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Abstract
Artificial neural network (ANN) was used to predict 
the dry density of soil from its thermal conductivity. 
The study area is a farmland located in Abeokuta, Ogun 
State, Southwestern Nigeria. Thirty points were sam-
pled in a grid pattern, and the thermal conductivities 
were measured using KD-2 Pro thermal analyser. Sam-
ples were collected from 20 sample points to determine 
the dry density in the laboratory. MATLAB was used to 
perform the ANN analysis in order to predict the dry 
density of soil. The ANN was able to predict dry density 
with a root–mean-square error (RMSE) of 0.50 and a 
correlation coefficient (R2) of 0.80. The validation of our 
model between the actual and predicted dry densities 
shows R2 to be 0.99. This fit shows that the model can 
be applied to predict the dry density of soil in study ar-
eas where the thermal conductivities are known.

Key words: thermal conductivity, ANN, MATLAB, pre-
diction, model

Povzetek
Umetno nevronsko omrežje je bilo uporabljeno za na-
povedovanje suhe gostote tal iz podatkov o njihovi 
toplotni prevodnosti. Metodo so preskusili na kmetijski 
površini v kraju Abeokuta, država Ogun v jugozahodni 
Nigeriji. V mrežnem razporedu so vzorčili tla v tride-
setih (30) točkah in jim izmerili toplotno prevodnost 
s toplotnim analizatorjem KD-2 Pro. Vzorce tal so vzeli 
v dvajsetih točkah in jim določili v laboratoriju gostoto 
v suhem stanju. Nevronsko omrežno analizo za napove-
dovanje gostote tal v suhem stanju so izvedli s program-
skim paketom MATLAB. Z opravljeno nevronsko meto-
do je bilo mogoče napovedati gostoto tal s povprečno 
srednjo kvadratno napako 0.50 in kvadratom korelacij-
skega koeficinta (R2) 0.80. Preskus modela s primerjavo 
ocenjene suhe gostote z dejansko izmerjeno je izkazal 
R2 0.99. Ta odlični rezultat priča o uporabnosti metode 
za napovedovanje gostote v suhem stanju iz podatkov 
o toplotni prevodnosti tal.

Ključne besede: toplotna prevodnost, umetno nevron-
sko omrežje, MATLAB, napovedovanje, model
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Introduction

The movement of heat in soil and rocks is a very 
important concept in many areas of science and 
engineering [1]. This movement of heat in me-
dia is dependent on the thermal properties of 
such media, such as thermal conductivity, ther-
mal diffusivity and volumetric specific heat 
capacity. These properties serve as the trans-
mission and storage properties of the materi-
al, which show the rate at which temperature 
changes within the media.
Knowledge of these thermal properties is im-
portant for the safe execution of various engi-
neering projects (design and laying of high-volt-
age buried power cables, oil and gas pipelines 
as well as ground modification techniques using 
heating and freezing) and environment-sensi-
tive projects, such as disposal of high-level ra-
dioactive waste in deep underground disposal 
sites or repositories [2, 3]. The understanding 
of thermal properties of soil is also essential for 
proper management of soil and water for irri-
gated agriculture, as well as determination of 
the energy balance at the soil surface, soil water 
retention and unsaturated hydraulic conductiv-
ity [4]. Heat is transmitted into/from the soil 
by either conduction or convection as a result 
of the thermal gradients within the soil mass. 
The main thermal characteristics of soil are the 
thermal conductivity and the thermal capacity. 
Soil thermal conductivity measurements de-
scribe the soil properties that govern the flow 
of heat through the soil. The thermal conductiv-
ity is defined as the quantity of heat that flows 
through a unit area in a unit time under a unit 
temperature gradient, as seen in Equation 1.

