Blood-based biomarkers in Alzheimer’s disease: an overview on proteomic and lipidomic approaches

Open access

Abstract

Alzheimer’s disease (AD) remains one of the most challenging pathologies since its etiology is not completely known, its progression is slow and there are no disease-changing pharmacological agents available yet. One other important characteristic is that the progression of AD pathology starts long before any symptoms are experienced by patients. This is where the need for early detection biomarkers comes from. Although there are biomarkers that have been intensely studied and are now included in research criteria, most of these biomarkers are either invasive or unaffordable. Blood-based biomarkers could be a viable alternative of accessible and acceptable biomarkers, and have been much studied in the past decade. Among them proteomics and lipidomics seem to be two most promising fields for biomarker development. The paper aims to offer an overview of developments in the field during the past 5 years highlighting the most promising biomarkers.

1. Alzheimer’s Association. 2015 Alzheimer’s disease facts and figures. Alzheimer’s and Dementia 2015;11(3):332. DOI: 10.1016/j.jalz.2015.02.003.

2. Saloni Tanna, 2004 Background Paper 6.11. Alzheimer Disease and other Dementias. Last updated February 20, 2013. Available at http://www.who.int/medicines/areas/priority_medicines/BP6_11Alzheimer.pdf.

3. Alzheimer Europe. The prevalence of Alzheimer in Europe. Available at: http://www.alzheimer-europe.org/Policyin-Practice2/Country-comparisons/The-prevalence-ofdementia-in-Europe. Last update: February 24, 2014.

4. Hampel H, Prvulovic D, Teipel S, Jessen F, Luckhaus C, Frolich L, et al. The future of Alzheimer’s disease: the next 10 years. Prog Neurobiol. 2011 Dec; 95(4):718-28. DOI: 10.1016/j.pneurobio.2011.11.008.

5. Karran E, Hardy J. A critique of the drug discovery and phase 3 clinical programs targeting the amyloid hypothesis for Alzheimer Disease. Ann Neurol. 2014 Aug; 76(2):185-205. DOI: 10.1002/ana.24188.

6. Rinne JO, Brooks DJ, Rossor MN, Fox NC, Bullock R, Klunk WE, et al. 11C-PIB PET assessment of change in fibrillary amyloid-beta load in patients with Alzheimer’s disease treated with bapineuzumab: a phase 2, double-blind, placebo-controlled, ascending- dose study. Lancet Neurol. 2010 Apr; 9(4):363-72. DOI: 10.1016/S1474-4422(10)70043-0.

7. Karran E, Hardy J. Antiamyloid therapy for Alzheimer’s disease - are we on the right road? N Engl J Med. 2014 Jan 23; 370(4):377-8. DOI: 10.1056/NEJMe1313943.

8. Bier JC. Biomarkers of Alzheimer’s disease: concepts and clinical case. Rev Med Brux. 2013 Sep. 34(4):306-10.

9. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011 May; 7(3):263-9. DOI: 10.1016/j.jalz.2011.03.005.

10. Kuwano R, Hara N. Personal genomics for Alzheimer’s disease. Brain Nerve. 2013 65(3):235-46.

11. Ridge PG, Mukherjee S, Crane PK, Kauwe JS; Alzheimer’s Disease Genetics Consortium. Alzheimer’s disease: analyzing the missing heritability. PLoS One. 2013 Nov 7;8(11):e79771. DOI: 10.1371/journal. pone.0079771.

12. Henriksen K, O’Bryant SE, Hampel H, Trojanowski JQ, Montine TJ, Jeromin A, et al. The future of bloodbased biomarkers for Alzheimer’s disease. Alzheimers Dement. 2014 Jan; 10(1):115-131. DOI: 10.1016/j. jalz.2013.01.013.

13. Chalbot S, Zetterberg H, Blennow K, Fadby T, Andreasen N, Grundke-Igbal I, et al. Bloodcerebrospinal fluid barrier permeability in Alzheimer’s disease. J Alzheimers Dis. 2011; 25(3):505-15.

14. Teng E, Chow N, Hwang KS, Thompson PM, Gylys KH, Cole GM, et al. Low plasma ApoE levels are associated with smaller hippocampal size in the Alzheimer’s disease neuroimaging initiative cohort. Dement Geriatr Cogn Disord. 2015; 39(3-4):154-66. DOI: 10.1159/000368982.

15. Gupta VB, Laws SM, Villemagne VL, Ames D, Bush AI, Ellis KA, et al. Plasma apolipoprotein E and Alzheimer disease risk: the AIBL study of aging. Neurology. 2011 Mar 22; 76(12):1091-8. DOI: 10.1212/WNL.0b013e318211c352.

