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Abstract: Gardner asked whether it was possible to tile/pack the squares
1× 1, . . . , 24× 24 in a 70× 70 square. Arguments that it is impossible have been
given by Bitner–Reingold and more recently by Korf–Mofitt–Pollack.
Here we outline a simpler algorithm, which we hope could be used to give an
alternative and more direct proof in the future. We also derive results of
independent interest concerning such packings.
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Introduction

Consider the equation
12 + 22 + · · ·+ n2 = m2 (1)

where n,m ∈ N. Since the work of Watson [5] in 1918, it is known that the only
solutions are the trivial case, namely 1 = 1, and

12 + · · ·+ 242 = 702.

A natural question arising from this fact is to see whether a configuration (or
packing) of the squares 1 × 1, . . . , 24 × 24 exist which exactly tile a 70 × 70
square. The problem was popularized by Martin Gardner in articles [2], [3]
in Scientific American, and several readers sent in their best efforts to fill as
much of the square as possible. Twenty-seven readers managed to fit all the
squares except the 7 × 7 square inside the 70 × 70 square; it has recently been
proven [4] with the help of extensive computer computations that this is the ‘best
possible packing’. In particular, Korf et. al. showed it is impossible to
construct a packing with the given squares which wastes less space. Their
algorithm models the problem as a Constraint-Satisfaction Problem. This
computation involved 375 million nodes, and took 16 minutes to compute (see
Table 6 in the appendix of [4], as well as Section 4.5 for an overview of their
algorithm). Each node is a placement of a set of squares in the enclosing
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6 optimal rectangle packing for the 70 square

rectangle, without overlap. An earlier article [1] states that applying their
technique of backtrack programming shows that there is no such packing, but
details are not provided due to the length of the arguments.

Our techniques and results are in a similar vein, and involve significant
computations using matlab. Our goal is to give a mathematical proof, via
a combination of combinatorial arguments and case-by-case analysis. Whilst
we cannot yet fully achieve our goal, we outline an alternative approach using
direct geometric arguments that we believe will yield a simpler proof in the
future. Many of the results are applicable in wider contexts. To analyze the
cases we could not directly rule out, we show how to rule out a packing with
two fixed edges which were randomly chosen from the remaining possibilities.
One could thus try to adapt our techniques and perform a case-by-case analysis
to give a complete mathematical proof that no packing is possible. We hope to
continue this work in the future.

Results

Assuming a packing exists of the 70 × 70 square, our goal will be to derive a
contradiction. We will call this a potential packing, and for short denote it as
P. For the reader’s convenience and to keep the diagrams a reasonable size, we
will color in the 1× 1 square in blue and the 2× 2 squares in orange.

Constructing the Matrix A

Definition. An edge ε of P is a subset of P consisting of all squares which
touch the same edge of the 70× 70 square. The frame of P is the union of the
four edges.

Let a1, . . . , an be squares.

Definition. ord(a1, . . . , an) will denote an ordered set ; this is a set of squares
{a1, . . . , an} so that ak and ak+1 have adjacent sides for every k = 1, . . . , n− 1.

Definition. Any permutation of an ordered set ord(a1, . . . , an) is denoted
adj(a1, . . . , an).

The notation adj(a1, . . . , an) acts as a placeholder for multiple squares next to
each other in an unordered fashion.

The following theorem restricts the number of possibilities significantly.

Theorem 1. (Restriction Theorem) Any edge of P must satisfy the following:

(i) The 1, 2, 3, 4, and 5 squares cannot be on any edge;

(ii) We cannot have the 6, 7, and 8-square on the same edge;

(iii) If the 6-square is on an edge, then we must have adj(6,7) on the same
edge;

(iv) If n is the smallest square on an edge, then the next smallest square on
the edge must be less than 2n− 1;
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Brian Laverty, Thomas Murphy 7

(v) If adj(6,7) is on an edge, then the following construction must be on the
same edge.

6 7

11 k2 ∈ {12, 15}
5

1

8

The next step, undertaken in Section 3, is to construct a matrix A where each
row uses the numbers 6–24 and sums to 70; these are all the possible sets of
squares that can be on an edge of P. To create this matrix, we first need to
know how many squares (at most) are in a row of A; i.e., the number of columns
in A. Since squares 1–5 cannot lie on the edge, observing that

6 + 7 + 8 + 9 + 10 + 11 + 12 = 64 < 70,

it follows that A must have at most seven columns. To handle cases where,
for example, one edge has seven squares and another has five, zeros must be
included as placeholders to ensure matlab can display all possible edges as a
matrix. The number of zeros is the maximum number of possible squares minus
the minimum number of possible squares. Notice that 24 + 23 + 22 + 1 = 70, so
the minimum number of possible squares on an edge is four. After adding in the
other four restrictions from Theorem 1 into our matlab code, this resulted in
an entire column of zeros. Therefore, Theorem 1 ensures A must have at most
six columns; that is, there are at most six squares on an edge. Therefore there
must be 6− 4 = 2 zeros included.

Ruling Out Edges

Our first attempt in matlab was to determine the matrix A without any
restrictions other than using 1–24 to sum to 70, i.e., not implementing
Theorem 1. The closest we could reach to this was using 2–24 with seven
columns which gave 9,285 rows. Applying all the restrictions from Theorem 1
to A, we obtain 391 rows.

We chose an element v = {9, 14, 23, 24} ∈ A. This is the first entry of the matrix
A. In Section 4 we will establish the following theorem:

Theorem 2. There is no frame with the edge

v = {9, 14, 23, 24}.

Many other potential edges occurring in A can be ruled out via similar
combinatorial arguments to the proof of Theorem 2.
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8 optimal rectangle packing for the 70 square

Constructing All Possible Frames

In Section 5, we will produce an algorithm which produces all possible frames.
We fix a row in A, called v, and find all rows in A that have nothing in common
with v (excluding zeros). This new matrix is all possible sets of squares that are
the opposite side of the 70 × 70 square; we denote this matrix by Aop. Fixing
a row in Aop, denoted vop, a matrix C is constructed from A such that each
row of C has exactly one element in common with v and vop (not the same
element). By finding two unique rows in C, then we have a possible frame. This
is determined by fixing a row in C, denoted c, and determining all rows in C
with no common element with c. Finally, we construct the matrix Cop from C
by removing c and any row that has a nonzero element in common with c from C.

The matrix Aop is a subset of the matrix A. Thus we can only estimate the
bound of Aop from our bound of A. After some numerical investigation, it
appears that the bound for Aop appears to be approximately one third the
bound of A, and thus the bound of Aop is approximately 3,000 before factoring
in our restrictions. Applying Theorem 1, the number of rows in Aop was reduced
to 55. Similarly, for the matrices C and Cop, the bounds will roughly be 660 and
224 respectively, before including restrictions. And after applying Theorem 1
the bounds of C and Cop become 12 and 2, respectively.

In conclusion, we now have roughly 391×55×12×3 (roughly 770,000) possible
frames to check. Given P, its frame must be one of these possibilities.

Ruling Out Frames

To analyze our results, in Section 6 we rule out specific examples of frames
which are obtained in our construction. This helps us to gain some intuition for
how a proof would work in general.

Choosing the first edge v where we cannot easily adapt the proof of Theorem 2
(which turns out to be the 80th possible entry of the matrix A), we randomly
choose an element of Aop and show how no frame with these choices of v and
vop is possible.

Theorem 3. There is no frame with edges

v = {7, 8, 14, 18, 23},
vop = {9, 10, 11, 12, 13, 15}.