q = −λgrad T ... ... ... ... ... ... ... .	         (1)

where q = heat flux (watts per square metre, 
W/m2; λ = thermal conductivity (watts per me-
tre Kelvin, W/m·K); grad T = temperature gra-
dient (Kelvin per metre, K/m).
The soil thermal conductivity is significantly 
influenced by its dry density [5–8]. Dry density 
refers to the mass of soil particles per unit vol-
ume. An increase in dry density of a soil results 
in an increase in its thermal conductivity [6, 9, 
10]. Other factors that have a secondary effect 
upon soil thermal conductivity include miner-

al composition, temperature, texture and time. 
The dry density plays a significant role in soil 
thermal conductivity but it is difficult to man-
age. Therefore, there is need to estimate the 
dry density in the laboratory. Therefore, in or-
der to simplify the prediction of dry density of 
soil in the study area, the relationship between 
thermal conductivity and dry density was de-
termined. This was achieved by carrying out 
artificial neural network (ANN) analysis. Thus, 
this study aims at the prediction of dry density 
from the thermal conductivity of soil obtained 
in the study area.

Description and geology of the 
study area

The study area is part of Southwest Nigeria 
(Figure 1), having mean annual rainfall of about 
1500 mm. The rainfall pattern is marked by a 
double maxima regime. The dry season lasts up 
to 4 months [11]. Temperatures are constantly 
high, with a maximum of 32°C and minimum 
of ~22 °C. Relative humidity is constantly high, 
with a maximum of ~95% and minimum of 
~70%. Most of the area is covered by rainforest 
and secondary forest.
The study area falls within the Abeokuta For-
mation (Figure 2), comprising mainly sand 
with sandstone, siltstone, silt, clay, mudstone 
and shale interbeds. It usually has a basal con-
glomerate, which may measure ~1 m in thick-
ness and generally consists of poorly rounded 
quartz pebbles with a silicified and ferruginous 
sandstone matrix or a soft gritty white clay ma-
trix [12].

Methodology

Thermal conductivity was measured on the 
field using a thermal analyser called KD-2 Pro 
(Figure 3). The KD-2 Pro is a fully portable field 
and laboratory thermal properties analyser. 
This probe uses the transient line heat source 
technique to determine the thermal properties 
of materials. A small dual-needle sensor called 
SH-1 (Figure 4) was used for the measurements. 
The sensor measured the thermal conductivity, 
thermal diffusivity, volumetric specific heat and 
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Figure 1: Map of the study area.

Figure 2: Geological map of Ifo and environs showing the study area.
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temperature of materials. This sensor uses the 
heat pulse methodology and produces depend-
able soil thermal conductivity, thermal diffusiv-
ity as well as estimations of volumetric specific 
heat using non-linear least squares procedures. 
The SH-1 sensor is 30 mm long and 1.28 mm in 
diameter. The spacing between the two needles 
is 6 mm (Figure 4).

Field procedure
Field sampling design was carried out prior to 
measurements on the field. Regular sampling 
measurements were carried out in the area. 
The top surface of the ground was first scooped 
to remove the effects of top soils. The thermal 
sensor was calibrated using standard glycer-
ol. This action was performed in order to test 
the functionality of the sensor [3, 13]. In or-
der to measure thermal conductivity using the 

KD-2  Pro, the SH-1 sensor was connected to 
KD-2 Pro and it was turned on. We ensured that 
the sensor was correctly placed into the soil 
and the dual needles of the sensor were main-
tained parallel to each other during insertion to 
the ground. The probe was then turned on, and 
measurements of thermal properties were car-
ried out. After the first measurement, the probe 
was rested for almost 15 minutes before taking 
subsequent readings.
Thirty sample points at intervals of 20 m (Fig-
ure 5) were tested for various thermal prop-
erties, while samples were collected from 
20 points (L1–L20) to measure the dry density 
of soil in the laboratory. The samples were put 
in polythene bags and stored in a cool dry place, 
after which the necessary laboratory analyses 
were carried out on them.

Figure 3: KD 2 Pro thermal analyser. Figure 4: SH-1 sensor.

Figure 5: Sampling points within the study area.
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Figure 6: Grain size analysis for locations 1 and 2.
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Laboratory procedure
In order to understand the characteristics of 
the soil in the area, grain size analysis was con-
ducted on the samples.

