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Abstract 

 

Exact determination of energy loss of ion in materials is still a non-trivial task because of 

relatively complicated changes of the ion`s stopping power S(E) during transport of the probing 

ion inside the material structure. Energy loss of ion in the material structure always depends 

on the current value of continually decreasing energy of the ion, indeed. A purely theoretical 

approach can be applied to the energy loss calculation in some typical cases. Average energy 

loss of ion can be determined by means of the Bethe-Bloch analytical theory (1-6) (in high 

velocity region) and the Lindhard-Scharff-Schiøtt (LSS) theory (7-10) (in low velocity region). 

Currently, there is no acceptable exact theory to determine the energy loss of ion in 

intermediate-velocity region (11) and experimental data must be used in that case. Basically, 

only a finite number of discrete experimental data is always available. Therefore, if the problem 

how much energy the projectile ion loses in a certain distance travelled is solved, the modelling 

of function S(E) based on some acceptable assumptions must be applied.  

In this contribution, we present the energy loss calculations in intermediate-velocity region 

of ion based on linear interpolation of experimental data. Calculation was carried out for a 

kapton foil using the data taken from Ziegler, Biersack (12). Energy values of an ion along its 

trajectory inside the foil were found, and the mean projected range of ion penetrating into the 

foil was calculated. Finally, the energy resolution was evaluated taking into account straggling 

provided that the foil is used as an absorber in the ERDA experiment.  
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INTRODUCTION 

 

If the mean value of stopping power S is known, the mean distance travelled by ion in 

media can be determined by: 
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where E0 is initial energy and E is current energy of the ion. Formula [1.1] is essential for the 

energy loss evaluation. However, the main problem is to find the analytical form of the function 

S(E) which we need to integrate.  

Slowing down the force (stopping power) S(E) of ions in a matter is a subject which still wins 

a great theoretical and experimental interest. The stopping power is the mean decelerating force 

applied to the ion travelling in the material. When a swift ion strikes the target, the transfer of 

its energy to the target material structure begins immediately. Two basic energy transfer 

mechanisms are dominant in such a case. One arises from collisions of ion with target atoms 

(nuclear stopping power Sn ) and the other from processes of excitation and ionisation of the 

target electrons (electronic stopping power Se ). The total stopping power is determined by the 

sum of the above-mentioned components (13): 
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It was found that the ions moving fast lose kinetic energy mainly via electronic stopping (14). 

If the ion moves slowly, it carries all of its electrons with it. If the ion is moves faster than the 

fastest electrons in the target, it loses all its electrons and is completely ionized. When the ion 

velocity is between the two cases, the ion is partially stripped, which leads to a considerably 

more complicated description (15), because the ion may lose electrons to, and capture them 

from, the target. So the values of velocity of the ion can be classified under one of the following 

three regions: 

1) Low-velocity region, where the ion velocity v is below the Bohr velocity v0 of the target 

electrons, i.e. the velocity of fastest electrons in the material (in the electron gas theory, the 

limit is commonly the Fermi velocity). The ion moving at this velocity is called slow and 

average electronic stopping power of such an ion results from the Lindhard-Scharff-Schiøtt 

(LSS) theory (7-10):  
3
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The universal reduced nuclear stopping power of ion in this low-velocity region was determined 

by G. Moliere in the framework of the Thomas-Fermi potential (16). The following empirical 

formula can used to approximate the nuclear stopping power calculation near the maximum of 

Sn(E) :   
2
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where ρ is density of the material, e is electron charge, ε0 is electric permittivity of vacuum,  z 

is charge state of ion, Z is atomic number of target atoms, Mion  is mass of ion mat is mass of 

target atoms,  is the reduced Planck constant and parameter a  = 1,4.10-2 nm. The nuclear 

stopping power is of the same order of magnitude as the electronic stopping power for very 

slow ions and must be taken into account. 

https://en.wikipedia.org/wiki/Atomic_number
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2) High-velocity region, where the ion velocity v > vm. vm is the mean velocity of electrons 

filling the levels of a neutral atom with nuclear charge z obtained from the Thomas-Fermi 

statistical theory (17):  
2

3
0mv v z .          [1.5] 

 

The ion moving at this velocity is called swift and the average electronic stopping power of 

such an ion results from the Bethe-Bloch theory (1-6):  
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where A its relative atomic mass of target atoms, NA the Avogadro number, Mu the molar mass 
constant and me is electron mass. In the Bethe theory, the atoms of material are characterized 
by means of excitation potential I. The effect of nuclear stopping power is very small for a swift 
ion and can be neglected in the high-velocity region. 

