Comparative assessment of bone regeneration by histometry and a histological scoring system / Evaluarea comparativă a regenerării osoase utilizând histometria și un scor de vindecare histologică

Open access


Objective: The aim of this research is to evaluate the value of the histological score based on a histological record compared to the histometry for monitoring cranial bone defect healing. Methods: We designed a case -control study with a control and a study group. For a number of 60 CD1 mice representing the study group, a bone defect in the cranial bone was surgically induced and grafted with bone grafts obtained by tissue engineering. Bone grafts were obtained using embryonic stem cells seeded on a scaffold obtained from the red deer antler, and osteogenic basal and complex medium was used as differentiation medium. For other 30 CD1 mice representing the control group, a bone defect in the cranial bone was induced and left to heal without grafts. The regeneration process was assessed after 2 and 4 months using the histological healing scoring system and histometry. Results: The healing score was statistically significantly correlated with the defect size obtained by means of histometry (p<0.001). The evaluation of the parameters comprised in the healing score shows that regeneration of the bone diastasis was the most advanced in the group sacrificed at 4 months after plasty, which employed embryonic stem cells, a complex osteogenic differentiation medium and deer antler as scaffold. Conclusion: histological method based on a histological score is a valuable quantification system of bone regeneration comparable to histometry. Clinical Relevance: This study proves that the presented histological score can help the clinician in the process of bone regeneration evaluation.

1. Stock UA, Vacanti JP. Tissue engineering: current state and prospects. Annu Rev Med. 2001;52:443-51. DOI: 10.1146/

2. Vats A, Tolley NS, Polak JM, Gough JE. Scaffolds and biomaterials for tissue engineering: a review of clinical applications. Clin Otolaryngol. 2003;28(3):165-72. DOI: 10.1046/j.1365-2273.2003.00686.x

3. Burg Kjl, Porter S, Kellam J. Biomaterial developments for bone tissue engineering. Biomaterials. 2000;21(23):2347-59. DOI: 10.1016/S0142-9612(00)00102-2

4. Shastri P. Future of Regenerative Medicine: Challenges and Hurdles. Artificial Organs. 2006;30(10):828-34. DOI: 10.1111/j.1525-1594.2006.00307.x

5. Polini A, Pisignano D, Parodi M, Quarto R, Scaglione S. Osteoinduction of human mesenchymal stem cells by bioactive composite scaffolds without supplemental osteogenic growth factors. PLoS One. 2011;6(10):e26211. doi:10.1371/journal.pone.0026211 DOI: 10.1371/journal.pone.0026211

6. Firoozabadi R, Morsher S, Engelke K, Prevrhal S, Fierlinger A, Miclau T 3rd, Genant HK. Qualitative and quantitative assessment of bone fragility and fracture healing using conventional radiography and advanced imaging technologies-focus on wrist fracture.

J Orthopaed Trauma. 2008;22(8):83-90. DOI: 10.1097/ BOT.0b013e31815ea2a4

7. Blockhuis TJ, de Bruine JH, Bramer JA, den Boer FC, Bakker FC, Patka P, Haarman HJ, Manoliu RA. The reliability of plain radiography in experimental fracture healing. Skeletal Radiol. 2001:30(3):151-6. DOI: 10.1007/s002560000317

8. Panjabi MM, Lindsey RW, Walter SD, White AA. The clinician’s ability to evaluate the strength of healing fractures from plain radiographs. J Orthop Trauma. 1989;3(1):29-32. DOI: 10.1097/00005131-198903010-00006

9. Warwick R, Willatt JM, Singhal B, Borremans J, Meagher T. Comparison of computed tomographic and magnetic resonance imaging in fracture healing after spinal injury. Spinal Cord. 2009;47(12):874-7. DOI: 10.1038/sc.2009.59

10. Kropil P, Hakimi AR, Jungbluth P, Riegger C, Rubbert C, Miese F, Lanzman RS, Wild M, Schek A, Scherer A, Windolf J, Antoch G, Becker J, Hakimi M. Cone Beam CT in assessment of tibial bone defect healing: An animal study. Acad Radiol. 2012;19(3):320-5. DOI: 10.1016/j.acra.2011.10.022

11. Chien PC, Parks ET, Eraso F, Hartsfield JK, Roberts WE, Ofner S. Comparison of reliability in anatomical landmark identification using two-dimensional digital cephalometrics and three-dimensional cone beam computed tomography in vivo. Dentomaxillofac Radiol. 2009;38(5):262-73. DOI: 10.1259/dmfr/81889955

12. Lucaciu Ondine, Soritau Olga, Baciut G, Lucaciu D, Baciut M, Campian R, Bran S. The Role of Bone Morphogenetic Proteins in Tissue Engineering Particulate Bone Grafts. Particul Sci Technol. 2014:32(4):377-383. DOI: 10.1080/02726351.2013.879462

13. Lucaciu O, Baciut M, Baciut M, Gheban D, Bran S, Hedesiu M, et al. Bone Regeneration in Craniofacial Reconstruction with Particulate Grafts obtained through Tissue Engineering. Particul Sci Technol. 2009:27(6):479-518. DOI: 10.1080/02726350903328548

14. Solchaga LA, Yoo JU, Lundberg M, Dennis JE, Huibregtse BA, Goldberg VM, Caplan AI. Hyaluronan- based polymers in the treatment of osteochondral defects. J Orthop Res. 2000;18(5):773-80. DOI: 10.1002/jor.1100180515

15. Langer R, Tirrell DA. Designing materials for biology and medicine. Nature. 2004;428(6982):487-92. DOI: 10.1038/nature02388

16. Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in Tissue Engineering. Nat Biotechnol. 2005;23(1):47-55. DOI: 10.1038/nbt1055

17. Baciut M, Baciut G, Simion V. Investigation of deer antler as a potential bone regenerating biomaterial. J Optoel Adv Mat. 2007;9(8):2547-50. DOI: 10.1016/j. ijom.2007.08.373

18. Rekow D. Informatics Challenges in Tissue Engineering and Biomaterials. Adv Dent Res. 2003;17(1):49-54. DOI: 10.1177/154407370301700112

19. Haasper C, Ziechen J, Meister R, Krettek Ch. Tissue engineering of osteochondral constructs in vitro using bioreactors. Int J of the Care of the Injured. 2008;39(1):66-76. DOI: 10.1016/j.injury.2008.01.037

20. Indrawattana N, Chen G, Tadokoro M. Growth factor combination chondrogenic induction from human mesenchymal stem cell. Biochem Biophys Res Commun. 2004;320(3):914-9. DOI: 10.1016/j.bbrc.2004.06.029

21. Wozney JM. Overview of bone morphogenetic proteins. Spine, 2002;27(16):S2-8. DOI: 10.1097/00007632-200208151-00002

22. Ebara S, Nakayama K. Mechanism for the action of bone morphogenetic proteins and regulation of their activity. Spine. 2002;27(16):S10-5. DOI: 10.1097/00007632-200208151-00004

23. Lucaciu O, Baciut M, Baciut G, Campian R, Soritau O, Bran S, et al. Tissue engineered bone versus alloplastic commercial biomaterials in craniofacial reconstruction. Rom J Morphol Embryol. 2010;51(1):129-36.

24. Yang Z, Sui L, Toh WS, Lee EH, Cao T. Stage-dependent effect of TGF-beta1 on chondrogenic differentiation of human embryonic stem cells. Stem Cells Dev. 2009;18(6):929-40. DOI: 10.1089/scd.2008.0219

25. Kuske B, Savkovic V, zur Nieden NI. Improved media compositions for the differentiation of embryonic stem cells into osteoblasts and chondrocytes. Methods Mol Biol. 2011;690:195-215. DOI: 10.1007/978-1-60761-962-8_14

26. Kurosawa H. Methods for inducing embryoid body formation: in vitro differentiation system of embryonic stem cells. J Biosci Bioeng. 2007;103(5):389-98. DOI: 10.1263/jbb.103.389

27. Gothard D, Roberts SJ, Shakesheff KM, Buttery LD. Engineering embryonic stem-cell aggregation allows an enhanced osteogenic differentiation in vitro. Tissue Eng Part C Methods. 2010;16(4):583-95. DOI: 10.1089/ten.tec.2009.0462

28. Schimming R, Schmelzeisen R. Tissue Engineered Bone for Maxillary Sinus Augmentation. J Oral Maxillofac Surg. 2004;62(6):724-9. DOI: 10.1016/j. joms.2004.01.009

29. Tawonsawatruk T, Hamilton DF, Simpson AH. Validation of the use of radiographic fracture-healing scores in a small animal model. J Orthoped Res. 2014;32(9):1117-9. DOI: 10.1002/jor.22665

30. de Mello E, Oliveira R, Pelegrine AA, Aloise AC, Ferreira LM. Xenograft impregnated with bone marrow mononuclear fraction for appositional bone regeneration in rabbit calvaria: a clinical and histomorphometric study. Int J Oral Maxillofac Implants. 2014;29(4):962-8. DOI: 10.11607/jomi.3462

31. Liu Y, Möller B, Wiltfang J, Warnke PH, Terheyden H. Tissue engineering of a vascularized bone graft of critical size with an osteogenic and angiogenic factor-based in vivo bioreactor. Tissue Eng Part A. 2014; [Epub 2014 Jun 11]. DOI: 10.1089/ten.tea.2013.0653

32. Chakar C, Naaman N, Soffer E, Cohen N, El Osta N, Petite H, Anagnostou F. Bone formation with deproteinized bovine bone mineral or biphasic calcium phosphate in the presence of autologous platelet lysate: comparative investigation in rabbit. Int J Biomater. 2014;2014:ID367265 doi: 10.1155/2014/367265.[ Epub 2014 May 27]. DOI: 10.1155/2014/367265

33. Semenoff TA, Semenoff-Segundo A, Bosco AF, Nagata MJ, Garcia VG, Biasoli ER. Histometric analysis of ligature- induced periodontitis in rats: a comparison of histological section planes. J Appl Oral Sci. 2008;16(4):251-6. DOI: 10.1590/S1678-77572008000400005

34. Hermann JS, Schoolfield JD, Nummikoski PV, Buser D, Schenk RK, Cochran DL. Crestal bone changes around titanium implants: a methodologic study comparing linear radiographic with histometric measurements. Int J Oral Maxillofac Implants. 2001;16(4):475-85.

35. Park YS, Kim S, Oh SH, Park HJ, Lee S, Kim TI, Lee YK, Heo MS. Comparison of alveolar ridge preservation methods using three-dimensional micro-computed tomographic analysis and two-dimensional histometric evaluation. Imaging Sci Dent. 2014;44(2):143-8. DOI: 10.5624/isd.2014.44.2.143

Revista Romana de Medicina de Laborator

Romanian Journal of Laboratory Medicine

Journal Information

IMPACT FACTOR 2017: 0.400
5-year IMPACT FACTOR: 0.320

CiteScore 2017: 0.31

SCImago Journal Rank (SJR) 2017: 0.144
Source Normalized Impact per Paper (SNIP) 2017: 0.195

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 122 122 17
PDF Downloads 43 43 6