Antibacterial activity of some saturated polyoxotungstates

Open access

Abstract

Polyoxometalates are important inorganic compounds with a broad range of pharmacological properties, including antiviral, antibacterial, antiprotozoal or antitumoral activities, even that their molecular mechanism of action is poorly understood. Purpose: In this paper we evaluated the antibacterial activity of some saturated polyoxotungstates (POW) compounds, since nowadays, the increasing resistance of bacteria to drugs represents a major health problem. Materials and methods: The antibacterial activity was studied by disk diffusion method as a possible screening method and by successive micro-dilutions method. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) have been calculated for each compound by successive dilutions. We also compared the reliability of each testing method for this particular POW evaluation. Results: The best antibacterial activity was expressed by H4[SiW12O40]*nH2O and the lowest by Na3[PW12O40]*nH2O, but with very good activity on Staphylococcus spp., especially on MRSA. The POW activity occurs only at relatively high concentrations, and it is dependent on bacterial strain, with very good activity on Staphylococcus spp. The most reliable method for assessing the antibacterial effects of POW is micro-dilutions. POWs could be practically applied in hospital decontamination and could have a possible in vivo antibacterial application.

1. Mattes R. Heteropoly and Isopoly Oxometalates. Von M. T. Pope. Springer-Verlag, Berlin 1983. XIII, 180 S., geb. DM 124.00. Angew Chem. 1984;96(9):730-730. DOI: 10.1002/ange.19840960939

2. Hasenknopf B. Polyoxometalates: introduction to a class of inorganic compounds and their biomedical applications. Front Biosci. 2005;10(1-3):275. DOI: 10.2741/1527

3. Pope MT, Müller A. Polyoxometalate Chemistry: An Old Field with New Dimensions in Several Disciplines. Angew Chem Int Ed Engl. 1991;30(1):34-48. DOI: 10.1002/anie.199100341

4. Pope MT, Müller A. Polyoxometalate Chemistry: From Topology Via Self-Assembly to Applications. Springer; 2001.

5. Hosseini SM, Amini E, Tavassoti Kheiri M, Mehrbod P, Shahidi M, Zabihi E. Anti-influenza Activity of a Novel Polyoxometalate Derivative (POM-4960). Int J Mol Cell Med IJMCM. 2012 Jun 15;1(1):21-9.

6. Yamase T. Anti-tumor, -viral, and -bacterial activities of polyoxometalates for realizing an inorganic drug. J Mater Chem. 2005 Nov 15;15(45):4773-82. DOI: 10.1039/b504585a

7. Yang H-K, Cheng Y-X, Su M-M, Xiao Y, Hu M-B, Wang W, et al. Polyoxometalate-biomolecule conjugates: a new approach to create hybrid drugs for cancer therapeutics. Bioorg Med Chem Lett. 2013 Mar 1;23(5):1462-6. DOI: 10.1016/j.bmcl.2012.12.081

8. Stephan H, Kubeil M, Emmerling F, Müller CE. Polyoxometalates as Versatile Enzyme Inhibitors. Eur J Inorg Chem. 2013;2013(10-11):1585-94. DOI: 10.1002/ ejic.201201224

9. Housecroft CE. Inorganic Chemistry. Pearson Education; 2005.

10. Xing X, Liu R, Wang Z, Ren B, Jiang Z, Zhao H, et al. Facile decoration of Au nanoparticles on CdS nanorods by polyoxometalate with enhanced photocatalytic activities toward hydrogen evolution. J Nanosci Nanotechnol. 2013 Jul;13(7):4616-21. DOI: 10.1166/ jnn.2013.7179

11. Li F, Meng F, Ma L, Xu L, Sun Z, Gao Q. 3D pure inorganic framework based on polymolybdovanadate possessing photoelectric properties. Dalton Trans. 2013 Aug 6;42(34):12079-82. DOI: 10.1039/c3dt51057c

12. Fan D, Hao J, Wei Q. Assembly of Polyoxometalate- Based Composite Materials. J Inorg Organomet Polym Mater. 2012 Mar 1;22(2):301-6. DOI: 10.1007/ s10904-012-9665-0

13. Lu N, Lu Y, Liu F, Zhao K, Yuan X, Zhao Y, et al. H3PW12O40/ TiO2 catalyst-induced photodegradation of bisphenol A (BPA): Kinetics, toxicity and degradation pathways. Chemosphere. 2013 May;91(9):1266-72. DOI: 10.1016/j.chemosphere.2013.02.023

14. Mylonas A, Papaconstantinou E. On the mechanism of photocatalytic degradation of chlorinated phenols to CO2 and HCl by polyoxometalates. J Photochem Photobiol Chem. 1996 Feb 15;94(1):77-82. DOI: 10.1016/1010-6030(95)04207-5

15. Chermann JC, Raynaud M, Jasmin C, Mathé G. Powerful New Inhibitor of Murine Leukaemia and Sarcoma Viruses. Nature. 1970 Jul 11;227(5254):173-4. DOI: 10.1038/227173a0

16. Shechter Y, Karlish SJD. Insulin-like stimulation of glucose oxidation in rat adipocytes by vanadyl (IV) ions. Nature. 1980 Apr 10;284(5756):556-8. DOI: 10.1038/284556a0

