Geochemistry of Fluvial Sediments from Geregu, Southwest Nigeria

Open access

Abstract

Geochemical analysis of fluvial sediments on the banks of River Ero using inductively coupled plasma mass spectrometry illustrates their maturity, provenance and tectonic setting. The analysed sediment samples show low SiO2/Al2O3 ratios of 2.92-2.99 (units FL_A, FL_B and FL_E) and high SiO2/Al2O3 ratios of 4.064-4.852 (units FL_C, FL_D, FL_F and FL_G). Sediments were geochemically classified as shales (units FL_A, FL_B and FL_E) and greywackes (units FL_C, FL_D, FL_F and FL_G). Variability in sediment maturity (FL_F > FL_G >FL_C >FL_D >FL_A > FL_B > FL_E) parallels a decreasing order in the ratios of SiO2/Al2O3 and K2O/Al2O3, as well as the proportion of quartz grains and matrix components. Evidence from Al2O3/TiO2, K2O, Rb, La/Co, Th/Co, Cr/ Th, Th/Cr, La/Th-Hf, Th-Hf-Co and rare earth element contents of sediment samples suggest felsic protoliths of upper continental crust in a passive margin tectonic setting. An insignificant contribution of mafic components from the source is, however, inferred based on the Ni and Cr contents of the sediment samples. Combined Eu anomalies <0.85 and (Gd/Yb)n ratios <2.0 (1.53- 1.82, average 1.65) suggest post-Archean protoliths.

[1] Bhatia, M.R. (1983): Plate tectonic and geochemical composition of sandstones. Journal of Geology, 91, pp. 611-627.

[2] Bhatia, M.R., Crook, A.W. (1986): Trace element characteristics of greywacke and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, 92, pp. 181-193.

[3] Roser, B.P., Korsch, R.J. (1986): Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio. Journal of Geology, 94, pp. 635-650.

[4] McLennan, S.M. (1989): Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes. Reviews in Mineralogy, 21, pp. 169-200.

[5] McLennan, S.M., Hemming, S., McDaniel, D.K., Hanson, G.N. (1993): Geochemical approaches to sedimentation, provenance and tectonics. In: Johnson, M.J., Basu, A. (Eds.). Processes controlling the composition of clastic sediments. Geological Society of America Special Paper 284, pp. 21-40.

[6] Condie, K.C. (1993): Chemical composition and evolution of upper continental crust: Contrasting results from surface samples and shales. Chemical Geology, 104, pp. 1-37.

[7] Nesbitt, H.W., Young, G.M. (1996): Petrogenesis of sediments in the absence of chemical weathering: effects of abrasion and sorting on bulk composition and mineralogy. Sedimentology, 43, pp. 341-358.

[8] Fedo, C.M., Young, G.M., Nesbitt, H.W., Hanchar, J.M. (1997): Potassic and sodic metasomatism in the Southern Province of the Canadian Shield: Evidence from the Paleoproterozoic Serpent Formation, Huronian Supergroup, Canada. Precambrian Research, 84, pp. 17-36.

[9] Cullers, R.L., Podkovyrov, V.N. (2000): Geochemistry of the Mesoproterozoic Lukhanda shales in southeastern Yakutia Russia: Implications for mineralogical and provenance control and recycling. Precambrian Research, 104, pp. 77-93.

[10] Cullers, R.L., Podkovyrov, V.N. (2002): The source and origin of terrigenous sedimentary rocks in the Mesoproterozoic Ui Group, south-eastern Russia. Precambrian Research, 117, pp. 157-183.

[11] Armstrong-Altrin, J.S., Lee, Y.I., Verma, S.P., Ramasamy, S. (2004): Geochemistry of sandstones from the Upper Miocene Kudankulam Formation, southern India: Implications for provenance, weathering, and tectonic setting. Journal of Sedimentary Research, 74, pp. 285-297.

[12] Armstrong-Altrin, J.S., Verma, S.P. (2005): Critical evaluation of six tectonic setting discrimination diagrams using geochemical data of Neogene sediments from known tectonic setting. Sedimentary Geology, 177, pp. 115-129.

[13] Etemad-Saeed, N., Hosseini-Barzi, M., Armstrong-Altrin, J.S. (2011): Petrography and geochemistry of clastic sedimentary rocks as evidence for provenance of the Lower Cambrian Lalun Formation, Posht-ebadam bloc, Central Iran. Journal of African Earth Science, 61, pp. 142-159.

[14] Mishra, M., Sen, S. (2012): Provenance, tectonic setting and source-area weathering of Mesoproterozoic Kaimur Group, Vindhyan Supergroup, Central India. Geologica Acta, 10(3), pp. 283-293.