3) Intermediate-velocity region, which is the intermediate area between the low and high 

velocities: 

v0 < v < vm.                                                           [1.6] 

 

There is no acceptable formula to calculate energy loss of ion in intermediate-velocity range 

and we have only experimental data. In general, it can be concluded that velocity proportional 

energy loss has been in fact observed experimentally for most of common materials. 

Our research is oriented just on the evaluation of distribution of the mean energy value of the 

ion along its trajectory in material. The current contribution deals with the problem of the SRIM 

data applicability in estimating the mean projected range of ion. Below, we discuss the effect 

of the straggling on the energy resolution when a thin absorber is used. 

 

MATHEMATICAL TREATMENT 

 

Linear interpolation of SRIM data 

 

We start from a set of points [Ei, Si], i = 1, 2, ... N, where Ei are values of energy and Si 

represents the corresponding stopping power downloaded from SRIM (see the points in the 

graph shown in Fig.1). The N points make (N -1) intervals between them. It is necessary to 

Fig. 1 A scheme illustrating the interpolation of SRIM data 

procedure 
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know the function S = S(E) to apply the formula [1.1] for the ion range determination. This 

function can be approximated using linear interpolation at which a piecewise continuous line 

passing through each of the points is found. The two-point boundary value problem must be 

solved in this procedure. In this section, we briefly describe the procedure for determination of 

this line in the form of a separate linear polynomial for each interval (each with its own 

coefficients).  

We look for the linear polynomial in the following form: 

 
       

1 0

n n E n
S E a a  ....        for n = 2,3,4.                                [2.1.1] 

 

It can be considered that in the first interval (for n = 1, i.e. at the lowest energies of ion), the 

mentioned function S(E)  follows directly from the LSS theory and it takes a form: 

 
   1

S E C E  ,                                                    [2.1.2] 

where C is constant.                                                                                                         

It is necessary to determine the coefficients a0
(n) , a1

(n)  for polynomials [2.1.1] in all N-1 energy 

intervals (except the first interval). For this purpose, we need 2(N-1) independent equations. 

The coefficients of the polynomials [2.1.1] must be determined in such a way that the function 

S(E) is continuous in all points [Ei, Si]. Therefore, if we use designations:   
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n
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n nS E S  ,                                  [2.1.3] 

the following conditions must apply for each point n = 2,3,4,....N: 
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For the first point (n = 1), i.e. at the lowest measured value of energy E1, the following 

formulas can be written: 
   1

1 1 1 S E S C E                                             [2.1.6] 

Formulas for any coefficients a0
(n), a1

(n) can be easily found from the system of equations 

(2.1.4), (2.1.5): 
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Applying the results [2.1.7] and [2.1.8] in polynomials [2.1.1] and considering [2.1.2], we get 

interpolation function S(E) in the whole required energy interval. For example, the graph of this 

function in the energy interval from 0 up to 2.2 MeV for He2+ ion in the kapton foil is shown in 

Fig.2. 
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Fig. 2 Piecewise continuous curve as a result of the linear interpolation 

 

Values of the stopping power for individual constituent in this kapton foil were taken from 

SRIM code. Next, the procedure described above was applied for the determination of the 

stopping power values in the kapton structure. This function can be used to determine the ion 

range penetration into material.  

 

Mean projected range of ion penetrating into solids  

 

The energy loss process of ions has been widely investigated in various media by a variety 

of methods. Understanding the process is an imperative in many areas of materials science, both 

in application and basic research. It is also very important in using practical analytical 

techniques, such as ion beam analysis. 

