

127

RESEARCH PAPERS FACULTY OF MATERIALS

SCIENCE AND TECHNOLOGY IN TRNAVA

SLOVAK UNIVERSITY OF TECHNOLOGY

IN BRATISLAVA
2018, Volume 26, Number 42 DOI 10.2478/rput-2018-0015

INTEGRATIVE PROGRAMMING OF PRODUCTION

AND PREVENTIVE MAINTENANCE TASKS IN AN ENVIRONMENT

OF IDENTICAL PARALLEL MACHINES: PROPOSAL

OF A CONSTRUCTION HEURISTIC

*2Daynier Rolando DELGADO SOBRINO, 1Ronald DÍAZ CAZAÑAS,
2Roman RUŽAROVSKÝ, 2Radovan HOLUBEK

1CENTRAL UNIVERSITY “MARTA ABREU” DE LAS VILLAS, FACULTY

OF MECHANICAL AND INDUSTRIAL ENGINEERING,

5½ KM. CAMAJUANÍ ROAD, 54 830, SANTA CLARA, VILLA CLARA, CUBA

e-mail: bronalddc@uclv.edu.cu

2SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA,

FACULTY OF MATERIALS SCIENCE AND TECHNOLOGY IN TRNAVA,

INSTITUTE OF PRODUCTION TECHNOLOGIES,

ULICA JÁNA BOTTU 2781/25, 917 24 TRNAVA, SLOVAK REPUBLIC

e-mail: daynier_sobrino@stuba.sk, roman.ruzarovsky@stuba.sk, radovan.holubek@stuba.sk
(*Corresponding author)

Received: 31.05.2018, Accepted: 26.06.2018, Published: 19.09.2018

Abstract

The article presents a constructive heuristic for the integrated programming of production

orders and preventive maintenance (PM) interventions in an environment of identical parallel

machines, aimed at minimizing the completion time of the last scheduled job (makespan).

Unlike other proposals found in the literature, the one here considers that the time between

preventive interventions is not previously known, but instead, this is assumed as one of the

decision variables of the system in the beginning of each of these interventions; in addition, the

proposal also considers the possibility that not all jobs have the same release time. The design

of the heuristic algorithm is based on the general approach of the Longest Processing Time

dispatch rule, with a slight modification in its conception to consider the random character of

the equipment failures and their impact on the execution time of the tasks. Consequently, a

simple dispatch rule called rj - LPT was also proposed to comply with one of the steps of the

heuristic, as well as an algorithm to determine the minimum dimension for the makespan, which

constitutes the basis of the stop criterion linked to the initial solution.

Key words

Production programming, maintenance programming, construction heuristic, algorithm,

Longest Processing Time rule (LPT), pseudo-code

mailto:bronalddc@uclv.edu.cu
http://www.mtf.stuba.sk/english/institutes/institute-of-safety-and-environmental-engineering.html?page_id=4219

128

INTRODUCTION

Over the years, it has been proved that the process of making decisions in Maintenance

should not only be quick and precise, it should be also closely coordinated with the production

needs and requirements (1). Similarly, the operating and maintenance costs, as well as the

reliability concerning production performance requirements are also a decisive factor for

success, which can be achieved through the efficient collaboration among the maintenance

decision levels at the shopfloor, production scheduling and quality control (2, 3).

Despite the quite well-known need for a production-maintenance integration followed by

a solid system of quality control, reality often shows the opposite, evidencing over the years a

scenario characterized by the presence of conflicting interests between both areas. In general

terms, authors such as Ruiz et al. (4), Hadidi et al. (5), Kumar et al. (6), Da et al. (7), Zahedi

and Salim (8), Jing et al. (9) and Boudjelida (10) coincide in the fact that production and

maintenance programming are very often treated independently and designed by different work

teams, causing the development of separate models for each function that leads to obtain

suboptimal solutions. This situation at the end exacerbates the conflict that is generated by the

fact that, on the one hand, maintenance activities consume production time and, on the other,

maintenance tasks are often postponed until the production sequence allows it what can

significantly increase the probability of failure of the machines.