In the course of the proof, we reduce the number of possible frames with these
two elements (12 × 3 = 36) to only nine cases, which are all easily handled by
considering the possible ways of tiling around the smallest corner square. This
leads us to believe our approach will work in general, which we leave as a project
for the future.

Near Misses

We conclude with an interesting observation in Section 7. Running a direct
calculation to find solutions of Equation 1, matlab ran out of memory when
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checking different n values around n = 106. The well-known formula

12 + 22 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6

cuts down on computation and allows us check more cases. Using matlab,
there was a round-off error which reached the false conclusion that

12 + 22 + · · ·+ 2, 542, 6902 = 2, 340, 882, 5452.

We regard this as a “near-miss” solution, since the values on both sides of
the equation differ by 1,140; which when divided by m2 becomes minuscule.
Defining the weighted error for given integers n,m as

E(n,m) :=

{
k

m2
| (12 + · · ·+ n2)−m2 = k

}
then our above example has a weighted error of a mere 2.08× 10−16. With this
definition, we consider a pair (n,m) to be a near-miss solution if
|E(n,m)| < 10−15. Searching with matlab, we seem to find many more
examples of near misses, which are recorded in the following table.

n m E(n,m)
2,542,690 2,340,882,545 2.08039× 10−16

3,179,535 3,273,293,063 1.11158× 10−16

3,344,320 3,531,028,388 −5.00474× 10−17

4,832,360 6,133,076,209 −7.49974× 10−17

5,988,346 8,460,572,575 −1.32213× 10−16

6,471,528 9,504,946,458 −1.08474× 10−16

7,050,120 10,807,722,436 −1.35917× 10−16

7,671,515 12,267,642,825 5.74769× 10−18

It is interesting to ask if there are infinitely many pairs (n,m) yielding near
misses with less than a given error. If so, does the error approach zero as
n→∞?

Proof of Theorem 1

The proof will be divided into a case-by-case analysis. To begin, we outline
some definitions we will use in the proof.

Definition. Let a, b ∈ P be squares with adj(a, b). We say there is a flush of
a, b (or an a, b-flush) if there exists a square c 6= a, b such that adj(a, c) and
adj(b, c).

We write |a| for the length of an a× a square.

Recreational Mathematics Magazine, Number 9, pp. 5–47
DOI: https://doi.org/10.2478/rmm-2018-0001

https://doi.org/10.2478/rmm-2018-0001


10 optimal rectangle packing for the 70 square

Definition. A set of squares Π = {ai : i = 1, . . . , n} ⊆ P is called a path if Π
satisfies:

1. ord(a1, . . . , an),

2.

n∑
i=1

|ai| = 70, and

3. a1 ∈ ε and an ∈ εop for some edges ε, εop.

Definition. Let a and b be squares. We say b is on top of a if there exists a
path Π with a, b ∈ Π, so that a = ai ∈ Π and b = ai+1 ∈ Π for some fixed i.

Note that the definition of “on top of” is deliberately flexible: performing a
rotation allows us to view any given path as starting at the bottom of the
square and proceeding vertically upwards.

Definition. Let a and b be squares with b on top of a, where |b| > |a| and
adj(a, b) such that there exists an a, b-flush. Then b will hang over a.

If the flush is the left then the hang over is on the right and vice-versa.

left flush

a

b

hang over

Figure 1: This illustrates an a, b-flush, and that b is hanging over a.

Proving Theorem 1(i)

Here we prove Theorem 1(i), which states that squares 1–5 cannot be on the
edge. We begin with a preliminary lemma to reduce the size of the proof. Owing
to its length, the rest of the proof will be split up into a series of claims. Up to
rotation we can assume an edge is on the bottom of the square. Without loss
of generality the notation ord corresponds to squares being placed from left to
right.

Lemma 1. Suppose the 1, 2, . . . , n − 1-squares are not on an edge. Then the
n-square is not a corner square.

Proof. Suppose the squares 1, 2, . . . , n− 1 are not on an edge. Further, suppose
for contradiction that the n-square is a corner square. Then there are adjacent
squares a1, a2 on the corresponding edges. However, since squares 1, . . . , n − 1
are not on an edge and the n-square was already used, then |a1|, |a2| > |n| which
guarantees an overlap and thus a contradiction.

Throughout there will be diagrams of square packings. To help see the larger
packings, we color the 1-square with blue and color the 2-square with orange
throughout the paper. We also use the symbol × in the diagrams to illustrate
where a contradiction occurs.
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Claim. The 1-square cannot be on the edge.

Proof. Suppose the 1-square is on the edge. Let squares a1, a2 be squares on
the same edge where (without loss of generality) 1 < |a2| < |a1| are on the right
and left of the 1-square, respectively. Then, any remaining square placed on
top of a1 will yield wasted space above the 1-square. The 1-square cannot be a
corner square by a similar argument as Lemma 1. →←

a1

1
a2

×

Claim. The 2-square cannot be on the edge.

Proof. Suppose the 2-square is on the edge. By Lemma 1, the 2-square is not
a corner square. Let b1, b2 be squares on the edge such that (without loss of
generality) 2 < |b2| < |b1|. Place b1 and b2 on the left and right of the 2-square,
respectively. Then the set of squares on the 2-square must sum to two. However,
the 1-square is the only square less than the 2-square remaining and this yields
wasted space. →←

b1

2

1

b2

Claim. The 3-square cannot be on the edge.

Proof. Suppose the 3-square is on the edge. By Lemma 1, the 3-square is not
a corner square. Let c1, c2 be squares on the edge where 3 < |c2| < |c1|. Place
c1 and c2 on the left and right (without loss of generality) of the 3-square,
respectively. Then the only squares that can be placed on top of the 3-square is
adj(1,2). Then for any |c2| > 4, we get wasted space over the 1-square for either
permutation of adj(1,2). Thus, c2 must be the 4-square, and the 1-square must
be on the right. Similarly, for any |c1| > 5, there will be wasted space over the
2-square.

Now consider if the 4-square is a corner square. Then any square placed on
to the 1,4-flush must be > 6 (since squares 1–5 have been used). However,
this guarantees overlap with the 2-square. This implies that there must be a
square c3 where |c3| > 6, on the right of the 4-square on the edge. Thus any
set of squares placed on top of the 1,4-flush must sum to five, but there are no
remaining sets that sum to five. →←
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5
3

4

2
1 c3 > 6

×

Claim. The 4-square cannot be on the edge.

Proof. Suppose the 4-square is on the edge. By Lemma 1, the 4-square is not
a corner square. Let d1, d2 be squares on the edge where 4 < |d2| < |d1|. Place
d1 and d2 on the left and right (without loss of generality) of the 4-square,
respectively. So the set of squares on the 4-square must sum to four. The
only set of squares that satisfies this sum is adj(1,3), so place this on top of
the 4-square. Notice that for any |d2| > 5, there will be wasted space over the
2-square. So d2 must be the 5-square, and to avoid wasted space we must have
adj(1,5).

Since squares 3–5 have been used then any edge square placed adjacent to the
5-square will be larger than five, and so the set of squares on the 1,5-flush must
sum to six (this also holds if the 5-square is a corner square). The 6-square is
the only square that can be placed on the 1,5-flush; make this placement. Note
that |d1| > 7. Consider when |d1| > 7, then the 2-square is the only remaining
square that can be placed on the 3-square. However, this guarantees wasted
space adjacent to the 2-square. Thus d1 must be the 7-square.