17. Yamase T, Fujita H, Fukushima K. Medical chemistry of polyoxometalates. Part 1. Potent antitumor activity of polyoxomolybdates on animal transplantable tumors and human cancer xenograft. Inorganica Chim Acta. 1988 Jan;151(1):15-8. DOI: 10.1016/S0020-1693(00)83477-5

18. Tajima Y, Nagasawa Z, Tadano J. A factor found in aged tungstate solution enhanced the antibacterial effect of beta-lactams on methicillin-resistant Staphylococcus aureus. Microbiol Immunol. 1993;37(9):695-703. DOI: 10.1111/j.1348-0421.1993.tb01694.x

19. Nomiya K, Torii H, Hasegawa T, Nemoto Y, Nomura K, Hashino K, et al. Insulin mimetic effect of a tungstate cluster. Effect of oral administration of homo-polyoxotungstates and vanadium-substituted polyoxotungstates on blood glucose level of STZ mice. J Inorg Biochem. 2001 Oct;86(4):657-67. DOI: 10.1016/S0162-0134(01)00233-1

20. Fukuda N, Yamase T, Tajima Y. Inhibitory effect of polyoxotungstates on the production of penicillin-binding proteins and beta-lactamase against methicillin-resistant Staphylococcus aureus. Biol Pharm Bull. 1999 May;22(5):463-70. DOI: 10.1248/bpb.22.463

21. Cibert C, Jasmin C. Determination of the intracellular localization of a polyoxotungstate (HPA-23) by raman laser and X fluorescence spectroscopies. Biochem Biophys Res Commun. 1982 Oct 29;108(4):1424-33. DOI: 10.1016/S0006-291X(82)80066-1

22. Ni L, Greenspan P, Gutman R, Kelloes C, Farmer MA, Boudinot FD. Cellular localization of antiviral polyoxometalates in J774 macrophages. Antiviral Res. 1996 Nov;32(3):141-8. DOI: 10.1016/S0166-3542(95)00988-4

23. Inoue M, Suzuki T, Fujita Y, Oda M, Matsumoto N, Iijima J, et al. Synergistic effect of polyoxometalates in combination with oxacillin against methicillin-resistant and vancomycin-resistant Staphylococcus aureus: a high initial inoculum of 1 x 108 cfu/ml for in vivo test. Biomed Pharmacother Biomédecine Pharmacothérapie. 2006 Jun;60(5):220-6. DOI: 10.1016/j.biopha. 2006.04.006

24. Jeffrey T. Rhule CLH. Polyoxometalates in Medicine. Chem Rev. 1998;98(1):327-58. DOI: 10.1021/ cr960396q

25. Domingo JL. Vanadium and tungsten derivatives as antidiabetic agents: a review of their toxic effects. Biol Trace Elem Res. 2002 Aug;88(2):97-112. DOI: 10.1385/BTER:88:2:097

26. Tajyma Y. Tungstophosphate Induced Thromboembolic Complications in vivo. Biomed Res. 2003;24(1):39-49.

27. Sha J-Q, Liang L-Y, Li X, Zhang Y, Yan H, Chen G. Ligation of the quinolone antibacterial agent pipemidic acid to Keggin polyoxotungstates. Polyhedron. 2011 Jun 14;30(10):1657-62. DOI: 10.1016/j.poly.2011.03.044

28. Iqbal J, Barsukova-Stuckart M, Ibrahim M, Ali SU, Khan AA, Kortz U. Polyoxometalates as potent inhibitors for acetyl and butyrylcholinesterases and as potential drugs for the treatment of Alzheimer’s disease. Med Chem Res. 2013 Mar 1;22(3):1224-8. DOI: 10.1007/ s00044-012-0125-8

29. EUCAST: Antimicrobial susceptibility testing [Internet]. [cited 2013 Sep 25]. Available from: http://www.eucast.org/antimicrobial_susceptibility_testing/

30. EUCAST: Clinical breakpoints [Internet]. [cited 2013 Sep 25]. Available from: http://www.eucast.org/clinical_breakpoints/

31. Stapleton PD, Taylor PW. Methicillin resistance in Staphylococcus aureus. Sci Prog. 2002;85(Pt 1):57-72. DOI: 10.3184/003685002783238870

32. Yamase T, Fukuda N, Tajima Y. Synergistic effect of polyoxotungstates in combination with beta-lactam antibiotics on antibacterial activity against methicillin-resistant Staphylococcus aureus. Biol Pharm Bull. 1996 Mar;19(3):459-65. DOI: 10.1248/bpb.19.459

33. Kronvall G, Giske CG, Kahlmeter G. Setting interpretive breakpoints for antimicrobial susceptibility testing using disk diffusion. Int J Antimicrob Agents. 2011 Oct;38(4):281-90. DOI: 10.1016/j.ijantimicag. 2011.04.006

Revista Romana de Medicina de Laborator

Romanian Journal of Laboratory Medicine

Journal Information


IMPACT FACTOR 2017: 0.400
5-year IMPACT FACTOR: 0.320



CiteScore 2017: 0.31

SCImago Journal Rank (SJR) 2017: 0.144
Source Normalized Impact per Paper (SNIP) 2017: 0.195

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 182 182 17
PDF Downloads 83 83 3