[15] Anani, C., Moradeyo, M., Atta-Peters, D., Kutu, J., Asiedu, D. (2013): Geochemistry and provenance of sandstones from Anyaboni and surrounding areas in the voltaian basin, Ghana. International Research Journal of Geology and Mining, 3(6), pp. 206-212.

[16] Taylor, S.R., McLennan, S.M. (1985): The Continental Crust: Its Composition and Evolution. Blackwell: Oxford.

[17] Kogbe, C.A. (1976): Geology of Nigeria. Elizabethan Publishing Company: Lagos.

[18] Adiotomre, E.E., Ejeh, O.I., Adaikoph, E.O. (2014): Temporal variation in the textural characteristics of clastic sediments from Geregu, Ajaokuta, Nigeria. International Journal of Scientific and Engineering Research, 5(8), pp. 60-65.

[19] Ajibade, A.C, Woakes, M., Rahaman, M.A. (1987): Proterozoic crustal development in Pan-African regime of Nigeria. In: Proterozoic Lithospheric Evolution, Kröner, A. (ed.). American Geophysical Union: Washington; pp. 231-259.

[20] Ajibade, A.C., Fitches, W.R. (1988): The Nigerian Precambrian and the Pan African orogeny. In: Precambrian Geology of Nigeria, Oluyide, P.O., Mbonu, W.C., Ogezi, A.E., Egbuniwe, I.G., Ajibade, A.C., Umeji, A.C. (eds.). Geological Survey of Nigeria: Kaduna; pp. 45-53.

[21] Elueze, A.A. (2000): Compositional appraisal and petrotectonic significance of the Imelu banded ferruginous rock in the Ilesha schist belt, southwestern Nigeria. Journal of Mining and Geology, 36 (1), pp.8-18.

[22] Gazzi, P. (1966): Le arenarie del flysch sopracretaceo dell’Appennino modensese: Correlazioni con il flysch di Monghidoro. Mineralogica et Petrographica Acta, 12, pp. 69-97.

[23] Dickinson, W.R. (1970): Interpreting detrital modes of graywacke and arkose. Journal of Sedimentary Petrology, 40(2), pp. 695-707.

[24] Herron, M.M. (1988): Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Petrology, 58 (5), pp. 820-829.

[25] Barat, J., Zanda, B., Moynier, F., Bollinger, C., Liorzou, C., Bayon, G. (2012): Geochemistry of CI-Chondrites: Major and trace elements, and Cu and Zn Isotopes. Geochimica et Cosmochimica Acta, 83, pp. 79-92.

[26] Tang, Y. Sang, L., Yuan, Y., Zhang, Y., Yang, Y. (2012): Geochemistry of Late Triassic politic rocks in the NE part of Songpan-Ganzi Basin, western China: Implications for source weathering, provenance and tectonic setting. Geoscience Frontiers, 3(5), pp. 647-660.

[27] Le Maitre, R.W. (1976): The chemical variability of some common igneous rocks. Journal of Petrology, 17, pp. 589-637.

[28] Armstrong-Altrin, J.S., Lee, Y.I., Kasper-Zubillaga, J.J., Carranza-Edwards, A., Garcia, D., Eby, G.N., Balaram, V., Cruz-Ortiz, N.L. (2012): Geochemistry of beach sands along the western Gulf of Mexico, Mexico: Implication for provenance. Chemie der Erde, 72, pp. 345-362.

[29] Garcia, D., Fonteilles, M., Moutte, J. (1994): Sedimentary fractionations between Al, Ti and Zr and the genesis of strongly peraluminous granites. Journal of Geology, 102, pp. 411-422.

[30] Anderson, P.O.D., Worders, R.H., Hodgson, D.M. Flint, S. (2004): Provenance evolution and chronostratigraphy of a Palaeozoic submarine fan-complex: Tanqua Karoo Basin, South Africa. Marine and Petroleum Geology, 21, pp. 555-577.

[31] Condie, K.C. (1992): Proterozoic terrains and continental accretion in southwestern North America. In: Proterozoic Crustal Evolution, Condie, K.C. (ed.). Elsevier Scientific Publishers: Amsterdam, pp. 447-480.

[32] Hayashi, K., Fujisawa, H., Holland, H.D., Ohmoto, H. (1997): Geochemistry of 1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochimica et Cosmochimica Acta, 61, pp. 4115-4137.

[33] Girty, G.H., Ridge, D.L., Knaack, C., Johnson, D., Al-Riyami, R.K., (1996): Provenance and depositional setting of Palaeozoic chert and argillite, Sierra Nevada, California. Journal of Sedimentary Research, 66, pp. 107-118.

