Polymorphisms in autophagy genes and active pulmonary tuberculosis susceptibility in Romania

Open access

Abstract

Autophagy, a homeostatic process involved in nutrient regeneration and immune responses, may be involved in intracellular killing of M. tuberculosis. Several studies linked variation in autophagy genes with susceptibility to pulmonary tuberculosis, but others did not confirm these findings.

We genotyped single nucleotide polymorphisms (SNPs) in the ATG5 (rs2245214, c.574-12777G>C) and NOD2 (rs2066844, c.2104C>T) genes for 256 pulmonary tuberculosis patients and 330 unrelated healthy controls in Romania. Both SNPs have been reported as relevant for the autophagy process and potentially for susceptibility to active pulmonary tuberculosis.

In our study, the polymorphisms in ATG5 and NOD2 were not associated with tuberculosis. This suggests that the two genetic variants we focused on are not related to the risk for developing active TB in a Romanian population.

1. WHO-Global tuberculosis report 2015. WHO/HTM/TB/2015.22.

2. Kimmey JM, Huynh JP, Weiss LA, Park S, Kambal A, Debnath J, et al. Unique role for ATG5 in neutrophil-mediated immunopathology during M. tuberculosis infection. Nature. 2015;528(7583):565-9. DOI: 10.1038/nature16451.

3. Bento CF, Empadinhas N, Mendes V. Autophagy in the fight against tuberculosis. DNA and cell biology. 2015;34(4):228-42. DOI: 10.1089/dna.2014.2745.

4. Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation. Nature. 2011;469(7330):323-35. DOI: 10.1038/nature09782.

5. Xie Z, Klionsky DJ. Autophagosome formation: core machinery and adaptations. Nature cell biology. 2007;9(10):1102-9. DOI: 10.1038/ncb1007-1102.

6. Deretic V, Levine B. Autophagy, immunity, and microbial adaptations. Cell host & microbe. 2009;5(6):527-49. DOI: 10.1016/j.chom.2009.05.016.

7. Suzuki K, Ohsumi Y. Molecular machinery of autophagosome formation in yeast, Saccharomyces cerevisiae. FEBS letters. 2007;581(11):2156-61. DOI: 10.1016/j.febslet.2007.01.096.

8. Youle RJ, Narendra DP. Mechanisms of mitophagy. Nature reviews Molecular cell biology. 2011;12(1):9-14. DOI: 10.1038/nrm3028.

9. Klionsky DJ. Autophagy: from phenomenology to molecular understanding in less than a decade. Nature reviews Molecular cell biology. 2007;8(11):931-7. DOI: 10.1038/nrm2245.

10. Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, et al. The role of autophagy during the early neonatal starvation period. Nature. 2004;432(7020):1032-6. DOI: 10.1038/nature03029.

11. Gutierrez O, Pipaon C, Inohara N, Fontalba A, Ogura Y, Prosper F, et al. Induction of Nod2 in myelomonocytic and intestinal epithelial cells via nuclear factor-κB activation. Journal of Biological Chemistry. 2002;277(44):41701-5. DOI: 10.1074/jbc.M206473200.

12. Girardin SE, Boneca IG, Viala J, Chamaillard M, Labigne A, Thomas G, et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. Journal of Biological Chemistry. 2003;278(11):8869-72. DOI: 10.1074/jbc.C200651200.

13. Inohara N, Ogura Y, Fontalba A, Gutierrez O, Pons F, Crespo J, et al. Host Recognition of Bacterial Muramyl Dipeptide Mediated through NOD2 IMPLICATIONS FOR CROHN′ S DISEASE. Journal of Biological Chemistry. 2003;278(8):5509-12. DOI: 10.1074/jbc.C200673200.

14. Travassos LH, Carneiro LA, Ramjeet M, Hussey S, Kim Y-G, Magalhães JG, et al. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nature immunology. 2010;11(1):55-62. DOI: 10.1038/ni.1823.

15. Ferwerda G, Girardin SE, Kullberg B-J, Le Bourhis L, De Jong DJ, Langenberg DM, et al. NOD2 and tolllike receptors are nonredundant recognition systems of Mycobacterium tuberculosis. 2005.

16. CUCU MG, RIZA AL, CIMPOERU AL, STREATA I, SOSOI SS, CIONTEA MS, et al. Implication of TLR2 polymorphism in pulmonary tuberculosis. Annals of the Romanian Society for Cell Biology 2015;20 (1).

