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Abstract: In this paper, we define the term Mathematical Sculpture, a task
somehow complex. Also, we present a classification of mathematical sculptures
as exhaustive and complete as possible. Our idea consists in establishing general
groups for different branches of Mathematics, subdividing these groups according
to the main mathematical concepts used in the sculpture design.
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Introduction

There are several studies on the so-called Mathematical Sculpture, a concept
that we will try to define in the next section.

These studies deal with specific aspects, such as the mathematical study of the
works of a particular sculptor or the analysis of specific types of mathematical
sculptures. Also, there are general studies. However, as far as we know, there
is no work in the scientific literature providing a systematic analysis of the
connections between mathematics and sculpture.

Neither is there any study that offers a complete and exhaustive classification of
mathematical sculpture. The scarcity and lack of research on this artistic topic
led us to choose it as the main topic of the doctoral thesis developed by Ricardo
Zalaya, assistant lecturer at the Polytechnic University of Valencia, tutored by
Javier Barrallo, professor at the University of the Basque Country, Spain.

In this paper we propose a classification for mathematical sculpture, based
on the results of our research in the last years, and on the comments and
observations provided by other experts on the topic. This approach was
presented at the Alhambra isama–bridges 2003 Meeting [12].
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Figure 1: Sculpture located in front of Picasso Tower, José Maŕıa Cruz Novillo,
Madrid, Spain, 1989.

At the meeting, the International Congresses of I.S.A.M.A (The International
Society of the Arts, Mathematics and Architecture) and bridges (society for
the promotion of “bridges” between mathematics, arts and music) were held
simultaneously [1]. These two associations include some experts in the field of
mathematics and arts.

Mathematical sculpture works can be found in many places, in addition to
museums and exhibition halls. Figure 1 shows a simple sculpture which presents
an interesting geometric shape formed by thin cylindrical metal tubes. The
design of this sculpture presents different concepts related to
geometry and topology: surfaces (cylinders), intersections, symmetries, closed
loops, etc. Geometry is the branch of mathematics more widely used in this
sculpture.

Below, we have included two works of the well-known mathematical sculptor
John Robinson, clearly illustrating the mental process of abstraction and
subsequent geometrization (Figure 2). After, Figure 3 shows a more complex
example by Bathsheba Grossman. Its design reflects several mathematical
concepts: polyhedral geometry, surface topology, isometric transformations.

Most researchers and experts in mathematical sculpture come from United
States of America, where this subject has gained great importance. Although in
some West European countries, like Great Britain, and in other countries, like
Japan, we can also find very good artists and experts on this topic. Among them
is Carlo Sequin, professor at Berkeley University and a worldwide well-known
expert. His webpage is an excellent reference [11].
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Figure 2: Left: Acrobats, John Robinson, 1980; Right: Elation, John Robinson,
1983.

Figure 3: Metatrino, Bathsheba Grossman, 2007.

The Concept of Mathematical Sculpture

Before any attempt to classify the sculptures, we have to define the type of
sculpture that we are trying to classify – the so-called Mathematical Sculpture.
We propose the following definition:

Definition 1. A Mathematical Sculpture is a sculpture that has mathematics
as an essential element of conception, design, development or execution.

In order to include a given artistic work in the set of sculptures that satisfy
the definition, some mathematical concept or property must be significantly
essential. In this definition we include from the simplest mathematical concept
to the most complex mathematical concept (for instance, it may be trivial
elementary geometry or sophisticated non-euclidean geometry). The definition
is very general and covers a wide spectrum of possibilities, as one can understand
by looking at the different artistic works analyzed here.

As an example, we present two sculptures based on the same concept – ruled
surfaces, that is, surfaces that can be described as the set of points swept by
a moving straight line in space. However, the complexity of both sculptures is
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Figure 4: Left: Ruled surface, Andréu Alfaro, Valencia, Spain, 1982; Right:
Eclipse, Charles O. Perry, Hiatt Regency Hotel, San Francisco, USA, 1973.

clearly different. The work shown on the left side of the Figure 4 is very simple
whereas the sculpture shown on the right side of the Figure 4 is very complex.
The latter sculpture is an extension of the concept of ruled surface, allowing the
movement of any curve for the surface generation. It has been made by one of
the most complete mathematical sculptors, Charles O. Perry [9, 10].