In a productive environment characterized by parallel machines two fundamental decisions

must be made: firstly, the resource (machines) allocation, i.e.: these are to be assigned to the

different jobs, and, subsequently, the sequencing of the jobs on each machine should be

established, looking for ways to optimize some function related to the completion time of these

and/or to the total cost. Pinedo (11) highlights the fact that when it comes to this type of

productive configuration, the makespan becomes an objective of special interest, since in

practice production programmers frequently try to achieve an adequate balance in the use of

the resources. In these cases, the assignment of the machines to the corresponding jobs is

considered as the most important task, besides it must also consider that the realization of the

jobs is or may be influenced by possible interruptions due to failures in the production

equipment. In dealing with this kind of problems and shopfloor configurations, solution

strategies have often comprised constructing algorithms that have been mainly designed based

on the well-known and long-used Largest Processing Time dispatch rule (LPT) and on the

MULTIFIT algorithm proposed by Coffman et al. (12).

Other important contributions in parallel machines minimizing the makespan correspond

to Xu et al. (13) and Lee and Wu (14). The first studied the problem that is generated when

considering a relatively long programming horizon that includes several preventive

interventions, and the time between these interventions is not constant, but deterministic. On

the other hand, Lee and Wu (2008) considered a single maintenance period within the planning

horizon having known starting and ending instants for each machine; however, in this case the

processing time of the jobs is a function of the moment these start at, thus the later it begins,

the longer it will last (deteriorating jobs).

In recent years, most of the solution strategies for this type of problem have been based on

the local search algorithms, artificial intelligence and the use of simulation. In this regard,

authors such as Mirabedini and Iranmanesh (15) applied a multi-objective dynamic genetic

algorithm and an optimization scheme based on a swarm of particles to address these issues.

Similarly, Da et al. (7) developed a genetic algorithm of the type NSGA-II as a solution method

for an integrated model that includes uniform parallel machines, defining as objectives to

minimize the cost of maintenance and makespan, considering besides, that both the equipment

and the processing time of the jobs deteriorate over time. In the literature it is also possible to

find other contributions developed for this type of productive configuration but aimed at the

129

optimization of different objectives; such is the case of those presented by Lee et al (16) and

Kumar and Kumar - Lad (17).

However, despite the increasing interest in the use of these local search methods, included

in the field of Artificial Intelligence, constructive heuristics continue to be a tempting

alternative when it comes to implementing relatively simple methods capable of generating

good solutions quickly. Besides these have also proven useful as part of the development of

hybrid methods in which quite often a simple heuristic generates an initial solution for a given

local search algorithm that then further explores it and improves it in the search for a “more

global” optimum.

In order to contribute to the solution of the above-mentioned gaps and problematic issues

of the state of the art and practice, the article presents a constructive heuristic that generates an

integrated program of production orders and preventive maintenance (PM) interventions in an

environment of parallel machines. The proposal has the objective of minimizing the makespan

(Cmax), considering that different jobs may have different release times, and the time between

PM interventions is not fixed, but instead a decision variable within the algorithm. On the other

hand, the influence of failure-related interruptions in the jobs´ completion time is also taken

into account with the proposal.

DEFINTION OF THE PROBLEM

The productive system consists of a set of m machines, arranged in parallel, capable of

processing indifferently n types of products. Each product is processed in one and only one of

the machines available, which are assumed to be identical in the sense that the processing time

of each job (product) is the same in all machines. The processing time of the jobs is assumed

constant and known, besides, once a job has started to be processed it will not be interrupted

except for rare situations of force majeure, and, in these cases, the processing of the product

will continue once the operating conditions return to normal (resumeable case). There is also

an assumption that the time between failures of the equipment can be described by the Weibull

probability density distribution. Based on these assumptions, the proposed algorithm is aimed

at establishing an assignment of jobs to the different machines, also indicating the most

convenient time to carry out preventive maintenance interventions on these, in order to

minimize the total manufacturing time (makespan).

MATERIALS AND METHODS

Definition of variables and parameters of the heuristic algorithm

n: Number of jobs (products)

m: Number of machines

J: Set of jobs (products) to be programmed

M: Set of machines (productive resources)

𝑟𝑗: Time instant where the job j is ready to start being processed

𝑝𝑗: Processing time of the job j

𝑡𝑝: Average duration time of the preventive maintenance interruption

𝑡𝑟: Average duration time of the corrective maintenance interruption

βk: Weibull shape parameter for the variable “time between failures” associated to the machine

k

ηk: Weibull scale parameter for the variable “time between failures” associated to the machine

k

𝑗𝑙, 𝑗𝑡: Subscripts used to denote the jobs

𝐼𝑘: Number of jobs assigned to the machine k

130

𝑇𝑡𝑘: Ending time for the machine k.