Consider if the 5-square is a corner square. Then any square placed on top
of the 6-square and on this new edge must be > 8, and will therefore hang
over the 6-square. However, the 2-square is the only remaining square that can
be placed on the 3-square, and this guarantees wasted space adjacent to the
2-square. Thus, there must be another square d3 on the right of the 5-square.
This further implies that any set of squares placed on the 6-square must hang
over the 6-square on the right.

d1 = 7

4
d2 = 5

3
1

6

d3 > 8

Since the set of squares on the 6-square will hang over on the right, then the
set of squares adjacent to the 5,6-flush must sum to 11. The only remaining
sets are adj(2,9) and the 11-square. Consider when d3 is the 9-square with the
2-square placed on top. Then we must have the 8-square placed on the 2,6-flush
otherwise there will be wasted spaced to the right of the 2-square. Further,
any square placed on the right of the 9-square will be larger than nine, so the
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(remaining) set of squares on the 9-square must sum to nine—this also holds
if the 9-square is a corner. However, there are no remaining squares less than
nine. So d3 cannot be the 9-square and therefore must be the 11-square.

d2 = 7
4 d1 = 5

3
1

6

d3 = 9

2

8

×

Next place another square d4 on the left of the 7-square. Further, since squares
3–7 have been used then |d4| > 8. It is possible that the 7-square is a
corner square; we will modify our arguments if necessary on a case-by-case
basis. Therefore the set of squares placed on top of the 3,7-flush must sum to
ten. The only remaining sets that satisfy this are adj(2,8) and the 10-square.

Consider when adj(2,8) are placed on the 3,7-flush. Then the 2-square must be
on the left, otherwise there would be wasted space over the 2-square. Note that
|d4| > 9, but if |d4| > 9, then there will be wasted space over the 2-square; so
d4 must be the 9-square. Again, since squares 1–9 have been used, any square
placed on the left of the 9-square on the edge will be greater than nine. So
the set of squares on the 2,9-flush must sum to eleven—this also holds if the
9-square is a corner. But there are no remaining sets that sum to eleven. Thus,
we cannot have adj(2,8) on the 3,7-flush.

d4 = 9
d2 = 7

4 d1 = 5

3
1

6

d3 = 11

2

8

Therefore, the 10-square must be placed on the 3,7-flush. Note the following
argument will also hold if the 7-square is a corner. Place another square d5 on
top of the 6,11-flush. If d5 is the 2-square, then this will yield wasted space
adjacent to the 2-square; so |d5| > 8. Then we have two cases to consider: the
set of squares on the 10-square either sums to ten or will hang over 10-square.
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14 optimal rectangle packing for the 70 square

d4 > 10
d2 = 7

4 d1 = 5

3
1

6

d3 = 11

10

d5 > 9

Note that the 8-square can no longer be on the edge since it is the smallest
remaining square that can be placed on the edge but there are no remaining
sets of squares that sum to eight. Similarly, the 9-square also cannot be on the
edge since the set of squares on the 9-square would need to sum to nine, and
there are no such remaining sets.

1. Suppose the set of squares on the 10-square sums to ten; adj(2,8) is the
only remaining set that sums to ten. The 2-square must be on the left
otherwise there will be wasted space over the 2-square (for any square
placed on the 6-square). Note that the set of squares adjacent to the
2,7,10-flush must sum to 19, otherwise there will be wasted space over the
2-square. Further, the 19-square is the only remaining square that sums
to 19; so d4 must be the 19-square.

Recall the 9-square cannot be on the edge. Thus if a square is on the
right of the 11-square must be greater than 11. Therefore the set of
squares on the 6,11-flush must sum to 17 (this holds if the 11-square is a
corner square); the 17-square is the only remaining square that satisfies
this sum. However, any square placed on the 2-square will yield wasted
space over the 8-square. Thus, we cannot have adj(2,8) on the 10-square,
and therefore the set of squares on top of the 10-square must hang over
the 10-square.

d4 = 19

d2 = 7
4 d1 = 5

3
1

6

d3 = 11

10

2

8
d5 = 17

×
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2. Suppose the set of squares on the 10-square hangs over the 10-square. Note
that the 7-square cannot be a corner square or this would contradict our
assumption. Further, the set of squares adjacent to the 7,10-flush must
sum to 17. The only sets that satisfy this are adj(2,15), adj(8,9), and
the 17-square. However, we determined before that the 8 and 9-squares
cannot be edge squares. Further, we need a set of squares that sums to
17 to be placed on the 6,11-flush.

(a) Suppose d4 is the 15-square and place the 2-square on top of it. Note
that there are no remaining sets of squares that sums to 15, so the
set of squares on top of the 15-square must sum to 15 (this also holds
if the 15-square is a corner square). That is, the remaining set of
squares on the 15-square must sum to 13; the 13-square is the only
square that satisfies this sum. Note any square placed on the 6-square
will have a height above the 10-square. So the set of squares on the
2,10-flush must sum to 12, and the 12-square is the only square that
satisfies this. Further, any square placed on the 12-square will hang
over the 12-square and yield wasted space on the respective side.
Thus, d4 cannot be the 15-square.

13

d4 = 15

2

d2 = 7
4 d1 = 5

3
1

6

d3 = 11

10

d5

12

(b) Suppose d4 is the 17-square and adj(8,9) is placed on the 6,11-flush.
Further, suppose the 9-square is on the left. Then any square placed
on the 9-square will hang over on either side, yielding wasted space.
Similarly, if the 8-square is on the left, any square placed on top
will hang over on the left. This guarantees wasted space over the
10-square. So adj(8,9) cannot be on top of the 6,11-flush. Then
adj(2,15) must be on the 6,11-flush; the 2-square must be on the
right otherwise there will be wasted space over the 2-square. Then
we must have the 13-square on the right of d3 or there will be wasted
space over the 2-square. Since there is remaining set that sums to
13, then we must have the set of squares on the 2,13-flush must sum
to 15. But there are also no remaining sets of squares that sum to
15. Therefore, there will be wasted space over the 2,13-flush. Thus,
d4 cannot be the 17-square.
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d4 = 17

d2 = 7
4 5

3
1

6

d3 = 11

10

d5 = 15

2

13

In summary, we cannot have the set of square on the 10-square sum to ten
nor can they hang over the 10-square. We have a contradiction, and thus the
4-square cannot be on the edge.

Claim. The 5-square cannot be on the edge.

Proof. Suppose the 5-square is on the edge. By Lemma 1, the 5-square is not
a corner square. Let e1, e2 be squares on the edge where 5 < |e2| < |e1|. Place
e1 and e2 on the left and right (without loss of generality) of the 5-square,
respectively. So the set of squares on the 5-square must sum to five. The only
sets that satisfies this sum are adj(2,3) and adj(1,4).

