Microbial biofilm in human health - an updated theoretical and practical insight

Open access

Abstract

The term biofilm designates an aggregate of microorganisms belonging to one or more species which adhere to various surfaces but also to each another. These microbial communities are included and interconnected within an organic structure known as slime, composed of protein substances, polysaccharides, and DNA.

The Center for Disease prevention and control considers infections with bacteria in biofilms among the 7 most important challenges which must be overcome in order to improve the safety of health services. The risk of microbial biofilm development exists for a long list of medical devices and equipment, as well as in certain diseases such as cystic fibrosis. An aggravating aspect is represented by the almost 1,000 times higher antimicrobial resistance of bacteria growing and multiplying within biofilms. Thus, in case of biofilm-infected medical devices, the resistance to antimicrobial treatments requires the removal of the device which essentially means the failure of the exploratory or therapeutic intervention in question.

The role of microbial biofilms in medical pathology is a subject that raises interest for both researchers and clinicians in order to establish new methods for prevention and treatment of biofilms. This paper is intended as an overview in the management of microbial biofilms, presenting future insights, with technological progress in microscopy, molecular genetics, and genome analysis. Therefore the present paper will focus on describing the mechanisms involved in biofilm development, biofilm related infections, methods of detection and quantification of microbial communities and therapeutical approaches.

1. Rao TV. Biofilms in infection. Available from http://www.slideshare.net/doctorrao/biofilms-2172226.

2. Shunmgugaperumal T. Biofilm eradication and prevention, a pharmaceutical approach to medical device infections. Edited by John Wiley & Sons, New Jersey. 2010;3-36;116-151. Available from:www.formatex.info/microbiology3/book/896-905.pdf.

3. Rabin N, Zheng Y, Opoku-Temeng C, Du Y, Bonsu E, Sintim HO. Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Med Chem. 2015;7(4):493–512. DOI: 10.4155/fmc.15.6.

4. Donlan RM. Biofilms and device-associated infections. Available from: http://wwwnc.cdc.gov/eid/article/7/2/70-0277_article.

6. Hoiby N, Bjarnsholt T, Moser C, Bassi GL, Coenye T, Donelli G, et al. ESCMID guideline for the diagnosis and treatment of biofilm infections 2014. Clin Microbiol Infect. 2015 May;21 Suppl 1:S1-25. DOI: 10.1016/j.cmi.2014.10.024.

7. Hope CK, Wilson M. Biofilm structure and cell vitality in a laboratory model of subgingival plaque. J Microbiol Methods. 2006 Sep;66(3):390–8. DOI: 10.1016/j.mimet.2006.01.003.

8. Constantine RS, Constantine FC, Rohrich RJ. The ever-changing role of biofilms in plastic surgery. Plast Reconstr Surg. 2014 Jun;133(6):865e-872e. DOI: 10.1097/PRS.0000000000000213.

9. Castrillón Rivera LE, Palma RA. Biofilms:A survival and resistance mechanism of microorganisms. Available from:www.intechopen.com.

10. Pace JL, Rupp ME, Finch RG. Biofilms, infection and antimicrobial therapy. Edited by Press Taylor & Francis Group. 2006;39-51.

11. Vyas KS, Wong LK. Detection of biofilm in wounds as an early indicator for risk for tissue infection and wound chronicity. Ann Plast Surg. 2016 Jan;76(1):127-31. DOI: 10.1097/SAP.0000000000000440.

12. Bjarnsholt T. The role of bacterial biofilms in chronic infections. APMIS Suppl. 2013 May;(136):1-51.

13. Dower R, Turner ML. Pilot study of timing of biofilm formation on closed suction wound drains. Plast Reconstr Surg. 2012;130(5):1141-6. DOI: 10.1097/PRS.0b013e318267d54e.

14. Rouabhia M, Chmielewski W. Diseases associated with oral polymicrobial biofilms. Open Mycol J. 2012;6:27-32. DOI: 10.2174/1874437001206010027.

15. Augustin M, Chifiriuc CB, Lazăr V, Stănescu R, Burlibașa M, Ispas DC. Microbial biofilms in dental medicine in reference to implanto-prostethic rehabilitation. Rev. chir. oro-maxilo-fac. implantol., 2010; 1(1) 9–13.

16. Jacombs A, Tahir S, Honghua H, et al. In vitro and in vivo investigation of the influence of implant surface on the formation of bacterial biofilm in mammary implants. Plast Reconstr Surg. 2014 Apr;133(4):471e-80e. DOI: 10.1097/PRS.0000000000000020.

17. Hu H, Johani K, Almatroudi A, Vickery K, Van Natta B, Kadin ME, et al. Bacterial biofilm infection detected in breast implant–associated anaplastic large-cell lymphoma. Plast Reconstr Surg. 2016 Jun;137(6):1659-69. DOI: 10.1097/PRS.0000000000002010.