Grain size
This analysis involves the use of mechanical 
shakers to determine the particle size distri-
bution of the coarse-grained soil. Hydrome-
ter analysis was used to obtain an estimate of 
the distribution of soil particle sizes for fine-
grained soil, i.e. particles finer than 0.063 mm 
such as clayey and silty particles [14, 15]. The 
results from both the mechanical sieving and 
the hydrometer analysis were combined to-
gether to give the general result of the grain size 
distribution.
It is presented in the form of a distribution 
curve obtained by plotting the particle size 
against percentage finer on a semi-logarithmic 
chart, as shown in Figure 6a–b. The shape of the 
chart suggests that the soil samples are gener-
ally well graded.

Determination of dry density
Dry density was determined by the compaction 
test. The essence of laboratory compaction is 
to determine the moisture content that would 
produce a soil with maximum dry density. The 
procedure is given as follows. An air-dried soil 
sample weighing 3  kg was mixed thorough-
ly with 3 kg of water. The soil was compacted 
into a pre-weighed mould in five layers, with 
each layer subjected to 27 blows in West Afri-
can standards and 55 blows in modified Amer-
ican Association of State Highway and Trans-
portation Officials (AASHTO) levels [10, 16]. 
The compaction mould and the soil were re-
weighed when the collar and the mould were 
removed. The extruder was used to remove the 
compacted soil from the mould after moisture 
content determination was carried out on rep-
resentative samples from the top, middle and 
bottom portions of the specimen.
The procedure was repeated after addition of 
water (3% by weight) until the weight of the 
compacted soil in the mould was determined. 
Dry density was plotted against the moisture 
content, from which the optimum moisture 
content (OMC) and the maximum dry density 
(MDD) were obtained (Figure 7).

ANN analysis
ANN is a type of artificial intelligence tech-
nique that mimics the behaviour of the human 
brain [17]. ANNs possess the expertise to model 
linear and non-linear systems without making 
assumptions implicitly as in the case of most 
traditional statistical approaches.
ANNs have been applied in various aspects of 
science and engineering [18, 19]. The type of 
neural network used in our study is the mul-
tilayered perception (MLP). An MLP neural 
network is composed of three layers: (1) input 
layer, (2) hidden layer and (3) output layer. The 
input layer is used to present data to the net-
work, and the hidden layer serves as a collec-
tion of feature detectors, while the output layer 
is used to produce an appropriate response to 
the given inputs. Each layer in a network has 
sufficient numbers of neurons based on the 
specific applications. The neurons in a layer are 
joined to the neurons in the next successive lay-
er, and each connection carries a weight [19]. 
MATLAB software environment was used for 
the prediction of dry density. Backpropagation 
training algorithm was used in the feed-for-
ward network trained using the Levenberg–
Marquardt algorithm.
We also used a non-linear hyperbolic tangent 
sigmoid transfer function in the hidden layer 
and a linear transfer function in the output layer. 
A manual trial and error approach was used in 
our ANN model developed to estimate the num-
ber of neurons in the hidden layer. The num-
bers of neurons were increased in each stage of 
analyses to obtain the optimum model. In order 
to avoid the trapping of the learning process 
in local minima since weights were randomly 
assigned, the developed network was trained 
several times (minimum of 15 times) and we 
selected the best model. The training process 
terminates when the sum of the mean squared 
error falls within an acceptable range. The de-
veloped model has a three-layer feed-forward 
network, which is made up of an input layer, one 
hidden layer and one output layer (Figure  8). 
The neural network structures were used to 
construct a model, represented in Equation 2.

Dry density = function (l) 	 (2)

where l is the thermal conductivity.
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Figure 7: Plots of compaction results for Locations 3 and 4.

Figure 8: Architecture of artificial neural network.
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Results and discussion

The results from the analyses of the thermal 
conductivity and dry density are presented in 
Table 1.
Thermal conductivity ranges between 1.217 and 
2.933 W/m·K, with an average of 1.823 W/m·K, 
while dry density varies between 1725.05 and 
1930.00 kg/m3, with a mean of 1863.91 kg/m3.
Figures 9–12 show the regression models for 
the training, testing and validation phases that 
contain all networks for the ANN model gener-

ated for dry density. Figure 9 shows that the de-
gree of correlation between predicted dry den-
sity and measured values is moderately high for 
our training data, having correlation coefficient 
(R) of 0.86.
The testing model gives high correlation coeffi-
cient between predicted dry density and mea-
sured dry density, and the value is found to be 
0.99 (Figure 10).
The validation model shows the correlation co-
efficient between the predicted and measured 
dry densities, which was found to be very high, 