1. Suppose adj(2,3) is placed on top of the 5-square with the 2-square on
the right. If |e2| > 7 then any set of squares placed on the 2-square will
yield wasted space. If e2 is the 6-square, then any set of square placed
on the 2-square will hang over the 2-square. So place the 1-square on the
6-square, making a 1,2-flush. However, any square placed on the 2-square
will hang over the 1-square, yielding wasted space. Thus, e2 must be the
7-square.

e1
e2 = 6

5

3
2

1

Note e1 cannot be the 6-square since 5 < |e2| < |e1|. Consider when e1 is
the 9-square, then any set of squares on the 3-square will hang over the
3-square. The only configuration that will not (immediately) yield wasted
space is to place the 1-square on the 2-square, and place the 4-square on
the 1,3-flush. However, we must have the set of squares on the 2,7-flush
sum to nine, otherwise there will be wasted space next to the 7-square. So
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we must have adj(1,8) on the 2,7-flush. However, then any square placed
on the 4-square will hang over the 4-square and leave wasted space under
the overhang. Thus e1 cannot be the 9-square.

e1 = 9

5
e2 = 7

4

3 2

1

8×

Now, we have the remaining cases: |e1| > 9 and |e1| = 8. Suppose |e1| > 9
then we see from the case e1 was the 9-square, that we must have the
1-square on the 2-square making a 1,3-flush and the
4-square on top of the flush. Now any square placed on the 4-square
will hang over the 4-square, so e1 must be the 12-square since no other
sets sum to twelve. Again from the previous case, we know that the set
of squares on the 2,7-flush must sum to nine and so the 8-square must be
placed on the 2,7-flush.

e1 = 12

5
e2 = 7

4

3 2

1

8

Since there are no remaining sets of squares that sum to eight, then the
set of squares on top of 8-square will hang over the 8-square. But any
square placed on the 4-square will have a height above the 8-square, so
the overhang must be on the right. This implies that e2 cannot be a corner
square. Therefore, we need the squares adjacent to the 7,8-flush to sum
to 15. The only squares that satisfy this are adj(6,9) and the 15-square.

Consider when the 9-square is on the right of the 7-square, with the
6-square placed on top of the 9-square. Then any square on the right of the
9-square will be larger than the 9-square. But there are no
remaining squares that can be placed adjacent to the 6-square. So we
cannot have adj(6,9) on the 7,8-flush.
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e1 = 12

5
e2 = 7

4

3 2
1

8

9

6

We must have the 15-square on the right of the 7-square. Consider the
total length of these squares on the edge, 12 + 5 + 7 + 15 = 39. The
remaining length on the edge is 70 − 39 = 31. From the remaining
squares, the possible combinations are adj(6,11,14), adj(9,22), adj(10,21),
adj(11,20), adj(13,18), and adj(14,17). Note that adj(6,11,14) is ruled out
since no remaining set of squares sum to 16. So all of these sets can be
represented as adj(a, b) where 9 6 |a| < |b|.

Consider the smaller square a in each of these sets. For any placement on
the edge, the set of squares on a must sum to |a|. Note that the 6 and
9-squares are the two smallest remaining squares, so |a| > 15 = 6 + 9.
However, a is at most the 14-square. Therefore this guarantees wasted
space over a in any of these sets. Thus, we cannot have adj(7,15).

For example, if adj(14,17) were placed on the edge, then there must be
another set of squares to be placed on the 14-square. But the next
smallest squares are the 6 and 9-square, so this guarantees wasted space
over the 14-square (the image below is simply a visual aide; further, the
argument holds for any placement of a and b on the remaining edge).

e1 = 12

5
e2 = 7

4

3 2
1

8

15
a

b

31

Thus, e1 cannot be the 12-square. In summary, we have ruled out |e1| = 6
and |e1| > 9. So e1 must be the 8-square. Again, we must have the set of
squares on the 2,7-flush sum to nine. But the 9-square is the only square
that satisfies this sum. So place the 9-square on the 2,7-flush. We place
another square on the left of the 8-square denoted e3. Note that |e3| > 10,
since any set of squares on the 6-square would yield wasted space and
squares 7–9 have been used. Then the set of squares on the 3,8-flush must
sum to 11. The only sets that satisfy this are adj(1,10), adj(1,4,6), and
the 11-square.
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e1 = 8
5

e2 = 7

3 2

9

e3 > 10

Consider the cases when adj(1,10) and adj(1,4,6) are placed on the
3,8-flush. Then any permutation will guarantee wasted space over the
1-square. Therefore the 11-square must be on the 3,8-flush. Note that if
the 8-square is a corner square then these first two cases would have the
same wasted space. Note that there are no remaining sets of squares that
sum to eight or nine. Then any set of squares placed on top of the 9-square
will hang over the 9-square on the right. This implies the 7-square is not
a corner square, and the set of squares adjacent to the 7,9-flush must sum
to 16. Place a square, e4, on the right of e2. The only remaining sets that
sum to 16 are adj(1,15), adj(4,12), adj(6,10), and the 16-square.

We therefore have the following cases: the set of squares on the 11-square
either sums to 11 or hangs over the 11-square. Now, consider the particular
case when the 4-square is placed on the 9-square and the 1-square is placed
on the 11-square; this creates a 1,4-flush. But any squares on the right
of the 4-square and left of the 1-square will yield wasted space above the
1,4-flush. Further, if the 1-square is placed on the 9-square there will
be wasted space over the 1-square. Therefore, any square placed on the
9-square will have a height above the 11-square.

e1 = 8
5

e2 = 7
e4 > 10

3 2

9

e3 > 10

11

(a) Suppose the set of squares on the 11-square sums to 11. Then the
only sets that satisfy this are adj(1,4,6) and adj(1,10). Consider when
adj(1,4,6) is placed on the 11-square, then we have either ord(1,4,6),
ord(1,6,4) or ord(4,1,6). However, ord(4,1,6) guarantees wasted space
over the 1-square, and ord(1,4,6) guarantees wasted space over the
1-square for any square placed on top of the 4-square. Further, for
ord(1,6,4), any square placed on the 6-square will hang over the left
or right of the 6-square which will guarantee wasted space over the 1
or 4-square accordingly.
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So place adj(1,10) on the 11-square, with the 1-square on the left
since we’ve shown that the 1-square cannot be on the right. Then
the set of squares on the 8,11,1-flush must sum to 20, to avoid wasted
space over the 1-square. The only sets that satisfy this are adj(4,16),
adj(6,14), and the 20-square. But we cannot have adj(4,16) since this
removes the remaining sets on the right of the 7-square.

e1 = 8
5

e2 = 7

3 2

9

e3 > 12 e4 > 12

11

1

10

Suppose e3 is the 14-square and place the 6-square on top of it.
Then any square placed adjacent to the 6-square will hang over the
14-square. And there are no remaining sets that sum to 14. Thus,
e3 cannot be the 14-square, and so e3 must be the 20-square.

Consider if the e4 is the 16-square. Then the total length of squares
on the edge is 20 + 8 + 5 + 7 + 16 = 56; so there remaining squares
must sum to 14. However, there are no remaining sets that sum
to 14. Thus, e3 cannot be the 16-square (the image shows the
14-square on the right of the placed squares without loss of
generality; the argument holds if the 14-square is on the left as well).

e1 = 8
5 e2 = 7

3 2

9
e3 = 20

e4 = 16 14

11

1

10
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Let e4 be the 12-square and place the 4-square on top of it. Then
any squares placed on the remaining space on the 12-square will hang
over the 12-square. However any square placed on the right of the
12-square will be greater than 12. Thus, e4 cannot be the 12-square.

Thus we cannot have the set of squares on the 11-square sum to 11.

(b) Suppose the set of squares on the 11-square hangs over the 11-square.
Then the set of squares adjacent to the 8,11-flush must sum to 19.
The only sets that satisfy this are adj(1,18), adj(4,15), adj(6,13),
adj(1,4,14), and the 19-square.

e1 = 8
5

e2 = 7
e4 > 10

3 2

9

e3 > 10

11

i. Suppose e3 is the 18-square and place the 1-square on top of it.
Now, the only sets of squares that adjacent to the 7,9-flush that
sum to 16 are adj(6,10) and the 16-square. We again consider the
total length of the squares on the edge used: 18 + 8 + 5 + 7 = 38.
So we have 70−38 = 32 remaining length on the edge. If e4 is the
16-square then there is a length of 16 remaining, but adj(6,10) is
the only set of squares that would fit this space, but the 6-square
will yield wasted space above it.