The energy losses of ion during transport in a material structure can be calculated using 

formula [1.1] presented in Section 1. The stopping power of ions in a matter S is usually given 

for different energies of ion. If the function S(E) can be evaluated in the form [2.1.1], for any 

interval < En-1, En > we have: 

   
 

   
1 0   

n
n n ndE

S E a E a
dx

  .            (n = 2,3,4,... N)         [2.2.1] 

The following equation follows from [2.2.1]: 
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Solutions to the equation [2.2.2] can be found in all energy intervals. This solution can be 

written in the form: 
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where xk
(n) = 0. It should be noted that experimental values Ei and Si  (for i = N, ... 2) represent 

boundary conditions to the solution of equation [2.2.1], and different types of solution must be 

applied in each of the intervals. The distance travelled by ion in material structure must be 

determined step by step. Calculation must begin with n = N; then n gradually decreases by step 
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1 and the values xn+1 always result from the calculation with previous n (i.e. from the calculation 

in the previous energy interval). In any case, we must consider xN+1 = 0 and EN = E0 in [2.2.3] 

for n = N because the travelled distance is equal to zero at the moment when the ion with energy 

E0 is entering into the material (E0 is initial energy of ion). Finally, in the first interval (i.e. for 

n = 1), the equation to be solved takes the form [2.1.2], and the next solution can be written at 

the lowest energies of ion: 

 2 1

2
  x x E E

C
, where  

1

1


S

C
E   .                           [2.2.6] 

Bragg curve of ion in the material structure can be calculated using the algorithm based on the 

presented results (for example see Fig.3). 

 
Fig. 3 Calculated Bragg curve for 2.2 MeV He2+ ion in the kapton foil 

 

The importance of formulas [2.2.3] is clear; E is the energy of ion after travelling a distance x 

in material. The results enable the calculation of energy loss of ion which is slowing down in a 

material structure (see Fig.4). The above-mentioned formulation for the stopping power 

calculation of He2+ ion in the kapton foil was used in intermediate-velocity region where we 

can rely only on the SRIM database of discrete values of stopping power.  

 

 

Fig. 4 Calculated energy decrease of 2.2 MeV He2+ ion penetrating in the kapton foil 
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Effect of the straggling  

In the previous sections, we only discussed the mean energy loss of ion <dE/dx>. However, 

the actual energy loss scatters around the mean value and it is difficult to calculate it.  Real 

detector cannot measure mean energy loss <dE/dx>. It measures the energy ΔE deposited in 

layers of finite thickness Δx. For thin layers or low density materials, the energy loss distribution 

shows large fluctuations towards high losses, so called Landau tails. For high density materials, 

the energy loss distribution shows a more Gausian-like distribution. Form of distribution is 

important as energy distribution is often used for calibrating the detector for Rutherford Back 

Scattering (RBS) spectroscopy. 

From a practical point of view, it is significant that uncertainty in the energy determination 

of the ion in the material volume can be easily determined from the straggling data. The low 

and high energy limits of the ion energy in the sample volume can be calculated for these data. 

Subsequently, the procedure of the ion energy uncertainty determination is shown in Fig.5. 

 
Fig. 5 Calculated energy decrease of 2.2 MeV He2+ ion penetrating in the kapton foil calculated 

taking into account straggling in the depth range from 8 mm up to 10 mm. Uncertainty in the 

determination of ion energy E at a given depth is illustrated. 
 

CONCLUSION 
 

The energy decrease of 2.2 MeV He2+ ion penetrating in the kapton foil using discrete data 

from SRIM database was treated analytically in this contribution. The major motivation in the 

research was to verify the applicability of a simple analytical algorithm for quantitative 

evaluation of the kapton foil depth. Results are applicable in a suitable processing of the 

experimental Elastic Recoil Data Analysis (ERDA) signal measured using the kapton foil.  

The quantitative evaluation of the foil depth requires the conversion of the measured energy 

of ions versus the distance travelled by the ion in the material. Basically, this conversion 

procedure comprises the evaluation of the energy of ion after traveling a distance x in the 

material structure using discrete stopping power data from the SRIM database. Data processing 

formulas were presented, starting with a very simple approximation of the stopping power 

dependence from the energy using the linear interpolation the SRIM data. The basic 

mathematical procedures for the quantitative depth evaluation were stated, and outputs as well 
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as the processed data points were illustrated for the kapton. It can be assumed, that possible 

errors occur due to straggling. 

We analytically solved the problem that is usually investigated using statistical algorithms 

in order to simplify and accelerate data processing. One can easily understand that there is a 

correlation between the energy of ion detected after scattering and the depth of the scattering 

centre if the energy of the ion penetrating into material changes. This correlation was 

mathematically demonstrated in our contribution.  
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