16. Guo LH, Alexopoulos P, Wagenpfeil S, Kurz A, the Alzheimer’s Disease Neuroimaging Inititative, Perneczcky R. Plasma proteomics for the identification of Alzheimer’s disease. Alzheimer Dis Assoc Disord. 2013 Oct-Dec; 27(4):10. DOI: 10.1097/ WAD.0b013e31827b60d2.

17. Marksteiner J, Imarhiagbe D, Defrancesco M, Deisenhammer EA, Kemmler G, Humpel C. Analysis of 27 vascular related proteins reveals that NT-proBNP is a potenatial biomarker for Alzheimer’s disease and mild cognitive impairment: a pilot-study. Exp Gerontol. 2014 Feb; 50:114-21. DOI: 10.1016/j.exger.2013.12.001.

18. Behnam S, A van Buchem M, JM de Craen A, Sigurdsson S, Zhang Q, Harris TB, et al. N-terminal pro-brain natriuretic peptide and abnormal brain aging. Neurology. 2015 Sept 1; 85(9):813-820. DOI: 10.1212/ WNL.0000000000001885.

19. Hu WT, Holtzman DM, Fagan AM, Shaw LM, Perrin R, Arnold SE, et al. Plasma multyanalyte profiling in mild cognitive impairment and Alzheimer disease. Neurology. 2012 Aug 28; 79(9):897-905. DOI: 10.1212/WNL.0b013e318266fa70.

20. Doecke JD, Laws SM, Faux NG, Wilson W, Burnham SC, Lam CP, et al. Blood-based protein biomarkers for diagnosis of Alzheimer disease. Arch Neurol. 2012 Oct; 69(10):1318-25. DOI: 10.1001/archneurol.2012.1282.

21. Bjorkgvist M, Ohlsson M, Minthon L, Hansson O. Evaluation of a previously suggested plasma biomarker panel to identify Alzheimer’s disease. PLoS One. 2012. 7(1): e29868. DOI: 10.1371/journal. pone.0029868.

22. Ray S, Britschgi M, Herbert C, Takeda-Uchimura Y, Boxer A, Blennow K, et al. Classification and prediction of clinical Alzheimer’s diagnosis based on plasma signaling proteins. Nat Med. 2007 Nov; 13(11):1359-62. DOI: 10.1038/nm1653.

23. Hertze J, Nagga K, Minthon L, Hansson O. Changes in cerebrospinal fluid and blood plasma levels of IGFII and its binding proteins in Alzheimer’s disease: an observational study. BMC Neurol. 2014 Apr 1; 14:64. DOI: 10.1186/1471-2377-14-64.

24. Sotolongo-Grau O, Pesini P, Valero S, Lafuente A, Buendia M, Perez-Grijalba V, et al. Association between cell-bound blood amyloid-β(1-40) levels and hippocampus volume. Alzheimers Res Ther. 2014; 6(5):56. DOI: 10.1186/s13195-014-0056-3.

25. Lewczuk P, Kornhuber J, Vanmechelen E, Peters O, Heuser I, Maier W, et al. Amyloid beta peptides in plasma in early diagnosis of Alzheimer’s disease: a multicenter study with multiplexing. Exp Neurol. 2010 Jun; 223(2):366-70. DOI: 10.1016/j.expneurol.2009.07.024.

26. Lui JK, Laws SM, Li QX, Villemagne VL, Ames D, Brown B, et al. Plasma amyloid-beta as a biomarker in Alzheimer’s disease: AIBL study of aging. J Alzheimers Dis. 2010; 20(4):1233-42.

27. Cosentino SA, Stern Y, Sokolov E, Scarmeas N, Manly JJ, Tang MX, et al. Plasma β-amyloid and cognitive decline. Arch Neurol. 2010; 67(12):1485-90. DOI: 10.1001/archneurol.2010.189.

28. Laske C, Sopova K, Gkotsis C, Eschweiler GW, Straten G, Gawaz M, et al. Amyloid-β peptides in plasma and cognitive decline after 1 year follow-up in Alzheimer’s disease patients. J Alzheimers Dis. 2010; 21(4):1263-9.

29. Yaffe K, Weston A, Graff-Radforf NR, Satterfield S, Simonsick EM, Younkin LH, et al. Association of plasma beta-amyloid level and cognitive reserve with subsequent cognitive decline. JAMA. 2011. 305(3):261-6. DOI: 10.1001/jama.2010.1995.

30. Van Oijen M, Hofman A, Soares HD, Koudstaal PJ, Breteler MM. Plasma Abeta(1-40) and Abeta(1-42) and the risk of dementia: a prospective case-control study. Lancet Neurol. 2006 Aug; 5(8):655-60. DOI: 10.1016/ S1474-4422(06)70501-4.