Further, if e4 is the 10-square then there is a length of
70 − (18 + 8 + 5 + 7 + 10) = 22 remaining on the edge. We
must have the set of squares on the 10-square sum to ten to
avoid wasted space over the 10-square. Place ord(4,6) on the
10-square with the 6-square on the left (otherwise there will be
wasted space over the 4-square). If the 10-square is a corner
square then there will be wasted space over the 4-square. This
implies that there must be a square to the right of the 10-square;
the 14-square is the only square that can be placed to the right
of the 10-square without wasted space. This however leaves a
remaining length of 22 − 14 = 8. Therefore e3 cannot be the
18-square (the image shows the remaining length on the right
without loss of generality).
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e1 = 8
5

e2 = 7
e4 = 10

6 4
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9
e3 = 18
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ii. Suppose e3 is the 15-square and place the 4-square on top of
it. Then any square placed on the left of the 4-square will
be greater than the 4-square (the 1-square would yield wasted
space). Also any set of squares placed on the 9-square will have
a height above the 11-square. We need the set of squares on the
4,11-flush to sum to 15. The only set that satisfies this is adj(1,14).
This however will yield wasted space over the 1-square for either
permutation. Thus, e3 cannot be the 15-square.

e1 = 8
5

e2 = 7
e4 > 10

3 2

9

e3 = 15

4

11

14

1
4

iii. Suppose e3 is the 13-square and place the 6-square on top of
it. Then suppose the 12-square is placed on the left of the
13-square. Then there are no sets that sum to 12 that can be
placed on top of the 12-square. So the square on the right of the
13-square must be greater than 13. That is, the set on top of the
13-square must sum to 13. Since the 6-square is already placed on
the 13-square then we need a set that sums to 7, but there is no
such set of squares remaining. Thus, e3 cannot be the 13-square.
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iv. Suppose e3 is the 14-square, place the 4-square on top of the
14-square, and place the 1-square on top of the 4-square. Then
any square placed next to the 1-square will hang over the
4-square leaving wasted space. So, e3 cannot be the 14-square.

v. Suppose e3 is the 19-square. Consider the length of squares
on the edge so far, we have 19 + 8 + 5 + 7 + |e4| = 39 + |e4|.
Observe the set of squares placed on the 9-square will hang over
the 9-square. Therefore the set of squares on the
7,9-flush must sum to 16. That is, we must have one of adj(6,10),
adj(4,12), adj(1,15), or the 16-square on the 7,9-flush. Note the
6-square cannot be on the edge since no remaining sets sum
to six. Suppose e4 is the 10-square then, similarly to the first
case, we must have adj(4,6) on the 10-square and the 14-square
must be to the right of the 10-square. This leaves a length of 7
remaining on the edge, which guarantees wasted space.

e1 = 8
5

e2 = 7
e4 = 10

6 4

3 2

9
e3 = 19

11

14

7

Suppose e4 is the 12-square. Then the remaining total gap is
19. The only sets of squares that can fill this is adj(1,18) and
adj(6,13). However neither of these sets can be placed on an edge.

Suppose e4 is the 15-square. There is then a total gap of 16
remaining on the edge. Since the 6-square cannot be on the
edge then the 16-square must fill this gap. We consider when
the 16-square is to the right of the 15-square. Then the set
of squares on top of the 15-square must sum to 15. The only
possible set is adj(1,14). We must have ord(1,14) since no
remaining sets sums to nine. However, this yields wasted space
over the 16-square. An easier, analogous argument shows we
cannot have the 16-square on the left of the 19-square.

Now supposing e4 is the 16-square, then the remaining length on
the edge is 70− 55 = 15. The 15-square is the only square that
can be placed in the remaining edge. The only sets remaining
that sum to 15 are adj(1,14) and adj(1,4,10).

Consider when adj(1,4,10) is placed on the 15-square. Then the
1-square must be on the right to avoid wasted space. Further,
the 15-square must be a corner square since we have used the
entire edge. Therefore the 10-square must be on the
corresponding edge. However, any square placed to the right
of the 10-square (on the new edge, call this ε2) must be larger
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than the 10-square. So we must have adj(4,6) on the 10-square.
However, this guarantees wasted space over the 1-square.
Therefore adj(1,14) must be on the 15-square.

Suppose the 13-square is placed on the 1-square. Then there
are no remaining sets that sum to 13. So there will be wasted
space above the 9,16-flush. So, the 13-square cannot be placed
on the 1-square. Now, the remaining sets that sum to 26 are
adj(4,22), adj(6,20), and adj(4,10,12). If adj(6,20) is placed on
the 9,16,1-flush, then the 6-square must be placed on the left
or there will be wasted space over the 6-square. However, if the
6-square is on the left, then any square placed on the
6-square will hang over the 6-square on the left and intersect the
square over the 11-square. Therefore we cannot have adj(6,20)
on the 9,16,1-flush. Similarly, adj(4,22) and adj(4,10,12) will
yield wasted space adjacent to the 4-square for any permutation.
Thus, e3 cannot be the 19-square.

e3 = 19

11

e1 = 8
5

3 2

9

e2 = 7

e4 = 16 15

14
×

Thus, we have exhausted all cases where the set on top of the 11-square
hangs over the 11-square. Therefore, we cannot have adj(2,3) on the
5-square.

2. Now, place adj(1,4) on the 5-square, with the 4-square on the left (without
loss of generality). Since this is a new configuration of squares on the
5-square, we will “reset” all ei squares from before. Let e1 and e2 be
placed as before, and e2 must be the 6-square to avoid wasted space over
the 1-square. Then the square on the right of e2 will be greater than
the 6-square, so the set on top of the 1,6-flush must sum to seven. The
7-square is the only square that satisfies this sum. There are no remaining
squares that sums to four, so the set of squares on the 4-square will hang
over the 4-square. Therefore we need the squares adjacent to the 4,5-flush
sum to nine. The 9-square is the only square that satisfies this sum, so e1
must be the 9-square.

e1 = 9
5 e2 = 6

4
1

7
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Place squares e3, e4 on the right and left of of the 6 and 9-square,
respectively (note |e3|, |e4| > 8). If e4 is the 8-square, then there are
no remaining sets that sums to eight—so any set placed on top of the
8-square will yield wasted space. Therefore e4 cannot be the 8-square and
so |e4| > 10. So we need the set of squares on the 4,9-flush to sum to 13
– this also holds if the 9-square is a corner square. But since there are
no remaining sets that sum to four, then the squares placed on top of the
4-square will have a height above the 7-square. Further, since there are no
squares that sum to seven, then the set of squares on top of the 7-square
will hang over the 7-square. This implies the 6-square cannot be a corner
square. Note the set of squares that sum to 13 are adj(2,3,8), adj(2,11),
adj(3,10), and the 13-square. We need two distinct sets to sum to 13: one
to go on the 4,9-flush and one to go on the 6,7-flush.

e4 > 10 e1 = 9
5 e2 = 6

e3 > 8

4
1

7

(a) Suppose e3 is the 8-square, place the 3-square on top of the 8-square,
and place the 2-square on top of the 3-square. Then any square placed
next to the 3-square will yield wasted space next to the 2-square.

(b) Suppose e3 is the 11-square, place the 2-square on top of e3. Then
we need the set of squares on top of the 2,7-flush to sum to nine to
avoid wasted space over the 2-square. Here there are no remaining
sets that sum to nine.