The mathematical sculptures included in our classification may use concepts
related to many branches of mathematics: geometry, differential calculus or
vector calculus, algebra, topology, logic, etc. An interesting example is the
group of sculptures πr2a, made by Javier Carvajal (see [5], where the Spanish
expert Eliseo Borrás summarizes his research on the mathematics used in the
design of these Javier Carvajal’s works).

Figure 5: Left: Parallel slices, front view, Javier Carvajal; Right: Parallel Slices,
side view, Javier Carvajal.

An element of this group is the sculpture presented in Figure 5. Another work
by Javier Carvajal, from his series Solomon Columns, is presented in Figure 6.
This example illustrates the difficulty of delimiting the concept of mathematical
sculpture and whether a particular work may be considered as a mathematical
sculpture.
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Figure 6: Two columns of inverse rotation, series Solominic Columns, Javier
Carvajal, 1991–1994.

Note that some sculptures explicitly show their mathematical nature; an example
of that could be a polyhedron; however, in other works, the concepts are present
in an implicit or hidden way, such as in the example of the series Solominic
Columns.

To design the sculptures of the series Solominic Columns, the sculptor began
by sectioning cylinders in order to obtain some initial objects. Each section is
an ellipse and its position is characterized by the angle θ formed by the ellipse’s
major axis and the central axis of the cylinder (Figure 7, left). The plane
determined by these two axes is the main plane of the section (Figure 7, blue
plane on the left). Two different sections determine a module for the sculptures
(Figure 7, center and right).

In addition to the respective angles, θ1 and θ2, the relative position of two
sections is determined by φ, the angle formed by the two main planes, and
by c, the distance between the centers of the ellipses. If c is large enough to
prevent the intersection of the ellipses, the module is a “slic” (Figure 7, right).
Otherwise, the two modules obtained are “segments” (Figure 7, center).

Each module, obtained using this procedure, is characterized by a 4-uple
(θ1, θ2, φ, c), where 0◦ 6 θ1, θ2 6 90◦, 0◦ 6 φ 6 180◦, and c depends of the
cylinder size. There is an infinite number of different possible modules.

It is possible to place one module beside another module with equal or different
radius, rotating the modules by an angle α, and using direct or opposite
orientations. Javier Carvajal used that idea to create pieces for his sculptures.
Examples are ovoids, spheres, pumpkins, Solominic columns, torus, cones and
swirling blades, etc. The translations and rotations of the modules generate
shapes that frequently are similar to the geometrical figures found in nature.
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Figure 7: Sections of the pieces obtained from a cylinder and used by Javier
Carvajal. Previous series of sculptures.

But not all shapes touch our senses in the same way. Some objects are more
attractive than others and correspond to different numerical rhythms. In some
works, the sculptor uses “polygonal spirals”; in another type of sculptures he
uses “multipolygonal spirals” (Figure 8).

Figure 8: Multipolygonal spirals, series πr2a, Javier Carvajal, Spain, 1991–1994.

Since the main goal of this paper is the classification of mathematical sculpture,
we don’t use the standard mathematical notation. That is replaced by images
and photos of sculptures and by grids and drafts used in their conception.
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The use of the computer by many sculptors has allowed the development and
evolution of mathematical sculpture. The computer has allowed the precise
realization of very sophisticated sculptures. An example of this can be seen
in Figure 9 (left), a sculpture by Bathsheba Grossman. Another example is
a virtual piece made by the expert in computer science, Javier Barrallo, one
of the authors of this paper. That is a case in which interdisciplinarity leads
to interesting virtual experiences, such as this virtual sculpture from Barrallo’s
series Hypersculpture. Javier Barrallo uses parametric programming for the
artistic design and fractal theory concepts for the work with textures [2, 3].

Figure 9: Left: Seven spheres, Bathsheba Grossman, 2005; Right: virtual
sculpture of the series Hypersculpture, Javier Barrallo, 1994.

Educational purpose of classifying mathematical
sculpture

A classification of mathematical sculpture provides a more systematic approach
to this field, facilitating its incorporation in secondary or higher education.
Courses devoted to connections between mathematics and arts already exist,
being included in the contents of artistic and technical syllabi, such as in
architecture.