𝑎𝑘(𝑙𝑘−): Effective age of the machine k before starting the processing of the job 𝑙(𝑘−𝑡ℎ)

𝑎𝑘(𝑙𝑘): Effective age of the machine k before ending the processing of the job 𝑙(𝑘−𝑡ℎ)

𝑇𝐶𝐸𝑙𝑘: Expected completion time of the job 𝑙 in the machine k

𝑇𝐸𝑙𝑘𝑃𝑀1: Processing time of the job l in the machine k in the case this is subjected to a PM

intervention before processing the job 𝑙(𝑘−𝑡ℎ)

𝑇𝐸𝑙𝑘𝑃𝑀0: Processing time of the job l in the machine k in the case this is NOT subjected to a

PM intervention before processing the job 𝑙(𝑘−𝑡ℎ)

𝑇𝐶𝐸𝐼𝑘𝑃𝑀1: Mean expected completion time of the first 𝐼𝑘 Jobs processed in the machine k in

the case this is subjected to a PM intervention before initiating the processing the job 𝑙(𝑘−𝑡ℎ)

𝑇𝐶𝐸𝐼𝑘𝑃𝑀0: Mean expected completion time of the first 𝐼𝑘 Jobs processed in the machine k in

the case this is NOT subjected to a PM intervention before initiating the processing the job

𝑙(𝑘−𝑡ℎ)

𝑃𝑀𝑙𝑘: Binary variable indicating if the PM intervention is to take place on the machine k before

initiating the job l

A (k), B (k): Arrays representing the job subsets assigned to the machine k, and the PM

interventions that should take place before initiating each job

(α): Cardinality of the subset α

Cmáx: Makespan value associated to the assignment of jobs and maintenance interventions

assumed as the solution

�̂�mín: Minimum level for the value of the makespan obtained through the application of some

assignment method

𝜌: Established limit for the solution error obtained by the first phase of the algorithm (steps 1

to 6)

The steps of the algorithm

1. Initialize: Ttk = 𝐼𝑘 = 0 ∀ k ∈ M; 𝑙 = 0; A(1) = A(2) = … = A(m) = ∅; 𝑟𝑗 ∀ j = {1, 2, …, n}

2. Generate the set of jobs J ordered in a non-increasing? way according to pj

3. Make: t = 1; S = ∅; P = ∅; 𝑙 = 𝑙 + 1

If 𝑟𝑙 = min (𝑟𝑗) ∀ j = {𝑙, 𝑙 + 1,…, n} assign the job 𝑙 to the machine k | 𝑇𝐶𝐸𝑙𝑘 = min {𝑇𝐶𝐸𝑙𝑘}

∀ k ∈ M. In case of a match, select the machine k arbitrarily

𝐼𝑘 = 𝐼𝑘 + 1

𝑇𝐶𝐸𝑙𝑘 = {
𝑚𝑎𝑥 (𝑇𝑡𝑘; 𝑟𝑙) + 𝑇𝐸𝑙𝑘𝑃𝑀1 𝑖𝑓 𝑇𝐶𝐸𝐼𝑘𝑃𝑀1 < 𝑇𝐶𝐸𝐼𝑘𝑃𝑀0

𝑚𝑎𝑥 (𝑇𝑡𝑘; 𝑟𝑙) + 𝑇𝐸𝑙𝑘𝑃𝑀0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
} [1]

𝑃𝑀𝑙𝑘 = {
1 𝑠𝑖 𝑇𝐶𝐸𝑙𝑘𝑃𝑀1 < 𝑇𝐶𝐸𝑙𝑘𝑃𝑀0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}

𝑇𝐸𝑙𝑘𝑃𝑀1 = 𝑝𝑙 + 𝑡𝑝 + 𝑡𝑟 [(
𝑝𝑙

𝜂𝑘
)

𝛽𝑘

] [2]