18. Szczotka-Flynn LB, Imamura Y, Chandra J, Yu C, Mukherjee PK, Pearlman E, et al. Increased resistance of contact lens–related bacterial biofilms to antimicrobial activity of soft contact lens care solutions. Cornea. 2009 Sep;28(8):918-26. DOI: 10.1097/ICO.0b013e3181a81835.

19. Brothers KM, Nau AC, Romanowski EG, Shanks RM. Dexamethasone diffusion across contact lenses is inhibited by Staphylococcus epidermidis biofilms in vitro. Cornea. 2014 Oct; 33(10):1083-7. DOI: 10.1097/ICO.0000000000000196.

20. Sivaraman KR, Hou JH, Chang JH, Behlau I, Cortina MS, Cruz J de L. Scanning electron microscopic analysis of biofilm formation in explanted human Boston type I keratoprostheses. Cornea. 2016 Jan;35(1):25-9. DOI: 10.1097/ICO.0000000000000674.

21. Bannister B, Gillespie S, Jones J. Infection:Microbiology and Management. Third Edition. Edited by Blackwell Publishing Ltd, 2006;226-238.

22. Miquel S, Lagrafeuille R, Souweine B, Forestier C. Anti-biofilm Activity as a Health Issue. Front Microbiol. 2016; 7:592. DOI: 10.3389/fmicb.2016.00592.

23. Wilson A, Gray D, Karakiozis J, Thomas J. Advanced endotracheal tube biofilm stage, not duration of intubation, is related to pneumonia. J Trauma Acute Care Surg. 2012 Apr;72(4):916-23. DOI: 10.1097/TA.0b013e3182493a10.

24. Fernández-Barat L, Ferrer M, Sierra JM, Soy D, Guerrero L, Vila J, et al. Linezolid limits burden of methicillin-resistant Staphylococcus aureus in biofilm of tracheal tubes. Crit Care Med. 2012 Aug;40(8):2385-9. DOI: 10.1097/CCM.0b013e31825332fc.

25. Hell M. Prevention of waterborne infections – what can be done?. Int J Infect Control. 2016;2(Suppl.1):25-26.

26. Kouidhi B, Al Qurashi YMA, Chaieb K. Review drug resistance of bacterial dental biofilm and the potential use of natural compounds as alternative for prevention and treatment. Microb Pathog. 2015 Mar;80:39-49. DOI: 10.1016/j.micpath.2015.02.007.

27. Arad E, Navon-Venezia S, Gur E, Kuzmenko B, Glick R, Frenkiel-Krispin D, et al. Novel rat model of methicillin-resistant Staphylococcus aureus–infected silicone breast implants:A study of biofilm pathogenesis. Plast Reconstr Surg. 2013 Feb;131(2):205-14. DOI: 10.1097/PRS.0b013e3182778590.

28. Lazar V, Chifiriuc MC. Mechanisms and experimental models for the assessment of microbial biofilms’ phenotypical resistance / tolerance. Science against microbial pathogens:communicating current research and technological advances. A. Méndez-Vilas (Ed.), 2011, 906-911.

29. Brackman G., Coenye T. Quorum Sensing Inhibitors as Anti-Biofilm Agents. Current Pharmaceutical Design, 2015;21(1):5-11. DOI: 10.2174/1381612820666140905114627.

30. Lazar V. Quorum sensing in biofilms--how to destroy the bacterial citadels or their cohesion/power? Anaerobe. 2011;17(6):280-5. DOI: 10.1016/j.anaerobe.2011.03.023.

31. Deva AK, Adams WP, Vickery K. The role of bacterial biofilms in device-associated infection. Plast Reconstr Surg. 2013 Nov;132(5):1319-28. DOI: 10.1097/PRS.0b013e3182a3c105.

32. Niu C, Gilbert ES. Colorimetric method for identifying plant essential oil components that affect biofilm formation and structure. Appl Environ Microbiol. 2004;70:6951–6. DOI: 10.1128/AEM.70.12.6951-6956.2004.

33. Coenye T, Nelisa HJ. In vitro and in vivo model systems to study microbial biofilm formation. J Microbiol Methods. 2010;83(2):89-105. DOI: 10.1016/j.mimet.2010.08.018.

34. Zambori C, Morvay AA, Gurban C, Licker M, Tănăsie G, Colibar O, et al. Biofilm formation of Staphylococcus, Streptococcus, Pasteurella and Neisseria strains. Romanian Biotechnological Letters. 2015;20(4):10718-26.

35. Kosikowska U, Głowniak IK, Niedzielski A, Malm A. Nasopharyngeal and adenoid colonization by Haemophilus influenzae and Haemophilus parainfluenzae in children undergoing adenoidectomy and the ability of bacterial isolates to biofilm production. Medicine. 2015 May;94(18):e799. DOI: 10.1097/MD.0000000000000799.