We believe that, without a classification, courses devoted to mathematical
sculpture lack structure, focusing only on the enumeration of a number of
works or authors, based on particular studies. Examples of studies devoted
to a particular sculptor can be consulted in [4, 9] (analyzis of the works of John
Robinson and Charles O. Perry, respectively). Other examples can be found in
[6, 7], written by the mathematical sculptor George Hart, about two particular
types of his sculpture.
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Other approaches for the classification of
mathematical sculpture

The only approach to classify mathematical sculpture we know is based on
the materials used, since they give the works varied geometrical properties.
However, this typology does not permit to include all types of sculptures. The
usual materials are the following:

- Wood. This material is used to emphasize curved surfaces (Figure 10, left).
Due to its lightness, wood permits to create pieces that would otherwise
be unstable (Figure 10, right).

Figure 10: Left: Photo of a Brent Collins workshop with several wood
sculptures; Right: Fire and ice, George Hart, 1997.

- Welded metal. It is commonly used in polyhedral shapes (Figure 11).

Figure 11: Intersections II, bronze, Bruce Beasley, 1991.
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- Concrete. Suitable for architectural works. A good example is the sculpture
by Eduardo Chillida, shown in Figure 12.

Figure 12: Elogio del horizonte, concrete, Eduardo Chillida, Gijón, Spain, 1990.

- Stone. This material also emphasizes curved surfaces. As a result of
the high weight, the works cannot be very complex. A good case is
the sculpture by Nathaniel Friedman, shown in Figure 13. Nathaniel
Friedman’s works, made of stone, are examples of works difficult to classify
as mathematical sculptures.

Figure 13: Grand Canyon, stone, Nathaniel Friedman, 1995.

The type of typology that we propose is based on mathematical properties. Our
first approach was presented in 2003 (July), dividing the artistic works according
to mathematical properties or concepts, or by combinations of both. The types
considered were the following:
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- Classic and polyhedral geometry

- Nonorientable surfaces

- Topological knots

- Quadric and ruled surfaces

- Modular and symmetric structures

- Boolean operations

- Minimal surfaces

- Transformations

- Others

As can be noted, some of the groups of this classification cover a wide range of
sculptures. For example, “the classic and polyhedral geometry” group includes
works with different properties. However, other groups included in this taxonomy,
for example the “minimal surfaces” group, are more restricted.

A proposal for a classification of mathematical
sculpture

Our first approach has been improved and we will present our final proposal
in this section. This new classification is based on the different branches of
mathematics. The limits between the different groups are not very strict,
which is not surprising since the same thing happens regarding the limits of
the different branches of mathematics. Our final proposal is the following:

� Sculpture with geometric characteristics

– Polyhedrons

– Curved mathematical surfaces

* Quadric and surfaces of revolution

* Ruled surfaces

* Nonorientable surfaces

* Minimal or zero-mean curved surfaces

– Other surfaces

� Sculpture with algebraic concepts

– Symmetry

– Transformations and modular sculptures

– Boolean operations

� Topological sculpture

� Sculpture with varied mathematical concepts
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In some cases, the inclusion of a particular work in one of the groups may
be difficult. A clear example of that difficulty is the sculpture by Bathsheba
Grossman, shown in Figure 14. That work embraces several topics such as
surfaces, topological knots, symmetry, etc. We will classify each particular case
by attributing it a dominating characteristic that “dominates” its conception.
That standard approach is explained in detail in [12].

Figure 14: Alterknot, Bathsheba Grossman, 1999.

It is important to note that the numbers of sculptures in each group have
different magnitudes. There are groups with large sculpturesque potential,
containing a large number of works. Some examples of that are the group type
“Minimal or zero-mean curved surfaces” (an example is shown in Figure 15),
and the group type “Nonorientable surfaces” (an example is shown in Figure 16).

Figure 15: Minimal surface costa X, snow, Helaman Ferguson, 1999.
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Figure 16: Nonorientable surface, Brent Collins, 1985–1989.

General description and examples

In this section, we present a general description of the different groups mentioned
in our classification, giving some examples to illustrate their main characteristics.