17. Liu PT, Stenger S, Tang DH, Modlin RL. Cutting edge: vitamin D-mediated human antimicrobial activity against Mycobacterium tuberculosis is dependent on the induction of cathelicidin. The Journal of Immunology. 2007;179(4):2060-3. DOI: 10.4049/jimmunol.179.4.2060.

18. Fabri M, Stenger S, Shin D-M, Yuk J-M, Liu PT, Realegeno S, et al. Vitamin D is required for IFN-γ–mediated antimicrobial activity of human macrophages. Science translational medicine. 2011;3(104):104ra2-ra2.

19. Jounai N, Kobiyama K, Shiina M, Ogata K, Ishii KJ, Takeshita F. NLRP4 negatively regulates autophagic processes through an association with beclin1. The Journal of immunology. 2011;186(3):1646-55. DOI: 10.4049/jimmunol.1001654.

20. Saitoh T, Akira S. Regulation of innate immune responses by autophagy-related proteins. The Journal of cell biology. 2010;189(6):925-35. DOI: 10.1083/jcb.201002021.

21. Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature. 2008;451(7182):1069-75. DOI: 10.1038/nature06639.

22. Castillo EF, Dekonenko A, Arko-Mensah J, Mandell MA, Dupont N, Jiang S, et al. Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation. Proceedings of the National Academy of Sciences. 2012;109(46):E3168-E76. DOI: 10.1073/pnas.1210500109.

23. Watson RO, Manzanillo PS, Cox JS. Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway. Cell. 2012;150(4):803-15. DOI: 10.1016/j.cell.2012.06.040.

24. Songane M, Kleinnijenhuis J, Alisjahbana B, Sahiratmadja E, Parwati I, Oosting M, et al. Polymorphisms in autophagy genes and susceptibility to tuberculosis. PloS one. 2012;7(8):e41618. DOI: 10.1371/journal.pone.0041618.

25. Cooney R, Baker J, Brain O, Danis B, Pichulik T, Allan P, et al. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nature medicine. 2010;16(1):90-7. DOI: 10.1038/nm.2069.

26. Homer CR, Richmond AL, Rebert NA, Achkar JP, McDonald C. ATG16L1 and NOD2 interact in an autophagy-dependent antibacterial pathway implicated in Crohn’s disease pathogenesis. Gastroenterology. 2010;139(5):1630-41. e2.

27. Hugot J-P, Chamaillard M, Zouali H, Lesage S, Cézard J-P, Belaiche J, et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature. 2001;411(6837):599-603. DOI: 10.1038/35079107.

28. Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature. 2001;411(6837):603-6. DOI: 10.1038/35079114.

29. Economou M, Trikalinos TA, Loizou KT, Tsianos EV, Ioannidis JP. Differential effects of NOD2 variants on Crohn’s disease risk and phenotype in diverse populations: a metaanalysis. The American journal of gastroenterology. 2004;99(12):2393-404. DOI: 10.1111/j.1572-0241.2004.40304.x.

30. Kanaan ZM, Eichenberger MR, Ahmad S, Weller C, Roberts H, Pan J, et al. Clinical predictors of inflammatory bowel disease in a genetically well-defined Caucasian population. Journal of negative results in biomedicine. 2012;11:7. DOI: 10.1186/1477-5751-11-7.

31. van Schijndel JE, van Loo KM, van Zweeden M, Djurovic S, Andreassen OA, Hansen T, et al. Three-cohort targeted gene screening reveals a non-synonymous TRKA polymorphism associated with schizophrenia. Journal of psychiatric research. 2009;43(15):1195-9. DOI: 10.1016/j.jpsychires.2009.04.006.

32. Kabesch M, Peters W, Carr D, Leupold W, Weiland SK, von Mutius E. Association between polymorphisms in caspase recruitment domain containing protein 15 and allergy in two German populations. Journal of allergy and clinical immunology. 2003;111(4):813-7. DOI: 10.1067/mai.2003.1336.

Revista Romana de Medicina de Laborator

Romanian Journal of Laboratory Medicine

Journal Information


IMPACT FACTOR 2017: 0.400
5-year IMPACT FACTOR: 0.320



CiteScore 2017: 0.31

SCImago Journal Rank (SJR) 2017: 0.144
Source Normalized Impact per Paper (SNIP) 2017: 0.195

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 181 181 19
PDF Downloads 75 75 9