36. Heersink J, Goeres D. Reactor design considerations. In:Hamilton M, Heersink J, Buckingham-Meyer K, Goeres D. The biofilm laboratory:Step-by-step protocols for experimental design, analysis, and data interpretation. Edited by Cytergy Publishing. 2003;13–15.

37. Busscher HJ, Van der Mei HC. Microbial adhesion in flow displacement systems. Clin Microbiol Rev. 2006;19:127–41. DOI: 10.1128/CMR.19.1.127-141.2006.

38. Hassan A, Usman J, Kaleem F, Omair M, Khalid A, Iqbal M. Evaluation of different detection methods of biofilm formation in the clinical isolates. Braz J Infect Dis. 2011;15(4):305-11. DOI: 10.1590/S1413-86702011000400002.

39. Lemaitre B, Ausubel F. Animal models for host-pathogen interactions. Curr Opin Microbiol. 2008;11:249–50. DOI: 10.1016/j.mib.2008.05.002.

40. Donlan RM. Biofilms on central venous catheters:is eradication possible?, Curr Top Microbiol Immunol. 2008;322:133–61. DOI: 10.1007/978-3-540-75418-3_7.

41. Ulphani JS, Rupp ME. Model of Staphylococcus aureus central venous catheter-associated infection in rats. Lab Anim Sci. 1999;49:283–7.

42. Rupp ME, Ulphani JS, Fey PD Mack D. Characterization of Staphylococcus epidermidis polysaccharide intercellular adhesin/hemagglutinin in the pathogenesis of intravascular catheter-associated infection in a rat model. Infect Immun. 1999;67:2656–9.

43. Nakamoto DA, Haaga JR, Bove P, Merritt K, Rowland DY. Use of fibrinolytic agents to coat wire implants to decrease infection. An animal model. Invest Radiol. 1995;30:341–4. DOI: 10.1097/00004424-199506000-00003.

44. Engelsman AF, Van der Mei HC, Francis KP, Busscher HJ, Ploeg RJ, van Dam GM. Real time noninvasive monitoring of contaminating bacteria in a soft tissue implant infection model. J Biomed Mater Res B Appl Biomater. 2009 Jan;88(1):123–9. DOI: 10.1002/jbm.b.31158.

45. Lebeaux D, Ashwini C, Rendueles O, Beloin C. From in vitro to in vivo models of bacterial biofilm-related infections. Pathogens. 2013 Jun;2(2):288–356. DOI: 10.3390/pathogens2020288.

46. Motta JP, Flannigan KL, Agbor TA, Beatty JK, Blackler RW, Workentine ML, et al. Hydrogen sulfide protects from colitis and restores intestinal microbiota biofilm and mucus production. Inflamm Bowel Dis. 2015 May;21(5):1006-17. DOI: 10.1097/MIB.0000000000000345.

47. Paraje MG. Confocal scanning laser microscopy in the study of biofilm formation in tissues of the upper airway in otolaryngologic diseases. In:Méndez-Vilas A, Diaz J. Microscopy:Science, Technology, Applications and Education. Edited by FORMATEX. 2010;590-6.

48. Burmeister M, Von Schwanewede H, Stave J, Guthoff RF. Intraoral diagnostics using confocal laser scanning microscopy. Biomed Tech. 2009;54:23-28. DOI: 10.1515/BMT.2009.004.

49. Kania RE, Lamers GE, Vonk MJ, Huy PT, Hiemstra PS, Bloemberg GV, Grote JJ. Demonstration of bacterial cells and glycocalyx in biofilms on human tonsils. Arch Otolaryngol Head Neck Surg. 2007;133(2):115-121. DOI: 10.1001/archotol.133.2.115.

50. Heydorn A, Ersbøll BK, Hentzer M, Parsek MR, Givskov M, Molin S. Experimental reproducibility in flow-chamber biofilms. Microbiology. 2000 Oct;146 (Pt10) :2409-15. DOI: 10.1099/00221287-146-10-2409.

51. Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M, Ersbøll BK, et al. Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology. 2000 Oct;146 (Pt10) :2395–407. DOI: 10.1099/00221287-146-10-2395.

52. Tomás I, Henderson B, Diz P, Donos N. In vivo oral biofilm analysis by confocal laser scanning microscopy: methodological approaches. In:Méndez-Vilas A, Diaz J. Microscopy:Science, Technology, Applications and Education. Edited by FORMATEX. 2010;597-606.

53. Sampedro MF, Huddleston PM, Piper KE, Karau MJ, et al. A biofilm approach to detect bacteria on removed spinal implants. Spine (Phila Pa 1976). 2010 May;35(12):1218-24. DOI: 10.1097/BRS.0b013e3181c3b2f3.