Geometrical sculpture

Geometrical sculpture is the widest group in the classification. That happens
due to the intrinsic relation between plastic arts, specially sculpture, and
geometry. Geometrical sculpture includes most of the mathematical sculpture.
To check that fact, it is enough to look at the examples previously exposed,
almost all examples included in this category — Figures 1, 2 (right), 4 (left and
right), 5, 6, 8, 10 (left), and 14.

There are examples of sculptures for almost all possible types of solids, from
the simplest ones like cubes, spheres, cones, cylinders, prisms, etc., to the
most complex, like irregular polyhedrons or surfaces defined by highly complex
mathematical equations. In addition, in some works, the most relevant element
is not a particular type of solid or a combination of solids, but some property
or properties.

Geometrical sculpture includes from simple shapes (an example is shown in
Figure 17), to much more complex pieces (an example is shown in Figure 18).
Also, regarding sizes, sculptures range from very small sculptures (Figure 14,
with only 13 cm in height) to huge dimensions (Figure 4, right, with 13 m in
height).

Recreational Mathematics Magazine, Number 9, pp. 71–94
DOI 10.2478/rmm-2018-0004



Ricardo Zalaya, Javier Barrallo 83

Figure 17: Amaryllis (plant family), size 350 x 129 x 350 cm, Tony Smith,
Wadswhorh Atheneum, Conneticut, USA, 1965.

Figure 18: Escher on double torus, size 15 cm, Helaman Ferguson.

Geometrical sculpture is a type of mathematical sculpture with a lot of tradition,
specially in the 20th century. At the beginning of the century, cubist movement
produced some works that can be included in this group. With respect to
its origins, it is possible to look at [13], reference with analysis of important
artistic trends and movements of the last century. Some artists, fans of abstract
movements, minimal and conceptual movements, etc., made use of geometry.
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Polyhedral sculpture is the first subcategory of Geometrical sculpture. First,
we analyze the well-known platonic solids. These solids are some of the figures
more widely used by mathematical sculptors and by other artists due to their
beauty and simplicity. Although their description is well-known, it is worth
mentioning some characteristics of these regular solids. A convex
polyhedron is regular if all its faces are equal regular polygons and the same
number of faces meet at every vertex. There are only five regular polyhedra,
known as platonic (after the Greek philosopher Plato) or cosmic. These five
solids are the following: tetrahedron (4 faces); hexahedron or cube (6 faces);
octahedron (8 faces); icosahedron (20 faces) and dodecahedron (12 faces).

Like the platonic solids, the truncated polyhedrons1 have been the inspiration
for many mathematical sculptures. The number of possible cases is infinite.
Archimedean solids are particular cases. An archimedean solid (or semiregular)
is a convex polyhedron that has a similar arrangement of nonintersecting regular
convex polygons of two or more different types arranged in the same way about
each vertex with all sides the same length. Seven of the 13 Archimedean solids
can be obtained by truncation of a platonic solid. These have also been widely
used in sculpture.

Another type of figures commonly used by mathematical sculptors are those
resulting from transformations of polyhedrons, such as deformation,
star-shaping or rotation, or any other geometric transformation that may result
in aesthetic effects. Figure 19 (left) shows a work by John Robinson, based
on a dodecahedron. The faces have been replaced by 5-point stars. This work
also presents other aesthetic values, like its color, or reflections depending on
its illumination, etc.

Figure 19: Left: Star burst, John Robinson, 1996. Right: Permutational
Sculpture, Francisco Sobrino, Valencia, Spain, 2000.

Figure 19 (right) shows a work by Francisco Sobrino, consisting of a single
module of stainless steel.

1Truncation is the removal of portions of solids falling outside a set of symmetrically placed
planes.
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Curved mathematical surfaces is the second subcategory of Geometrical
sculpture. This subcategory has been subdivided into a few non-excluding
types. For example, a surface widely used in both art and architecture is the
hyperbolic paraboloid, also called saddle, which is simultaneously a quadric and
a ruled surface. The further subcategories are the following.

