9. DOI: 10.1016/ S0140-6736(08)61240-4

55. Rogers JK, Jhund PS, Perez AC, Böhm M, Cleland JG, Gullestad L, et al. Effect of rosuvastatin on repeat heart failure hospitalizations: the CORONA Trial (Controlled Rosuvastatin Multinational Trial in Heart Failure).JACC Heart Fail. 2014 Jun; 2(3):289-97. DOI: 10.1016/j.jchf.2013.12.007

56. Anand IS, Rector TS, Kuskowski M, Adourian A, Muntendam P, Cohn JN. Baseline and serial measurements of galectin- 3 in patients with heart failure: relationship to prognosis and effect of treatment with valsartan in the Val-HeFT. Eur J Heart Fail. 2013 May; 15(5):511-8. DOI: 10.1093/eurjhf/hfs205

57. Edelmann F, Holzendorf V, Wachter R, Nolte K, Schmidt AG, Kraigher-Krainer E, et al. Galectin-3 in patients with heart failure with preserved ejection fraction: results from the Aldo-DHF trial. Eur J Heart Fail. 2015 Feb; 17(2):214-23. DOI: 10.1002/ejhf.203

58. Pitt B, Pfeffer MA, Assmann SF, Boineau R, Anand IS, Claggett B, et al. Spironolactone for heart failure with preserved ejection fraction. N Engl J Med. 2014 Apr; 370(15):1383-92. DOI: 10.1056/NEJMoa1313731

59. AbouEzzeddine OF, Haines P, Stevens S, Nativi-Nicolau J, Felker GM, Borlaug BA, et al. Galectin-3 in heart failure with preserved ejection fraction. A RELAX trial substudy (Phosphodiesterase-5 Inhibition to Improve Clinical Status and Exercise Capacity in Diastolic Heart Failure). JACC Heart Fail. 2015 Mar; 3(3):245-52. DOI: 10.1016/j.jchf.2014.10.009\

60. Stolen CM, Adourian A, Meyer TE, Stein KM, Solomon SD. Plasma galectin-3 and heart failure outcomes in MADIT-CRT (multicenter automatic defibrillator implantation trial with cardiac resynchronization therapy). J Card Fail. 2014 Nov; 20(11):793-9. DOI: 10.1016/j.cardfail.2014.07.018

61. Milting H, Ellinghaus P, Seewald M, Cakar H, Bohms B, Kassner A, et al. Plasma biomarkers of myocardial fibrosis and remodeling in terminal heart failure patients supported by mechanical circulatory support devices. J Heart Lung Transplant. 2008 Jun; 27(6):589-96. DOI: 10.1016/j.healun.2008.02.018

62. Erkilet G, Schulte-Eistrup S, Morshuis M, Bohms B, Roefe D, Gummert J, et al. Plasma galectin 3 is increased in terminal heart failure patients and is elevated in patients not surviving mechanical circulatory support. J Heart Lung Transplant. 2010 Feb; 29(2):S65. DOI: 10.1016/j.healun.2009.11.191

63. Coromilas E, Que-Xu EC, Moore D, Kato TS, Wu C, Ji R, et al. Dynamics and prognostic role of galectin-3 in patients with advanced heart failure, during left ventricular assist device support and following heart transplantation. BMC Cardiovasc Disord. 2016 Jun; 16:138. DOI: 10.1186/s12872-016-0298-z

64. Shah RV, Chen-Tournoux AA, Picard MH, van Kimmenade RR, Januzzi JL.Galectin-3, cardiac structure and function, and long-term mortality in patients with acutely decompensated heart failure. Eur J Heart Fail. 2010 Aug; 12(8):826-32. DOI: 10.1093/eurjhf/hfq091

65. Baldenhofer G, Zhang K, Spethmann S, Laule M, Eilers B, Leonhardt F, et al. Galectin-3 predicts short- and long-term outcome in patients undergoing transcatheter aortic valve implantation (TAVI). Int J Cardiol. 2014 Dec; 177(3):912-7. DOI: 10.1016/j.ijcard.2014.10.010

66. Felker GM, Fiuzat M, Shaw LK, Clare R, Whellan DJ, Bettari L, et al. Galectin-3 in ambulatory patients with heart failure: results from the HF-ACTION study. Circ Heart Fail. 2012 Jan; 5(1):72-8. DOI: 10.1161/CIRCHEARTFAILURE. 111.963637

67. de Boer RA, van Veldhuisen DJ, Gansevoort RT, Muller Kobold AC, van Gilst WH, Hillege HL, et al. The fibrosis marker galectin-3 and outcome in the general population. J Intern Med. 2012 Jul; 272(1):55-64. DOI: 10.1111/j.1365-2796.2011.02476.x

68. Ho JE, Liu C, Lyass A, Courchesne P, Pencina MJ, Vasan RS, et al. Galectin-3, a marker of cardiac fibrosis, predicts incident heart failure in the community. J Am Coll Cardiol. 2012 Oct; 60(14):1249-56. DOI: 10.1016/j.jacc.2012.04.053

Revista Romana de Medicina de Laborator

Romanian Journal of Laboratory Medicine

Journal Information


IMPACT FACTOR 2017: 0.400
5-year IMPACT FACTOR: 0.320



CiteScore 2017: 0.31

SCImago Journal Rank (SJR) 2017: 0.144
Source Normalized Impact per Paper (SNIP) 2017: 0.195

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 181 181 12
PDF Downloads 85 85 5