31. Schupf N, Tang MX, Fukuyama H, Manly J, Andrews H, Mehta P, et al. Peripheral Abeta subspecies as risk biomarkers of Alzheimer’s disease. Proc Natl Acad Sci USA. 2008 Sep 16; 105(37):14052-7. DOI: 10.1073/ pnas.0805902105.

32. Wu G, Sankaranarayanan S, Wong J, Tugusheva K, Michener MS, Shi X, et al. Characterization of plasma β-secretase (BACE1) activity and soluble amyloid precursor proteins as potential biomarkers for Alzheimer’s disease. J Neurosci Res. 2012 Dec; 90(12):2247-58. DOI: 10.1002/jnr.23122.

33. Noguchi-Shinohara M, Hamaguchi T, Nozaki I, Sakai K Yamada M. Serum tau protein as a marker for the diagnosis of Creutzfeldt-Jackob disease. J Neurol. 2011 Aug; 258(8):1464-8. DOI: 10.1007/s00415-011-5960-x.

34. Zetterberg H, Wilson D, Andreasson U, Minthon L, Blennow K, Randall J, et al. Plasma tau levels in Alzheimer’s disease. Alzheimers Res Ther. 2013; 5(2):9. DOI: 10.1186/alzrt163.

35. Randall J, Mortberg E, Provuncher GK, Fournier DR, Duffy DC, Rubertsson S, et al. Tau proteins in serum predict neurological outcome after hypoxic brain injury from cardiac arrest: results of a pilot study. Resuscitation. 2013 Mar; 84(3):351-6. DOI: 10.1016/j. resuscitation.2012.07.027.

36. Liliang PC, Liang CL, Weng HC, Lu K, Wang KW, Cheng HJ, et al. Tau proteins in serum predict outcome after severe traumatic brain injury. J Surg Res. 2010 May 15; 160(2):302-7. DOI: 10.1016/j.jss.2008.12.022.

37. Goetzl EJ, Boxer A, Schwartz JB, Abner EL, Petersen RC, Miller BL, et al. Altered lysosomal proteins in neural- derived plasma exosomes in preclinical Alzheimer disease. Neurology. 2015 July 7; 85(1):40-47. DOI: 10.1212/WNL.0000000000001702.

38. Zarrouk A, Riedinger JM, Ahmed SH, Hammami S, Chaabane W, Debbabi M, et al. Fatty acid profiles in demented patients: identification of hexacosanoic Acid (c26:0) as a blood lipid biomarker of dementia. J Alzheimers Dis.2015; 44(4):1349-59.

39. Han X, Rozen S, Boyle SH, Hellegers C, Cheng H, Burke JR, et al. Metabolomics in early Alzheimer’s disease: identification of altered plasma shpingolipidome using shotgun lipidomics. PLoS One. 2011; 6(7):e21643. DOI: 10.1371/journal.pone.0021643

40. Mielke MM, Haughey NJ, Bandaru VV, Weinberg DD, Darby E, Zaidi N, et al. Plasma sphiengomyelins are associated with cognitive progression in Alzheimer’s disease. J Alzheimers Dis. 2011; 27(2):259-69.

41. Jerneren F. Brain atrophy in cognitively impaired elderly: the importance of long-chain omega-3 fatty acids and B vitamin status in a randomized controlled trial. Am J Clin Nutr. 2015. doi: 10.3945/ajcn.114.103283. DOI: 10.3945/ajcn.114.103283.

42. Baierle M, Vencato PH, Oldenburg L, Bordingnon S, Zibetti M, Trentini CM, et al. Fatty acid status and its relationship to cognitive decline and homocysteine level in the elderly. Nutrients. 2014 Sep 12; 6(9):3624-40. DOI: 10.3390/nu6093624.

43. Freund Levi Y, Vedin I, Cederholm T, Basun H, Faxen Irving G, Eriksdotter M, et al. Transfer of omega-e fatty acids across the blood-brain barrier after dietary supplementation with docosahexanoic acid-rich amega-3 fatty acid preparation in patients with Alzheimer’s disease: the OmegAD study. J Intern Med. 2014 Apr; 275(4):428-36. DOI: 10.1111/joim.12166.

44. Mapstone M, Cheema AK, Fiandaca MS, Zhong X, Mhyre TR, MacArthur LH, et al. Plasma phospholipids identify antecedent memory impairment in older adults. Nat Med. 2014 Apr; 20(4):415-8. DOI: 10.1038/nm.3466.

Revista Romana de Medicina de Laborator

Romanian Journal of Laboratory Medicine

Journal Information


IMPACT FACTOR 2018: 0,800
5-year IMPACT FACTOR: 0,655



CiteScore 2017: 0.31

SCImago Journal Rank (SJR) 2018: 0.194
Source Normalized Impact per Paper (SNIP) 2018: 0.306

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 296 194 18
PDF Downloads 143 102 7