Quadrics and surfaces of revolution: Quadrics are surfaces defined by a second
degree polynomial equation (here, in three variables). Non-degenerated quadrics
are: spheres, cones, cylinders, ellipsoids, hyperboloids (one or two sheets) and
paraboloids (elliptic and hyperbolic). An example is shown in Figure 20.

Figure 20: Hyperbolic paraboloid 8, Jerry Sanders, 2000.

Surfaces of revolution, as the name suggests, are created by rotating a curve (the
generatrix) around an axis of rotation. Surfaces of revolution have been used
profusely in art and sculpture. An interesting simplification of human figures is
shown in Figure 21.

Figure 21: Couple, Carmen Grau, Valencia, Spain, 2000.
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Ruled surfaces: Ruled surfaces are described as the set of points swept by a
moving straight line in space. These surfaces have also inspired many artists
and architects. An example is shown in Figure 22.

Figure 22: Hyperbolic ribbed mace, Charles O. Perry, Dublin Ohio, USA, 1987.

Nonorientable surfaces: A surface is orientable if a two-dimensional figure
cannot be moved around the surface and back to where it started so that it
looks like its own mirror image. Otherwise, the surface is nonorientable. The
simplest nonorientable surface is the Möebius strip, one of the first objects of
that kind that appeared in sculpture. A pioneer in mathematical sculpture,
Max Bill, extensively used Möebius strips, obtaining very beautiful works, like
the work shown in Figure 23 (see [8], an analysis of Max Bill’s works, by Tom
Marar).

Figure 23: Endless surface, Max Bill, Antverpen, Belgium, 1953–1956.
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Another mathematical sculptor, Brent Collins, has developed many different
models of nonorientable surfaces. One of his works can be seen in Figure 16.
Also, the Japanese sculptor Keizo Ushio has based some of his works on the
Möebius strip, or extensions of that concept, creating very simple, though
splendid sculptures. Figure 24 shows a transformation of the double Möebius
strip. That piece clearly illustrates the non-orientability of the surface.

Figure 24: Mihama, Keizo Ushio, 1990.

Minimal surfaces: Minimal surfaces, with zero-mean curvature, are surfaces of
minimal surface area for given boundary conditions. A well-known example
are the surfaces created by soap films. The sculptor Helaman Ferguson has
created different works based on this concept, like the piece shown in Figure 152.
Another example, by Stewart Dickinson, is shown Figure 25.

Figure 25: Ennepers minimal surface, Stewart Dickinson.

2The Brazilian mathematician Celso Costa formulated its equations.
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Other surfaces: This subcategory includes those surfaces that do not belong to
any of the other types mentioned above. In this group, we have from sculptures
with geometric objects as simple as planes, to others that can acquire very
complex shapes or that combine different types of surfaces. Figure 26 shows
a photo of a Richard Serra’s exhibition. His works present simple geometrical
shapes, planes, ellipses, truncated cones, etc. One of his most famous works,
Snake, shown in the figure, is based on a third degree polynomial equation.

Figure 26: Some works by Richard Serra, exhibited in the Guggenheim Museum,
Bilbao.

This subcategory also includes those surfaces given by equations not considered
in the other groups. For example, transcendent equations such as trigonometric
equations, exponential equations, etc.

Sculpture with algebraic concepts

This category comprises sculptures that make use of some algebraic concept.
These works can also adopt geometric shapes like the sculptures of the first
category. However, the algebraic properties that characterize them are so
determinant for their conception, that we include them in this group.

Symmetry: One of the mathematical concepts with more occurrences in art is
symmetry. Figure 27 illustrates a work by Robert Longhurst, showing symmetry
with respect to the planes whose angles are multiple of sixty degrees.

Figure 27: Arabesque XXIX, Robert Longhurst, 2007.
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Transformations and modular sculptures: The already mentioned works
by Javier Carvajal fit the idea of transformation. The design of these sculptures
is based on cylindric sections that subsequently are joined to create the complete
pieces (Figures 5, 6 and 8). Modular sculptures are those sculptures in which
a given pattern is repeated. The modules may be combined in many different
ways. Brent Collins, a well-known mathematical sculptor, has created some
modular sculptures, like those entitled Modular spirals. Figure 28 shows a
modular sculpture by another artist, Michael Waren.