𝑇𝐸𝑙𝑘𝑃𝑀0 = 𝑝𝑙 + 𝑡𝑟 [(
𝑎𝑘(𝑙𝑘−)+ 𝑝𝑙

𝜂𝑘
)

𝛽𝑘

− (
𝑎𝑘(𝑙𝑘−)

𝜂𝑘
)

𝛽𝑘

] [3]

𝑎𝑘(𝑙𝑘−) = {
0 𝑖𝑓 𝑃𝑀𝑙𝑘 = 1

𝑎𝑘(𝑙𝑘−−1) + 𝑝𝑙𝑘−−1 𝑖𝑓 𝑃𝑀𝑙𝑘 = 0

 [4]

𝑇𝐶𝐸𝐼𝑘𝑃𝑀1 =

∑ 𝑝𝑗 +
𝐼𝑘
𝑗=1

 ∑ 𝑃𝑀𝑗𝑘

𝐼𝑘−1

𝑗=1
∗𝑡𝑝+∑ 𝑡𝑟[(

𝑎𝑘(𝑗)

𝜂𝑘
)

𝛽𝑘
− (

𝑎𝑘(𝑗−)

𝜂𝑘
)

𝛽𝑘
]

𝐼𝑘−1

𝑗=1
+ 𝑡𝑝+ 𝑡𝑟[(

𝑝𝑙
𝜂𝑘

)
𝛽𝑘

]

𝐼𝑘
 [5]

131

𝑇𝐶𝐸𝐼𝑘𝑃𝑀0 =

∑ 𝑝𝑗+
𝐼𝑘
𝑗=1

 ∑ 𝑃𝑀𝑗𝑘

𝐼𝑘−1

𝑗=1
∗𝑡𝑝+ ∑ 𝑡𝑟[(

𝑎𝑘(𝑗)

𝜂𝑘
)

𝛽𝑘
− (

𝑎𝑘(𝑗−)

𝜂𝑘
)

𝛽𝑘
]

𝐼𝑘
𝑗=1

𝐼𝑘
 [6]

𝑇𝑡𝑘 = 𝑇𝐶𝐸𝑙𝑘; A (k) = A (k)⋃{𝑗𝑙}.

If ∑ 𝐼𝑘
𝑚
𝑘=1 < n repeat step 3 otherwise then obtain Cmax = máx {𝑇𝑡𝑘}∀ k ∈ M

If 𝑟𝑙 ≠ min (𝑟𝑗) ∀ j = {1, 2,…, n} move to step 4

4. Generate the subset of jobs P ordered in a non-decreasing according to 𝑟𝑗; , P ⊂ J \

{𝑗𝑙 ; 𝐴 (𝑘) ∀ k ∈ M} | 𝑟𝑙 > 𝑟𝑝 ∀ 𝑝 ∈ P; Make 𝐼𝑘 = 𝐼𝑘 + 1 ∀ k ∈ M and calculate the expected

completion time of the job t for each machine k

𝑇𝐶𝐸𝑡𝑘 = {
𝑚𝑎𝑥 (𝑇𝑡𝑘; 𝑟𝑡) + 𝑇𝐸𝑡𝑘𝑃𝑀1 𝑖𝑓 𝑇𝐶𝐸𝐼𝑘𝑃𝑀1 < 𝑇𝐶𝐸𝐼𝑘𝑃𝑀0

𝑚𝑎𝑥 (𝑇𝑡𝑘𝑖; 𝑟𝑡) + 𝑇𝐸𝑡𝑘𝑃𝑀0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}

Identify the machine k | 𝑇𝐶𝐸𝑡𝑘 = min {𝑇𝐶𝐸𝑡𝑘} . In case of a match, select arbitrarily

If min {𝑇𝐶𝐸𝑡𝑘} ≤ 𝑟𝑙 𝑇𝑡𝑘 = 𝑇𝐶𝐸𝑡𝑘; S = S ∪ {𝑗𝑡}; 𝐼𝑘 = 𝐼𝑘 – 1 ∀ 𝑘 \ 𝑘: 𝑇𝑡𝑘 = 𝑇𝐶𝐸𝑡𝑘; otherwise