(c) Suppose e3 is the 10-square, place the 3-square on top of e3. Then we
need the set of squares on top of the 3,7-flush to sum to ten to avoid
wasted space over the 3-square. Then only set that satisfies this is
adj(2,8). However, for either permutation, there will be wasted space
above the 2-square.

e4 > 10 e1 = 9
5 e2 = 6

e3 = 10

3

4
1

7

2

8

Therefore e3 must be the 13-square.

Now, we need a set of squares that sums to 13 to be placed on the 4,9-flush.
The sets are: adj(2,3,8), adj(2,11), and adj(3,10).

Recreational Mathematics Magazine, Number 9, pp. 5–47
DOI: https://doi.org/10.2478/rmm-2018-0001

https://doi.org/10.2478/rmm-2018-0001


26 optimal rectangle packing for the 70 square

(a) If adj(2,3,8) is placed on the 4,9-flush, then the 8-square must be
placed on the right to avoid wasted space. However there will be
wasted space over the 2-square for either permutation.

(b) If adj(2,11) is placed on the 4,9-flush, then the 2-square must be on
the left to avoid wasted space. Further the set of squares
adjacent to the 2,9-flush must sum to 11 to avoid wasted space over
the 2-square and the only set that satisfies this is adj(3,8). However,
we established earlier that |e4| > 10. So we cannot have adj(2,11) on
the 4,9-flush.

(c) If adj(3,10) is placed on the 4,9-flush, then the 3-square must be on
the right to avoid wasted space over the 3-square. Further, e4 must
be the 12-square to avoid wasted space over the 3-square (there are no
other sets that sum to 12). Note that the remaining squares less than
the 10-square are the 2 and 8-square. So any squares placed on top of
the 3 or 7-square will have a height above the 10-square. Therefore
the set of squares on top of the 10-square must sum to ten. The only
set that satisfies this is adj(2,8). However, for either permutation
there will be wasted space over the 2-square. This is because the
next smallest square is the 11-square and placed on either side will
have a height above the 2-square.

e4 = 12
e1 = 9

5 e2 = 6

e3 = 134
1

7
3

10

2

8

Therefore, e3 cannot be the 13-square.

Thus, the sets adj(1,4) and adj(2,3) cannot be placed on top of the 5-square and
hence the 5-square cannot be an edge square.

Remove 6, 7, and 8 From an Edge

Claim. We cannot have the 6, 7, and 8-square on the same edge.

Proof. Suppose the 6, 7, and 8-squares are on the edge. Then there are three
cases to consider: all adjacent, one disjoint, all disjoint.

1. We consider the case where all squares are disjoint (this case will help
prove the other cases). Since squares 6, 7, and 8 are disjoint on an edge,
then each of them has squares > 9 on either side or (at most two) are

Recreational Mathematics Magazine, Number 9, pp. 5–47
DOI: https://doi.org/10.2478/rmm-2018-0001

https://doi.org/10.2478/rmm-2018-0001


Brian Laverty, Thomas Murphy 27

corner squares. Therefore we need unique sets of squares to be placed
on the 6, 7, and 8-square that sums to six, seven, and eight respectively.
Consider the total length of these squares, namely, 6+7+8 = 21, and the
total length of squares 1–5, namely, 1 + 2 + 3 + 4 + 5 = 15. Since 21 > 15
then there is no combination of squares 1–5 that can uniquely be placed
of squares 6, 7, and 8. Thus, squares 6, 7, and 8 cannot be disjoint on an
edge.

2. Suppose adj(6,7,8). There are six different permutations of adj(6,7,8).
However by symmetry, we may say ord(6, 7, 8) ≡ ord(8, 7, 6),
ord(6, 8, 7) ≡ ord(7, 8, 6), and ord(7, 6, 8) ≡ ord(8, 6, 7). So we only need
to consider three permutations.

(a) Suppose ord(6,7,8) is on an edge. Then place a square on the left
of the 6-square, call this n; note |n| > 9. Then any squares placed
on top of the 6-square must sum to six; this holds if the 6-square
is a corner square as well. Then we have the possible combinations:
adj(1,5), adj(2,4), and adj(1,2,3).

i. Suppose adj(2,4) is placed on top of the 6-square. Then the
set of squares placed on top of the 7-square must sum to seven.
Note that the remaining squares less than seven are the 1, 3, and
5-squares; so there are no combination of these squares that sum
to seven. This implies that there are no squares that can be
placed on top of the 7-square without wasted space.

n > 9

6

2
4

7 8

ii. Consider the two cases that involve the 1-square. If the 1-square
is not on the right, then there will be wasted space over the
1-square. Place the 1-square on the right. Then, any set of
squares that are placed on top of the 1,7-flush must sum to eight.

� If adj(1,2,3) was placed on top of the 6-square then the
remaining squares less than the 8-square are the 4 and
5-square. Therefore there is no combination of these that
sum to eight.

� If adj(1,5) was placed on top of the 6-square then the
remaining squares less than 8 are the 2, 3, and 4-square, so
there is no combination of these that sum to eight. Therefore
there will be wasted space over the 1,7-flush for any set of
squares placed on the 1,7-flush.

Thus, both cases that involve the 1-square cannot be placed on
top of the 6-square.

Thus we cannot have ord(6,7,8) on an edge.
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(b) Suppose ord(7,6,8) is on the edge. Then, any set of squares placed
on top of the 6-square must sum to six. The only combinations that
satisfy that are adj(2,4), adj(1,5), and adj(1,2,3).

i. Suppose adj(2,4) is placed on top of the 6-square, in either
permutation. Then the set of squares placed on top of the
7-square must sum to seven. Note that the remaining squares
less than the 7-square are the 1, 3, and 5-squares; so there are
no combination of these squares that sum to seven. Therefore,
there are no squares that can be placed on top of the 7-square
without wasted space.

6

2
4

7
8

Thus, we cannot have adj(2,4) placed on top of the 6-square.

ii. Consider the two cases that involve the 1-square. If the 1-square
is not on the left, then there will be wasted space over the
1-square. So place the 1-square on the left. Then, any set of
squares that are placed on top of the 1,7-flush must sum to eight.

� If adj(1,2,3) was placed on top of the 6-square then the
remaining squares less than the 8-square are the 4 and
5-square. So there is no combination of these that sum to
eight.

� If adj(1,5) was placed on top of the 6-square then the
remaining squares less than the 8-square are the 2, 3, and
4-square. So there is no combination of these that sum to
eight.

Therefore, we cannot have adj(1,2,3) nor adj(1,5) placed on top
of the 6-square, for any permutation.

6

1

7
8

×

Thus, we cannot have ord(7,6,8) on an edge.
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(c) Suppose ord(6,8,7) is on an edge. Note that any square placed on
the right of the 6-square will be > 9, and similarly for the right of
the 7-square. Any set of squares placed on top of the 6 and 7-square
must therefore sum to six and seven respectively. However, if the
1-square is placed on the 6-square this guarantees wasted space over
the 6-square; so place adj(2,4) on the 6-square. Further, the only
remaining squares less than the 7-square are the 1,3, and 5-squares.
Therefore there are no combinations that sum to seven, and will thus
yield wasted space over the 7-square.

6
7

8

4
2

×

Thus, we cannot have ord(6,8,7) on an edge.

We have covered the cases of adj(6,7,8); now we will cover the cases that
involve one disjoint.

3. Suppose adj(6,7) with the 8-square disjoint are all on an edge. Without
loss of generality let the 6-square be on left of the 7-square, and place the
8-square placed arbitrarily on the base disjoint from adj(6,7). Note that
either the 6 or 7-square is a corner square, or the squares placed on either
side of adj(6,7) is > 9; this holds for the 8-square as well.