Figure 28: Pascua, Michael Waren, Valencia, Spain, 2000.

Boolean sculpture: In other works, operations with shapes are carried out,
using some algebraic structure as, for example, boolean algebra. An example
is the work by Bruce Beasley, already shown in Figure 11. The possible results
of boolean operations are “true” or “false”. This algebra applied to sculpture
is used to describe how two solids relate, forming a new volume or emptiness.
All logical operations are used: union, intersection, inversion, complement, and
exclusion. Figure 29 (left and right) presents two crosses by Eduardo Chillida.
The first one (left) can be interpreted as the complementary of the second
(right), that is, its “negative”.
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Figure 29: Left: cross in Santa Maria Church, Eduardo Chillida, San Sebastian,
Spain, 1975; Right: cross in Buen Pastor Church, Eduardo Chillida, San
Sebastian, Spain, 1997.

Topological sculpture

Mathematicians have studied “knots” for many centuries. This interesting and
fascinating category of topological objects presents a wide range of possibilities
to be used in sculpture. Most mathematical sculptors have made use of this
concept. The examples in Figures 3, 14, and 18 belong to this group. Figure 30
(left) shows a sculpture by Keizo Ushio, a torus that, when sectioned by
positioning a Möebius band, is divided into two topologically nested parts.
Figure 30 (right) shows a computer image of the separation.

Figure 30: Left: Oushi-Zokei (sectioned torus), Keizo Ushio, San Sebastián,
Spain, 1999; Right: separation.

Also, the mathematical sculptor John Robinson has made many works that
can be included in this category. His works are simple, though very interesting
from the topological point of view. Figure 31 shows his series Trilogy. These
sculptures are inspired by the Borromean rings, three topological circles which
are linked and form a Brunnian link (i.e., removing any ring results in two
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unlinked rings). The name of Borromean rings comes from their use in the coat
of arms of the aristocratic Borromeo italian family.

Figure 31: Left: Creation, Trilogy series, John Robinson, 1990; Center:
Intuition, Trilogy series, John Robinson, 1993; Right: Genesis, Trilogy series,
John Robinson, 1995.

Sculpture with varied mathematical concepts

Although we develop and improve our classification, it is very difficult to include
all the mathematical sculptures in the proposed categories. Because of that,
we have established this last category. For example, the piece illustrated in
Figure 31, by the sculptor Ken Herrick, has very little to do with those we have
shown previously throughout the article.

Figure 32: Cloud, Ken Herrick.

Other interesting examples are some of Helaman Ferguson’s sculptures, like
the one shown in Figure 33. Although it is a nonorientable surface, we also
highlight the texture, whose design required computer help. It is the Hilbert
curve, a continuous fractal space-filling curve, first described by the German
mathematician David Hilbert in 1891.
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Figure 33: Umbilic Torus NC, Helaman Ferguson, 1988.

In addition, Figure 34 shows a cube divided into two complementary fractal
parts. We observe that, if we ignore Pauli’s exclusion principle, when joining
again the two parts, we obtain the original cube.

Figure 34: The Unit Cube, Bathsheba Grossman, 2002.

We must mention the possibilities for mathematical sculpture that can be open
by the use of non-euclidean, elliptic and hyperbolic geometries. The sculptures
motivated by these geometries should be included in this last category. We
believe that the use of this type of geometries will occur more often in
mathematical sculpture, as it happened in painting, especially after M. C. Escher
legacy. An interesting example is shown in Figure 35.
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Figure 35: Hyperbolic Diminution I, Irene Rousseau, 2005.

Conclusions

- Mathematics relates to sculpture. Moreover, mathematics relates to most
artistic manifestations.

- The breakthroughs in mathematics that have taken place in the 20th
century have made possible the development of a new type of mathematical
art.

- Mathematical sculpture has reached a remarkable status at present. To
this has contributed, in addition to the recent advances in mathematics,
the development of computer science.

- We believe that mathematical sculpture will expand. This is due to the
causes mentioned above, as well as the growing interest of artists and
public.

- Courses on mathematics and art, either at secondary level or at the
university level, should be encouraged.

- Possibly, the proposed classification can be improved. Other concepts and
different mathematical properties may be introduced.
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