𝐼𝑘 = 𝐼𝑘 – 1 ∀ 𝑘 = {1, 2, … , 𝑚}

Make t = t + 1. If t ≤ # (P) repeat the step 4, otherwise move to step 5

5. If S ≠ ∅ assign the jobs from the subset S using the combined rule rj – LPT and then update

the arrays A (k). Update the values of 𝑇𝑡𝑘 for each machine k | ∃ 𝑗𝑡 ∈ A(k)

 A (k) = A (k) ⋃{𝑗} | 𝑗 ∈ A(k) and update the values of 𝐼𝑘 ∀ k ∈ M

𝑇𝑡𝑘 = 𝑇𝐶𝐸𝑡𝑘 ∀ k | 𝑗𝑡 ∈ A(k)

𝑇𝐶𝐸𝑡𝑘 = {
𝑇𝑡𝑘 + 𝑇𝐶𝐸𝑡𝑘𝑃𝑀1 𝑖𝑓 𝑇𝐶𝐸𝐼𝑘𝑃𝑀1 < 𝑇𝐶𝐸𝐼𝑘𝑃𝑀0

𝑇𝑡𝑘 + 𝑇𝐶𝐸𝑡𝑘𝑃𝑀0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}

𝑃𝑀𝑡𝑘 = {
1 𝑖𝑓 𝑇𝐶𝐸𝑙𝑘𝑃𝑀1 < 𝑇𝐶𝐸𝑙𝑘𝑃𝑀0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}

If S = ∅ move to step 6

6. Assign the job 𝑙 to the machine k | TCElk = min {TCElk} ∀ k = {1, 2,…, m}. In case of a

match select the machine k arbitrarily; A (k) = A (k) ⋃{𝑗𝑙}. Update 𝑇𝑡𝑘 and the values 𝐼𝑘 ∀

k ∈ M

𝑇𝑡𝑘 = 𝑇𝐶𝐸𝑙𝑘

 If ∑ 𝐼𝑘
𝑚
𝑘=1 < n move to step 3, otherwise then obtain Cmax = max {𝑇𝑡𝑘∀ k ∈ M

 If Cmax ≤ 𝜌*�̂�min the algorithm ends establishing for each machine k the assignment resulting

from the arrays A (k) y 𝑃𝑀𝑙𝑘, and the makespan is equal to Cmax

 Otherwise, then move to step 7

 If Cmax > 𝜌*�̂�min re-establish the set of jobs J ordered in not-increasing way according to pj

and readjust: Ttk = 𝐼𝑘 = 0 ∀ k = {1, 2, …, m}; B(1) = B(2) = … = B(m) = ∅ ; 𝑙 = 1; k = 1;

LS = Cmax then move to step 8.

7. Calculate the expected completion time of the job l for each machine k (𝑇𝐶𝐸𝑙𝑘) using

equation 1.

If 𝑇𝐶𝐸𝑙𝑘 < LS 𝑇𝑡𝑘 = 𝑇𝐶𝐸𝑙𝑘; C = C ∪ { 𝑗𝑙 }; 𝑙 = 𝑙 + 1 and repeat the step 8

If 𝑇𝐶𝐸𝑙𝑘 > LS Make 𝑙 = 𝑙 + 1

If 𝑙 ≤ n repeat the step 8; otherwise move to step 9

8. If C ≠ ∅ Assign the jobs of C to k using the rule rj – LPT and obtain B (k); update 𝑇𝑡𝑘 and

readjust J = J \ C

9. Increase k = k + 1 and adjust 𝑙 = 1. If k ≤ m repeat the step 8, otherwise move to step 11

10. If J = ∅ set Cmax = max {𝑇𝑡𝑘𝑖}∀ k ∈ M; replace A (k) by B (k) ∀ k = {1, 2,…, m} and move

to the step 7; otherwise the algorithm ends establishing for each machine k the assignment

resulting from the arrays A (k) y 𝑃𝑀𝑙𝑘, being the makespan equal to LS

132

Definition of the pseudo-code of the proposed combined rule rj – LPT

1. Set to = 𝑚𝑎𝑥 (𝑚𝑖𝑛(𝑟𝑗), 𝑚𝑖𝑛(𝑇𝑡𝑘)) ∀ j ∈ S, k ∈ M , JA = ∅, MA = ∅

2. Set JA ⊂ S | 𝑟𝑗 ≤ to ∀ j ∈ S.

3. Set MA ⊂ M | 𝑇𝑡𝑘 ≤ to ∀ k ∈ M

4. If # (JA) ≤ # (MA) assign each job of JA to some machine k of MA on the time instant to,

otherwise assign these jobs according to the rule LPT.