6
7

8· · ·

Note that we must have unique sets of squares to be placed on the 6 and
8-squares that sum to six and eight respectively. The sets of squares that
sum to six are adj(2,4), adj(1,5), and adj(1,2,3).
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(a) Suppose adj(2,4) is placed on top of the 6-square. Then we need
unique sets of squares to be placed on the 7 and 8-square. That
is, we need unique sets of squares on the 6, 7, and 8-square, which
cannot happen by the all disjoint case.

(b) Consider the two cases that involve the 1-square. If the 1-square is
not on the right, then there will be wasted space over the 1-square.
So place the 1-square on the right. Then, any set of squares that are
placed on top of the 1,7-flush must sum to eight; adj(3,5) is the only
set satisfying this sum. However this leaves no remaining sets to be
placed on the 8-square.

Thus, we cannot have adj(6,7) with the 8-square disjoint.

4. Suppose adj(6,8) with the 7-square disjoint are all on an edge. Without
loss of generality let the 6-square be on left of the 8-square, and place the
7-square placed arbitrarily on the base disjoint from adj(6,8). Note that
either the 6 or 8-square is a corner square, or the squares placed on either
side of adj(6,8) is > 9; this holds for the 7-square as well.

Then any set of squares placed on top of the 6-square must sum to six. The
possible combinations of squares that sum to six are adj(1,2,3), adj(1,5),
and adj(2,4). However if the 1-square is placed on the 6-square, then
there will be wasted space for any permutation of any set placed on the
remainder of the 6-square; so place adj(2,4) on the 6-square. Note any
set of squares placed on top of the 7-square must sum to seven. The
only remaining squares less than the 7-square are the 1, 3, and 5-square.
Therefore there are no remaining sets that sum to seven and will yield
wasted space over the 7-square.

6
8

7

4
2

· · ·

×

Thus, we cannot have adj(6,8) with the 7-square disjoint.

5. Suppose adj(7,8) with the 6-square disjoint are all on the edge. Without
loss of generality let the 6-square be on left of the 8-square, and place the
7-square placed arbitrarily on the base disjoint from adj(6,8). Either the
7 or 8-square is a corner square, or the squares placed on either side of
adj(7,8) is > 9; this holds for the 6-square as well.
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7 8
6

· · ·

We must have the set of squares placed on top of the 7-square sum to
seven, and similarly, the set of squares on the 6-square must sum to six.
The only unique sets that satisfy this are: adj(1,5) on the 6-square and
adj(3,4) on the 7-square. By placing adj(3,4) on the 7-square, the set of
squares on top of the 8-square must then sum to eight. But the 2-square
is the only remaining square less than the 8-square. Thus, there will be
wasted space over the 8-square. Thus, we cannot have adj(7,8) with the
6-square disjoint.

Therefore, all cases of the 6, 7, and 8-square placed on the edge have been
eliminated.

Proof of Theorem 1(iii)

Proof. Suppose the 6-square is on the edge but not adj(6,7). Then either the
7-square is on the same edge but disjoint or the 7-square is not on that edge.
Consider the case when the 6 and 7-squares are on an edge but disjoint. This
case yields wasted space since it is logically equivalent to having adj(6,8) and
7-square disjoint or having (6,8,7) on an edge.

Suppose the 7-square is not on an edge. Then the 6-square will have squares on
either side which are > 8 (note the 6-square cannot be a corner square by Lemma
1). If the 8-square is not adjacent to the 6-square then we have ord(n1, 6, n2)
but |n1|, |n2| > 8 which guarantees wasted space over the 6-square. So we must
have adj(6,8). Furthermore, if the 1-square is placed on top of the 6-square,
there will be wasted space. Then we must have adj(6,8) on an edge and adj(2,4)
on the 6-square. Moreover the 2-square must be placed adjacent to the 8-square
to avoid wasted space. Now we need a set of squares that sum to ten to be
placed on top of the 2,8-flush. The remaining sets that sum to ten are adj(1,9),
adj(3,7), and the 10-square.

6
8

4
2

We begin by considering when adj(1,3) is placed on the 4-square. Then the
10-square is the only set that sums to ten. So the 10-square must be placed
on the 2,8-flush. Then any square placed on the 3-square will hang over the
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3-square and yield wasted space over the 1-square. Thus adj(1,3) cannot be
placed on the 4-square. Thus, any set of squares on the 4-square will hang over
the 4-square on the left (since any square placed on the 2-square will have a
height above the 4-square). That is, we need two unique sets of squares that
sum to ten. Note that we cannot have adj(3,7) on the left of the 4,6-flush by
assumption (this would be adj(6,7)).

6
8

4
2

1. Suppose the adj(6,9) is on the edge, with the 1-square on the 9-square.
Then the 5-square must be placed on the 1,4-flush, otherwise there will
be wasted space next to the 1-square. If there is a square adjacent to the
9-square on the edge, it will be > 10. This implies that the remaining set
of squares on the 9-square must sum to eight (this logically equivalent if
the 9-square is a corner square as well). However, there are no remaining
sets of squares that sum to eight. Thus we cannot have adj(1,9) on the
left of the 4,6-flush.

2. Suppose adj(6,10) is on the edge, and adj(1,9) is placed on the 2,8-flush.
Then the 1-square must be placed on the right to avoid wasted space.
Then any square placed on the 1-square would hang over to the right of
the 1-square. (This implies the 8-square is not a corner since it would
otherwise be a contradiction.) So, we need a set of squares that sums
to nine to be placed adjacent to the 1,8-flush. However, there are no
remaining sets that sum to nine. Thus we cannot have adj(1,9) on the
2,8-flush.

3. Suppose adj(6,10) is on the edge, and adj(3,7) is placed on the 2,8-flush.
If the 3-square is placed on the left then any set of squares placed on the
3-square will hang over the 3-square and yield wasted space next to the
3-square. So place the 3-square on the right. Again, any set of squares
placed on the 3-square will hang over the 3-square, which implies the
8-square is not a corner square. Note the 11-square is the only remaining
set of squares that sums to eleven and therefore we must have adj(8,11)
on the edge.

6
8

4
2

7

3

1110

45
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Here we see that any square placed on the 3-square will have a height
above the 7-square. Further, any set of squares placed on the 7-square
will hang over the 7-square (on the left). Therefore the 5-square is the
only square that can be placed on the on the 4-square without wasted
space. Now, there are no remaining sets of squares that sum to five, so
the set of squares on the 5,7-flush must sum to 12. The 12 square is the
only square that satisfies this sum, so place the 12-square on the 5,7-flush.

6 8

4 2

7
3

1110

5

12

Suppose the 10-square is a corner square. Then the remaining squares on
the 4,10-flush must sum to nine. The 9-square is the only
remaining square satisfying this sum. However, since the 9-square is the
only remaining set, then there will be wasted space for any set of squares
placed on the 9-square. Thus, the 10-square is not a corner square.

Suppose the 9-square is placed on the edge adjacent to the 10-square.
Then the set of squares on the 9-square must sum to nine. But there are
no remaining sets that satisfy this, therefore there must be a square > 13
adjacent to the 10-square on the edge. A similar argument holds for the
11-square; that is, if the 11-square is not a corner square, there must be a
square > 13 to the right of the 11-square.

We have just determined that the 10-square is not a corner square but is
adjacent to a square that is at least the 13-square. Therefore the set of
squares on the 10-square must sum to nine, so place the 9-square on the
10-square. Then any set of squares placed on the 9-square will hang over
the 9-square. So we need the set of squares on the 9,10-flush to sum to 19.
The only sets that satisfy this are adj(1,18) and the 19-square. However,
if adj(1,18) is placed on the 9,10-flush then any set of squares placed on
the 1,9-flush would yield wasted space next to the 1-square. Therefore we
place the 19-square adjacent to the 10-square on the edge.