54. Lazăr V, Chifiriuc MC. Medical significance and new therapeutical strategies for biofilm associated infections. Roum Arch Microbiol Immunol. 2010;69(3):125-38.

55. Chifiriuc MC, Ficai A, Lazar, V AM, Ditu LM, Popa M, Iordache C, Holban AM, Şerban Beresteanu SVG, Grigore R, Lazar V. Soft tissue engineering and microbial infections:Challenges and perspectives, 2016, vol 5, 1-29.

56. Lazar V, Bezirtzouglou E. Microbial biofilms IN Medical sciences. http://www.eolss.net/EolsssampleAllChapter.aspx.

57. György É. Study of the antimicrobial activity and synergistic effect of some plant extracts and essential oils. Rev Romana Med Lab. 2010;18(1):49-56.

58. Dorman HJ, Deans SG. Antimicrobial agents from plants:antibacterial activity of plant volatile oils. J Appl Microbiol. 2000;88(2):308-16. DOI: 10.1046/j.1365-2672.2000.00969.x.

59. Rodrigues FF, Costa JG, Coutinho HD. Synergy effects of the antibiotics gentamicin and the essential oil of Croton zehntneri. Phytomedicine. 2009Nov;16(11):1052-5. DOI: 10.1016/j.phymed.2009.04.004.

60. Zambori C, Cumpănăşoiu C, Moţ D, Huţu I, Gurban C, Tîrziu E. The antimicrobial role of probiotics in the oral cavity in humans and dogs. Animal Science and Biotechnologies. 2014;47(1):126-30.

61. Sudhakar RR, Swapna LA, Ramesh T, Rajesh TS, Vijayalaxmi N, Lavanya R. Bacteria in oral health – probiotics and prebiotics. Int J Biol Med Res. 2011;2(4):1226-33.

62. Pradeep K, Kuttapa MA, Prassana KR. Probiotics and oral health:an update. SADJ. 2014 Feb;69(1):20-4.

63. Agarwal E, Bajaj P, Guruprasad CN, Naik S, Pradeep AR. Probiotics:a novel step towards oral health. AOSR. 2011;1(2):108-15.

64. Zambori C, Morvay AA, Sala C, Licker M, Gurban C, Tanasie G, et al. Antimicrobial effect of probiotics on bacterial species from dental plaque. J Infect Dev Ctries. 2016 Mar;10(3):214-21. DOI: 10.3855/jidc.6800.

65. Cotar AI, Chifiriuc MC, Dinu S, Pelinescu D, Banu O, Lazãr V. Quantitative real-time pcr study of the influence of probiotic culture soluble fraction on the expression of pseudomonas aeruginosa quorum sensing genes. Romanian archives of Microbiology and Immunology, 2010; 69(4):213-223.

66. Krespi YP, Stoodley P, Hall-Stoodley L. Laser disruption of biofilm. Laryngoscope. 2008 Jul;118(7):1168-73. DOI: 10.1097/MLG.0b013e31816ed59d.

67. Mohammad A, Seyed MM, Zahra A, Saranaz AM, Alireza M. A comparison of the antibacterial activity of the two methods of photodynamic therapy (using diode laser 810 nm and LED lamp 630 nm) against Enterococcus faecalis in extracted human anterior teeth. Photodiagnosis Photodyn Ther. 2016;13:233-37. DOI: 10.1016/j.pdpdt.2015.07.171.

68. de Avila ED, Lima BP, Sekiya T, Torii Y, Ogawa T, Shi W, et al. Effect of UV-photofunctionalization on oral bacterial attachment and biofilm formation to titanium implant material. Biomaterials. 2015 Oct;67:84-92. DOI: 10.1016/j.biomaterials.2015.07.030.

69. Wolcott R, Dowd CWS. The Role of biofilms:are we hitting the right target? Plast Reconstr Surg. 2011 Jan;127(1):28S-35S. DOI: 10.1097/PRS.0b013e3181fca244.

70. Hazer DB, Sakar M, Dere Y, Altinkanat G, Ziyal MI, Hazer B. Antimicrobial effect of polymer-based silver nanoparticle coated pedicle screws:experimental research on biofilm inhibition in rabbits. Spine (Phila Pa 1976). 2016 Mar;41(6):E323-9. DOI: 10.1097/BRS.0000000000001223.

Revista Romana de Medicina de Laborator

Romanian Journal of Laboratory Medicine

Journal Information


IMPACT FACTOR 2017: 0.400
5-year IMPACT FACTOR: 0.320



CiteScore 2017: 0.31

SCImago Journal Rank (SJR) 2017: 0.144
Source Normalized Impact per Paper (SNIP) 2017: 0.195

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 402 402 66
PDF Downloads 134 134 28