Update A(k) ∀ k ∈ MA y 𝑇𝑡𝑘 = 𝑇𝐶𝐸𝑗𝑘 | j ∈ A(k) ∀ k ∈ MA

5. Set S = S \ JA. If S ≠ ∅ repeat the step 1 otherwise stop

Steps for the determination of �̂�min

1. Obtain the incremented processing time 𝑝𝑗
′ for each job j

𝑝𝑗
′ = 𝑝𝑗+

𝑡𝑝∗ 𝑁𝑝+ 𝑡𝑟∗ 𝑁𝑓𝑚𝑖𝑛

𝑛

𝑁𝑓𝑚𝑖𝑛 = ∑ (
𝑝𝑗

𝜂𝑚𝑖𝑛
)𝛽𝑚𝑎𝑥𝑛

𝑗=1

2. Obtain the number of jobs 𝑁𝑝 processed up to the beginning of the PM intervention

Generate the equation of the total time dedicated to maintenance (TTM) according to Np

TTM = 𝑡𝑝
𝑛

𝑁𝑝
 + 𝑡𝑟[

𝑛

𝑁𝑝
∗ (

∑ 𝑝𝑗
𝑁𝑝
𝑗=1

𝜂𝑚𝑖𝑛
)

𝛽𝑚𝑎𝑥

]

2.1 Obtain the value Np
* in a way that TTM(Np*-1) >TTM(Np*) < TTM(Np*+1) and then make

𝑁𝑝 = Np
*

3. Apply some known heuristic for minimizing the makespan in the context of parallel

machines, e.g.: LPT, and this without considering the influence of maintenance and using

the new processing times 𝑝𝑗
′ , ∀ j = {1, 2, …, n}

�̂�min = max (𝑇𝑡𝑘) ∀ k ∈ M

The first six steps of the proposed algorithm are aimed at searching for an initial solution

under the principles of the LPT rule, but with a slight modification that is implemented in

step 3. The modification considers that the job with the longer processing time available at a

given time will be assigned to the machine that achieves for it a shorter expected completion

time, instead of assigning it directly to the first available machine, as indicated by the original

LPT. This way, the impact of interruptions due to failures on the processing time of the jobs is

also considered, what enhances the chances for the initial solution of not necessarily being

trapped in a local optimum as it often happens with the original LPT rule.

The step 6 analyses and decides if the quality of the solution obtained up this point is

adequate so as to stop the algorithm. To do this, the obtained makespan (Cmax) is compared with

a minimum level calculated for it (�̂�míin) increased by an amount 𝜌. To obtain the value of �̂�min,

an algorithm that takes advantage of the convex character of the TTM function is proposed.

Subsequently, the steps from 7 to 11 seek to refine the solution in case the stop criterion

established in step 6 is not met, for which an exhaustive search approach is implemented.

CONCLUSIONS AND FURTHER RESEARCH ISSUES

This article addressed one of the most significant problems that occur at the shopfloor level,

related to the need of establishing integrated production and preventive maintenance programs.

To contribute to the solution of this problem, a constructive heuristic was developed, which

makes the use of the LPT dispatch rule principles, and introduces a modification that allows to

consider the impact of interruptions due to failure on the production time of the product, and

all this in a context and productive configuration of identical parallel machines.

133

The proposed algorithm is implicitly divided into two phases. In the first one (steps 1 to 6),

an initial solution is obtained as a result of the slightly modified LPT rule and a new rule defined

during its development, called rj - LPT. If this previous solution does not meet the required

quality level, the second phase determined by the last four steps is implemented, which

implements an exhaustive search strategy.

Future research is aimed at analyzing the feasibility of developing a hybrid method in

which the proposed constructive heuristic is combined with some of the local search algorithms

that have shown their ability to be applied in this type of combinatorial optimization problems.

