Effects of low-molecular weight alcohols on bacterial viability

Open access

Abstract

Alcohol based solutions are among the most convenient and wide spread aid in the prevention of nosocomial infections. The current study followed the efficacy of several types and isomers of alcohols on different bacterial species. Seven alcohols (ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, tert-butyl alcohol, and ethylene glycol) were used to evaluate their minimal inhibitory and bactericidal effects by microdilution method on bacteria that express many phenotypical characteristics: different cell-wall structure (Gram positive/negative bacteria), capsule production (Klebsiella pneumoniae), antibiotic resistance (MRSA vs MSSA) or high environmental adaptability (Pseudomonas aeruginosa). Results: The best inhibitory effect was noticed for n-propyl, followed by iso-propyl, n-butyl, and iso-butyl alcohols with equal values. Ethylene glycol was the most inefficient alcohol on all bacteria. In K. pneumoniae and P. aeruginosa, the bactericidal concentrations were higher than the inhibitory one, and to a level similar to that encountered for most of the Gram-positive bacteria. Among Gram-positive cocci, E. faecalis presented the lowest susceptibility to alcohols. Conclusions: All alcohols presented good effect on bacteria, even in low concentrations. Compared to ethanol as standard, there are better alternatives that can be used as antimicrobials, namely longer-chain alcohols such as propyl or butyric alcohols and their iso- isomers. Ethylene glycol should be avoided, due to its toxicity hazard and low antimicrobial efficacy. Bacterial phenotype (highly adaptable bacteria, biofilm formation) and structure (cell wall structure, presence of capsule) may drastically affect the responsiveness to the antimicrobial activity of alcohols, leading to higher bactericidal than inhibitory concentrations.

1. Kampf G, Löffler H, Gastmeier P. Hand Hygiene for

the Prevention of Nosocomial Infections. Dtsch Ärztebl

Int. 2009 Oct;106(40):649-55.

2. Mathur P. Hand hygiene: Back to the basics of infection

control. Indian J Med Res. 2011 Nov;134(5):611-20. DOI: 10.4103/0971-5916.90985

3. AFE14 - 148to158.pdf [Internet]. Available from: http://

www.who.int/water_sanitation_health/medicalwaste/

148to158.pdf

4. Tutelcă A, Licker M, Dan L, Orb C, Moldovan R. Nosocomial

infections caused by two strains of Klebsiella

pneumoniae with different colonial morphotypes and

resistance phenotypes isolated from the same sample.

Rev Romana Med Lab. 2006;2(1):19-31.

5. Shin J-H, Yue Y, Duan D. Recombinant adeno-associated

viral vector production and purification. Methods

Mol Biol Clifton NJ. 2012;798:267-84. DOI: 10.1007/978-1-61779-343-1_15

6. Pfäfflin F, Tufa TB, Getachew M, Nigussie T, Schönfeld

A, Häussinger D, et al. Implementation of the WHO

multimodal Hand Hygiene Improvement Strategy in

a University Hospital in Central Ethiopia. Antimicrob

Resist Infect Control. 2017;6:3. DOI: 10.1186/s13756-

016-0165-9

7. McDonnell G, Russell AD. Antiseptics and Disinfectants: Activity, Action, and Resistance. Clin Microbiol

Rev. 1999 Jan;12(1):147-79.

8. Girou E, Loyeau S, Legrand P, Oppein F, Brun-Buisson

C. Efficacy of handrubbing with alcohol based

solution versus standard handwashing with antiseptic

soap: randomised clinical trial. BMJ. 2002 Aug

17;325(7360):362. DOI: 10.1136/bmj.325.7360.362

9. Kampf G, Ostermeyer C. Small volumes of n-propanol

(60%) applied for 3 minutes may be ineffective for surgical

hand disinfection. Antimicrob Resist Infect Control.