[34] Floyd, P.A., Leveridge, B.E. (1987): Tectonic environments of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbidite sandstones. Journal of Geological Society of London, 144, pp. 531-542.

[35] Pe-Piper, G., Triantafyllidis, S., Piper, D.J.E. (2008): Geochemical identification of clastic sediment provenance from known sources of similar geology: the Cretaceous Scotian Basin, Canada. Journal of Sedimentary Research, 78(9), pp. 595-607.

[36] Cullers, R.L., Basu, A., Suttner, I.J. (1988): Geochemical signature of provenance in sand-size material in soils and stream sediments near the Tobacco Root batholiths, Montana, USA. Chemical Geology, 70, pp. 335-348.

[37] Wronkiewicz, D.J., Condie, K.C. (1989): Geohemistry and provenance of sediments from the Pongola Supergroup, South Africa: Evidence for a 3.0-Ga-old continental craton. Geochimica et Cosmochimica Acta, 53, pp. 1537-1549.

[38] Condie, K.C., Wronkiewicz, D.J. (1990): The Cr/Th ratio in Precambrian pelites from the Kaapvaal Craton as an index of craton evolution. Earth and Planetary Science Letters, 97, pp. 256-267.

[39] Cullers, R.L. (1994): The controls on the major and trace element variation of shales, siltstones and sandstones of Pennsylvanian-Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas, USA. Geochimica et Cosmochimica Acta, 58, pp. 4955-4972.

[40] Cullers, R.L. Chaudhuri, S., Kilbane, N., Koch, R. (1979): Rare earths in size fractions and sedimentary rocks of Pennsylvanian-Permian age from the mid-continent of USA. Geochimica et Cosmochimica Acta, 43, pp. 1285-1302.

[41] McLennan, S.M. (2001): Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry, Geophysics and Geosystems, 2, Paper Number 2000GC000109.

[42] Rudnick, R.L., Gao, S. (2003): Composition of the continental crust. In: The Crust, 3, L.R., Rudnick (ed.). Elsevier- Pergamon: Oxford; pp. 1-64.

[43] Slack, J.F., Stevens, P.J. (1994): Clastic metasediments of the Early Proterozoic Broken Hill Group, New South Wales, Australia: Geochemistry, provenance and metallogenic significance. Geochimica et Cosmochimica Acta, 58, pp. 3633-3652.

[44] Young, S.M., Pitawala, A., Ishiga, H. (2013): Geochemical characteristics of stream sediments, sediment fractions, soils, and basement rocks from the Ma haweli River and its catchment, Sri Lanka. Chemie der Erde-Geochemistry, 73, pp. 357-371.

[45] Singh P., Rajamani V. (2001): Geochemistry of the floodplain sediments of the Kaveri River, southern India. Journal of Sedimentary Research, 71, pp.50-60.

[46] Garver J.L., Royce, P.R., Smick, T.A. (1996): Chromium and nickel in shale of the Taconic Foreland: A case study for the provenance of fine-grained sediments with an ultramafic source. Journal of Sedimentary Research, 66, pp. 100-106.

[47] Mongelli, G. (2004): Rare-earth elements in Oligo- Miocene pelitic sediments from Lagonegro Basin, southern Apennines, Italy: implications for provenance and source area weathering. International Journal of Earth Sciences, 93, pp. 612-620.

[48] Ghosh, S., Sarkar, S. (2010): Geochemistry of Permo- Triassic mudstone of the Satpura Gondwana basin, central India: clues for provenance. Chemical Geology, 277, pp. 78-100.

[49] Perri, F., Critelli, S., Mongelli, G., Cullers, R.L. (2010): Sedimentary evolution of the Mesozoic continental redbeds using geochemical and mineralogical tools: the case of Upper Triassic to Lowermost Jurassic Monte di Gioiosa mudrocks (Sicily, southern Italy). International Journal of Earth Sciences, 100, pp. 1569-1587.

[50] Cullers, R.L. (2000): The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, USA: Implications for provenance and metamorphic studies. Lithos, 51, pp. 181-203.

[51] Cullers, R.L., Barrett, T., Carlson, R., Robinson, B. (1987): Rare earth element and mineralogical changes in Holocene soil and stream sediment: A case study in the Wet Mountains, Colorado, USA. Chemical Geology, 63, pp. 275-297.

[52] Kroonenberg, S.B. (1994): Effects of provenance, sorting and weathering on the geochemistry of fluvial sands from different tectonic and climatic environments. In: Proceedings of the 29th International Geological Congress, Part A, pp. 69-81.

Journal Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 193 111 4
PDF Downloads 101 77 4