Acknowledgement

This paper was supported by the KEGA-021STU-4/2018 Project of Development of a

laboratory for the design and maintenance of production systems supported by the use of Virtual

Reality. This support is gratefully acknowledged.

References:

1. SWANSON, L. 1997. An empirical study of the relationship between production technology and

maintenance management. Int. Journal of Production Economics, 53, pp.199 – 207. ISSN 0925-

5273.

2. GAO, X., BARABADY, J., MARKESET, T. 2010. Criticality analysis of a production facility using

cost importance measures. Int. Journal of Systems Assurance Engineering and Management. 1, pp.

17–23.

3. TAMBE, P. P., KULKARNI, M. S. 2013. A novel approach for production scheduling of a high

pressure die casting machine subjected to selective maintenance and a sampling procedure for quality

control. Int. Journal of Systems Assurance Engineering and Management.

4. RUIZ, R., GARCÍA-DÍAZ, J., MAROTO, C. 2007. Considering scheduling and preventive

maintenance in the flowshop sequencing problem. In Computers & Operations Research, 34(11),

pp. 3314-3330. ISSN: 0305-0548.

5. HADIDI, L. A., AL-TURKI. U. M. 2012. Integrated models in production planning and scheduling,

maintenance and quality: a review. Int. Journal of Industrial and Systems Engineering, 10(1).

6. KUMAR, S., PUROHIT, B, S., KUMAR, B, L. 2014. Integrated Approach for Job Scheduling and

Multi-Component Maintenance Planning in a Production System. 5th Int. & 26th All India

Manufacturing Technology, Design and Research Conference (AIMTDR 2014).

7. DA, W., FENG, H., PAN, E. 2016. Integrated preventive maintenance and production scheduling

optimization on uniform parallel machines with deterioration effect. In Industrial Engineering and

Engineering Management (IEEM). Int. Conference on. IEEE, pp. 951-955.

8. ZAHEDI, Z., SALIM, A. 2017. Integrating Preventive Maintenance Scheduling as Probability

Machine Failure and Batch Production Scheduling. ComTech: Computer, Mathematics and

Engineering Applications, 7(2), pp. 105-112.

9. JING, Z., HUA, J., ZHU, Y. 2017. Multi-objective Integrated Optimization Problem of Preventive

Maintenance Planning and Flexible Job-Shop Scheduling. In: Proceedings of the 23rd Int.

Conference on Industrial Engineering and Engineering Management. DOI 10.2991/978-94-6239-

255-7_25.

10. BOUDJELIDA, A. 2017. On the robustness of joint production and maintenance scheduling in

presence of uncertainties. Journal of Intelligent Manufacturing, pp. 1-16.

11. PINEDO, M. L. 2012. Scheduling. Theory, Algorithms, and Systems. Fourth edition. Springer. New

York University. New York.

12. COFFMAN, E. G., GAREY, M. R., JOHNSON, D. S. 1978. An application of Bin-Packing to

multiprocessor scheduling. SIAM J. COMPUT., 7(1), pp. 1-17.

13. XU, D.; SUN, K.; LI, H. 2008. Parallel machine scheduling with almost periodic maintenance and

non-preemptive jobs to minimize makespan. In Computers & Operations Research 35, pp. 1344 –

1349.

134

14. LEE, W., CH., WU, CH, CH. 2008. Multi machine scheduling with deteriorating jobs and scheduled

maintenance. In Applied Mathematical Modelling, 32, pp. 362–373.

15. MIRABEDINI, S, N., IRANMANESH, H. 2014. A scheduling model for serial jobs on parallel

machines with different preventive maintenance (PM). Int. Journal of Advanced Manufacturing

Technologies, 70, 1579–1589.

16. LEE, W. CH., WANG, J. Y., LEE, L. Y. 2015. A hybrid genetic algorithm for an identical parallel

machine problem with maintenance activity. Journal of the Operational Research Society, pp. 1–13.

17. KUMAR, S., KUMAR – LAD, B. 2016. Integrated production and maintenance planning for parallel

machine system considering cost of rejection. Journal of the Operational Research Society, pp. 1-

13.

ORCID:

Daynier Rolando Delgado Sobrino 0000-0001-9253-6141

Roman Ružarovský 0000-0002-9465-4544

Radovan Holubek 0000-0003-0844-8603