2014 Apr 24;3:15. DOI: 10.1186/2047-2994-3-15

10. Masaadeh HA, Jaran AS. Determination of the Antibacterial

Efficacy of Common Chemical Agents in Cleaning

and Disinfection in Hospitals of North Jordan. Am

J Appl Sci. 2009 May 31;6(5):811-5. DOI: 10.3844/

ajassp.2009.811.815

11. Mazzola PG, Jozala AF, Novaes LC de L, Moriel

P, Penna TCV. Minimal inhibitory concentration

(MIC) determination of disinfectant and/or sterilizing

agents. Braz J Pharm Sci. 2009 Jun;45(2):241-8. DOI: 10.1590/S1984-82502009000200008

12. Lorian V. Antibiotics in Laboratory Medicine. Lippincott

Williams & Wilkins; 2005. 922 p.

13. Ingólfsson HI, Andersen OS. Alcohol’s Effects on Lipid

Bilayer Properties. Biophys J. 2011 Aug 17;101(4):847-55. DOI: 10.1016/j.bpj.2011.07.013

14. Chatterjee I, Somerville GA, Heilmann C, Sahl H-G, Maurer HH, Herrmann M. Very low ethanol concentrations

affect the viability and growth recovery in

post-stationary-phase Staphylococcus aureus populations.

Appl Environ Microbiol. 2006 Apr;72(4):2627-36.DOI: 10.1128/AEM.72.4.2627-2636.2006

15. Huffer S, Clark ME, Ning JC, Blanch HW, Clark DS.

Role of Alcohols in Growth, Lipid Composition, and

Membrane Fluidity of Yeasts, Bacteria, and Archaea.

Appl Environ Microbiol. 2011 Sep;77(18):6400-8. DOI: 10.1128/AEM.00694-11

16. Brown L, Wolf JM, Prados-Rosales R, Casadevall A.

Through the wall: extracellular vesicles in Gram-positive

bacteria, mycobacteria and fungi. Nat Rev Microbiol.

2015 Oct 1;13(10):620-30. DOI: 10.1038/nrmicro3480

17. Xu J, Yue R-Q, Liu J, Ho H-M, Yi T, Chen H-B, et al.

Structural diversity requires individual optimization

of ethanol concentration in polysaccharide precipitation.

Int J Biol Macromol. 2014 Jun;67:205-9. DOI: 10.1016/j.ijbiomac.2014.03.036

18. Schembri MA, Blom J, Krogfelt KA, Klemm P. Capsule

and Fimbria Interaction in Klebsiella pneumo

niae. Infect Immun. 2005 Aug;73(8):4626-33. DOI: 10.1128/IAI.73.8.4626-4633.2005

19. Hilliam Y, Moore MP, Lamont IL, Bilton D, Haworth

CS, Foweraker J, et al. Pseudomonas aeruginosa adaptation

and diversification in the non-cystic fibrosis

bronchiectasis lung. Eur Respir J. 2017 Apr;49(4). DOI: 10.1183/13993003.02108-2016

20. Toth-Manikowski SM, Menn-Josephy H, Bhatia J.

A Case of Chronic Ethylene Glycol Intoxication Presenting

without Classic Metabolic Derangements. Case

Rep Nephrol. 2014 Aug 21;2014:e128145.

21. Kohanski MA, Dwyer DJ, Collins JJ. How antibiotics

kill bacteria: from targets to networks. Nat Rev Microbiol.

2010 Jun;8(6):423-35. DOI: 10.1038/nrmicro2333

22. Munita JM, Arias CA. Mechanisms of Antibiotic Resistance.

Microbiol Spectr [Internet]. 2016 Apr;4(2).

Available from: http://www.ncbi.nlm.nih.gov/pmc/

articles/PMC4888801/ DOI: 10.1128/microbiolspec.

VMBF-0016-2015

23. Maillard J-Y. Antimicrobial biocides in the healthcare

environment: efficacy, usage, policies, and perceived

problems. Ther Clin Risk Manag. 2005 Dec;1(4):307-20.

Revista Romana de Medicina de Laborator

Romanian Journal of Laboratory Medicine

Journal Information


IMPACT FACTOR 2017: 0.400
5-year IMPACT FACTOR: 0.320



CiteScore 2017: 0.31

SCImago Journal Rank (SJR) 2017: 0.144
Source Normalized Impact per Paper (SNIP) 2017: 0.195

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 235 235 37
PDF Downloads 95 95 19