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Abstract

In this paper we analyze the sensitivity of solutions to a nonlinear singularly perturbed
dynamical system based on different rewriting into a System of the First Order Differential
Equations to a numerical scheme. Numerical simulations of the solutions use numerical
methods implemented in MATLAB.
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INTRODUCTION

This paper considers a nonlinear singularly perturbed dynamical system which can be
described by the second-order ordinary differential equations with a small parameter ¢ at the
second derivative. The equations are called singularly perturbed differential equations and the
theorem of continuous dependence of solutions on parameters is not applicable in this case.
These nonlinear systems can be solved by analytical or numerical methods.

In this paper, by using the numerical schemes implemented in the MATLAB
environment, we will simulate the nonlinear oscillations in the dynamical system describing
the singularly perturbed undamped oscillator with a continuous nonlinear restoring force and
without the excitation of oscillatory inputs:

g’y"+ f(t,y)=0
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where & is a small positive parameter and f is a continuous function

yr fort e[~ 5,0]
fty)= [2]
yH( — 1%i?h?(t)) fort e[0,o0).

[V, Y, ] is an initial state, y_(.,y,, Y, )is a direct output, h is a positive continuous function on
[0,oo], neN, 6>0,and ¢, 0<e&<<1 isasingular perturbation parameter. It is instructive
for the future to keep in mind the symmetric pitchfork-shaped manifold f(t, y)=0. The
parameter x> 0 is a constant determining the distance between pitchfork arms (1).

This second order ordinary differential equation in general can be described as a system of
first order equations of the form:

y="2v wherep+q=2

: 3
,  f(t,y) forp,gqe(0,x) [3]

NUMERICAL SIMULATION

There are several major types of practical numerical methods for solving initial value
problems for ODEs in the MATLAB environment. We used solvers based on Runge-Kutta
methods:

e ode45: This numerical solver is based on an explicit Runge-Kutta [4, 5] formula. That

means the numerical solver ode45 combines a fourth order Runge-Kutta method with
a fifth order error control. ode45 is a versatile ODE solver and is the first solver you
should try for most problems.

e 0de23: This numerical solver is based on an explicit Runge-Kutta [2, 3] formula. The

solver is used for problems with crude error tolerances or for solving moderately stiff
problems (4).

Numerical analysis of this type of equation show the high sensitivity on the initial
conditions, the perturbation parameter and the used numerical method (2, 3).

We simulate solutions of the nonlinear dynamical system [1], when a continuous function
[2] is in the form:

= te(-50)
f(t,y)= ,

2

y[(y? -0.5%20.5t°) te(0,%)

i=1

where n=1, h(t)=05t%, £=0.5.
When 0< p << 2 in the system of first order equations [3], simulation of the numerical

solutions are the same, as demonstrated by simulation in the MATLAB on Figs. 1-3 (solver
ode45) and Figs. 8-9 (solver ode23). The first equation of [3] shows the first derivation. The
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first derivation is the slope of the tangent line to the function at point x. When p is near zero,
the slope is not so large and the simulation is more realistic.

When 0< p<2 we can see high sensitivity of solutions on pand the used numerical
method, is demonstrated by simulation in MATLAB shown in Figs. 4-8 (solver ode45) and
Figs. 11-12 (solver ode23).
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Fig. 1 ode45: Numerical solution of (1), (2), Fig. 2 ode45: Numerical solution of (1), (2),
y(-0.05) =0, y'(~0.05)=-1.8L,n=1, u =1, y(-0.05) =0, y'(~0.05)=-1.8Ln=1 =1,

£=0.0Lh(t)=0.25t°, p=0,q=2. £ =00Lh(t)=025, p= = q= 2.
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Fig. 3 ode45: Numerical solution of (1), (2),  Fig. 4 ode45: Numerical solution of (1), (2),

y(=0.05) =0, y'(~0.05)=-1.8Ln=1, =1, y(=0.05) =0, y'(~0.05)=-1.8Ln=1, =1,
1 39 1 15

=0.0Lh(t)=0.25t>, p=—,q=—. =0.0Lh(t)=0.25t>, p==,q=—.

&=0.0Lh(t) P=5509= 5 &=0.0Lh(t) P=50=%
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Fig. 5 ode45: Numerical solution of (1), (2),  Fig. 6 ode45: Numerical solution of (1), (2),
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y(-0.05)=0,y'(-0.05)=-1.8L,n=1 u=1,

£=0.01h(t)=0.25t°, p=%,q—5

=3

Fig. 7 ode45: Numerical solution of (1), (2),
y(-0.05) = 0,y'(~0.05) = -1.8Ln =1, =1,

£=0.04h(t)=0.25t°, p=2,q=0.

Fig. 9 ode23: Numerical solution of (1), (2),

y(-0.05) =0, y'(~0.05)=-1.8Ln=1 =1,
1 79

—0.0Lh(t)=025t°, p=—,q="—.
#=00Lh() P=20" 0

Fig. 11 ode23: Numerical solution of (1), (2),

y(=0.05) =0, y'(~0.05)=-1.81,n=1, =1,
£=0.0Lh(t)=0.25t>, p=1,q=1.
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Fig. 8 ode23: Numerical solution of (1), (2),
y(-0.05) =0, y'(-0.05)=-1.81,n=1, u =1,

£=0.0Lh(t)=0.25t°, p=0,q = 2.

Fig. 10 ode23: Numerical solution of (1), (2),

y(-0.05) =0, y'(~0.05)=-1.8Ln=1 =1,
1 39

~0.0Lh(t)=0.25t°, p=—,q="2,
£=0.0Lh(t) P=55:9=

Fig. 12 ode23: Numerical solution of (1), (2),



y(-0.05) =0, y'(~0.05)=-1.8L,n=1, =1, y(=0.05) =0, y'(~0.05)=-1.81,n=1, =1,
£=0.0Lh(t)=0.25t>, p=1,q=1. £=0.0Lh(t)=0.25t°, p=2,q=0.
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