Table 1: Results of thermal conductivity and dry density in the area

Locations Thermal conductivity (W/m·K) Dry density (kg/m3)

1 1.996 1850.10

2 1.779 1920.25

3 1.433 1800.25

4 2.933 1840.25

5 1.504 1725.05

6 1.471 1930.00

7 1.953 1880.20

8 1.842 1810.00

9 2.37 1890.02

10 1.391 1910.02

11 1.61 1850.20

12 1.393 1906.28

13 2.37 1903.89

14 2.874 1914.87

15 1.466 1883.58

16 2.028 1875.19

17 1.381 1903.73

18 1.217 1725.27

19 1.848 1835.85

20 1.603 1923.25
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with R value of 0.99 (Figure 11). This model is 
the model used to check the performance of 
our ANN [20].
The network phase (i.e. combination of train-
ing, testing and validation models) for the ANN 
model gives moderately high correlation coef-
ficient between predicted and measured dry 
densities, with R of 0.85 (Figure 12).
We compared the measured and predicted dry 
densities generated by our ANN model (Ta-
ble  2). The deviation of the simulated results 

from the actual measurements is within the ac-
ceptable limit, which we set at maximum of 5%.
Root–mean-square error (RMSE) was estimat-
ed for the predicted and measured dry den-
sities using Equation 2 in order to check the 
performance of the model developed in this 
study [21]. The RMSE was found to be 0.50, 
which indicates good prediction performance 
of the model [21]. Therefore, we could say that 
based on the high values of R and the low val-
ue of RMSE, our model shows high prediction 
performance and that the generalised model 

Figure 9: Regression model for the training network. Figure 10: Regression model for the testing network.

Figure 11: Regression model for the validation network. Figure 12: Regression model for the network phase.
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Figure 13: Relationship between thermal conductivity and dry density in the study area.

Table 2: Measured versus predicted dry densities

Measured dry density (kg/m3) Predicted dry density (kg/m3) Error (%)

1850.10 1850.18 –0.004

1920.25 1920.23 +0.001

1800.25 1800.38 –0.007

1840.25 1840.05 +0.011

1725.05 1725.14 –0.005

1930.00 1930.37 –0.019

1880.20 1880.20 0.000

1810.00 1810.28 –0.015

1890.02 1890.24 –0.012

1910.02 1910.27 –0.013

1850.20 1849.97 +0.012

1906.28 1906.57 –0.015

1903.89 1903.24 +0.034

1914.87 1913.32 +0.081

1883.58 1884.43 –0.045

1875.19 1875.03 +0.009

1903.73 1903.72 +0.001

1725.27 1725.4 –0.008

1835.85 1835.89 –0.002

1923.25 1924.17 –0.048
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is efficient in predicting the dry density using 
thermal conductivity.

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √∑ (𝑦𝑦 − 𝑦̅𝑦)2𝑛𝑛
1

𝑛𝑛 …………… . (3), 	 (3)

where y is the measured value, y� is the predict-
ed value and n is the total number of measured 
data points.
The model developed was then used to simulate 
the dry density for the remaining 10 locations 
where the dry densities were not measured in 
the laboratory but whose thermal conductivi-
ties were known (Table 3; Figure 13). The rela-
tionship between the dry density and thermal 
conductivity was moderately high, with R2 of 
0.80.

Conclusions

We have demonstrated the use of ANN in the 
prediction of dry density of soil in a farmland 
in Abeokuta using the thermal conductivity as 
a function. Our ANN was able to predict the 
parameter with high degree of correlation be-
tween the actual and predicted dry densities. 
Analysis of RMSE also showed high perfor-
mance of the predictive model. Therefore, the 

predictive model can be implemented to pre-
dict the dry density of soil in study areas where 
thermal conductivities are known. We suggest-
ed linear regression analysis from the ANN to 
predict the dry density of soil in the study area. 
However, it should be noted that the predicted 
equations developed in this study are only val-
id for soils that have the same characteristics 
as the soil in the study area. More studies are 
required to verify these relationships.
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