6 8

4 2

7
3

1110

5

12

9

19

×
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34 optimal rectangle packing for the 70 square

Note that squares 2–12 have been used. So any square placed on the
9-square will have a height above the 12-square. Similarly any set of
squares placed on the 12-square will hang over the 12-square. Thus the
remaining set of squares adjacent to the 7,12-flush must sum to 16. The
only sets that sum to 16 is adj(1,15) and the 16-square. However since the
set of squares on the 3,11-flush must sum to 14 then this is a contradiction
for both cases.

Thus, we cannot have adj(3,7) on the 2,8-flush.

4. Suppose the 10-square is placed on the 2,8-flush. Consider when adj(1,3)
is placed on the 4-square. Then the 1-square must be on the left to
avoid wasted space. Then any set of squares placed on the 4-square will
hang over the 4-square and therefore yield wasted space over the 1-square.
Therefore adj(1,3) cannot be on the 4-square. Further this implies any set
of squares placed on the 4-square will hang over the 4-square. So we need
a set squares that sums to ten to be placed adjacent to the 4,6-flush.
The only remaining set that satisfies this is adj(1,9) (recall the 7-square
cannot be on the edge by assumption). Place the 9-square on the edge to
the left of the 6-square, and the 1-square on top of the 9-square. Then the
5-square must be placed on the 1,4-flush to avoid wasted space on the left
of the 1-square. Note any set of squares placed on the 5-square will hang
over the 5-square. However, there are no remaining sets of squares that
sum to six to be placed adjacent to the 1,5-flush. Thus, we cannot have
the 10-square placed on the 2,8-flush.

6
8

4
2

10

4

9

1

5×

Therefore, we have exhausted all cases with the 7-square both on an edge
(disjoint from the 6-square) and the 7-square not on an edge. Thus, we conclude
that if the 6-square is on an edge, then we must have adj(6,7) on an edge.

Proof of Theorem 1(iv)

Suppose ord(a, n, b) ⊆ ε is an ordered subset of a packing P, where n is the
smallest square lying on ε. We will show that

min{|a|, |b|} 6 2|n| − 1.

To begin, we need a preliminary lemma which will reduce the number of cases
to consider.
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Lemma 2. Suppose ord(a, n, b) is as above, and let Γ = {a1, a2, . . . , ak} be a
partition of |n| into distinct integers; that is, |n| = a1 + · · · + ak and ai 6= aj
for i 6= j. Furthermore, suppose that the corresponding squares adj(a1, . . . , ak),
where |ai| < |ai+1|, all lie on top of n in P.

1. If |a|, |b| > |n|+ 2 then 1 /∈ Γ.

2. If |a|, |b| > |n|+ 3, then 2 /∈ Γ.

3. If |a|, |b| > |n|+ 6, then 3 /∈ Γ.

Proof. Suppose 1 ∈ Γ and |a|, |b| > |n| + 2. Since |a|, |b| > |n| + 2, then this
guarantees wasted space over the 1-square, for any permutation of adj(a1, . . . , ak).
A similar argument holds (2).

Now, suppose |a|, |b| > |n|+ 6 and 3 = a1 ∈ Γ for contradiction. Then we have
Γ = {3, a2, . . . , ak} where ai > 3 for each i = 2, . . . , k. We must have a set of
squares on the 3-square that sums to three. Adj(1,2) is the only set satisfying
this sum; place adj(1,2) on the 3-square. Let adj(3,a2), if |a2| > 4 then this
guarantees wasted space over the 1-square for either permutation. Therefore let
a2 be the 4-square and makes a flush with the 1-square. Then the 5-square is
the only square that can be placed on the 1,4-flush. However, this will guarantee
wasted space over the 2-square.

a > n+ 6

n

b > n+ 6
3

2 1
a2 = 4

Note that if |n| > 7 then we can improve the restriction of (3) to: |a|, |b| > |n|+5,
then 3 /∈ Γ.

Example: Consider when n is the 7-square and the smallest square on an edge,
ε. Further suppose that ord(10,7,9) in on ε. We need to determine the sets of
squares that sum to seven: the distinct partitions of seven are 1+6, 2+5, 3+4,
and 1 + 2 + 4. By Lemma 2, we can remove the cases that use the 1-square;
that is, the remaining partitions are 2 + 5 and 3 + 4. So the remaining sets of
squares that can be placed on the 7-square are adj(2,5) and adj(3,4).

Proof. (of Theorem 1.1 (iv)). Suppose n is the smallest square on the edge. We
want to show that we cannot have the second smallest square be greater than
or equal to 2n − 1. Recall the 6-square is the smallest square we can have on
the edge. Further, note that there must be a minimum of four squares on the
edge. So the maximum that n can be is the 10-square, otherwise if n were the
11-square, then the smallest set of squares is (11, 21, 22, 23) which sum is greater
that 70. This leaves us with five cases to check: n = 6, 7, 8, 9, and 10.
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36 optimal rectangle packing for the 70 square

1. Suppose n is the 6-square. Since the 6-square is on an edge, then by
Theorem 1(iii) we must have adj(6,7) on the edge, and this is case holds.

2. Suppose n is the 7-square, let a be the 13-square and b such that |b| > 14 on
the right and left (without loss of generality) of the 7-square respectively.
Then the only squares that can be placed on top of the 7-square are
adj(1,6), adj(2,5), adj(3,4), and adj(1,2,4). These are all ruled out by
Lemma 2.

3. Suppose n is the 8-square where a is the 15-square placed on the right
and b such that |b| > 16 on the left (without loss of generality). The
only squares we have that can go on the 8-square are adj(1,7), adj(2,6),
adj(3,5), adj(1,2,5), and adj(1,3,4). However, by Lemma 2 these are all
ruled out.

4. Suppose n is the 9-square where a is the 17-square placed on the right
and b such that |b| > 18 on the left (without loss of generality). We
have the following possibilities that can go on the 9-square are adj(1,8),
adj(2,7), adj(3,6), adj(4,5), adj(1,2,6), adj(1,3,5), and adj(2,3,4). However,
by Lemma 2 we have only to check adj(4,5).

Suppose adj(4,5) is placed on top of the 9-square with the 4-square on
the left. The only squares that can be placed on the 4-square are the 1,
2, and 3-squares. Placing the 2-square on top of the 4-square will yield
wasted space. Place adj(1,3) on top of the 4-square with the 3-square on
the left (otherwise there is wasted space over the 1-square). Notice, we
have a 1,5-flush, and the set of squares placed on the 1,5-flush must sum
to six. The 6-square is the only remaining square that satisfies this sum;
so place the 6-square on the 1,5-flush. The only square that can placed
on top of the 3-square is the 2-square, and that would yield wasted space
on the left/ right of the 2-square.

b > 18 17

n = 9

4

3

2

1

5

6×

5. Suppose n is the 10-square where a is the 19-square placed on the right
and b such that |b| > 20 on the left (without loss of generality). Then the
possible sets of squares that can go on the 10-square are adj(1,9), adj(2,8),
adj(3,7), adj(4,6), adj(1,2,7), adj(1,3,6), and adj(2,3,5). Again applying
Lemma 2 we are only left with the case adj(4,6).

Suppose adj(4,6) is placed on top of the 10-square; consider when the
6-square is on the right. Then, the only square that can be placed on the
4-square without wasted space is adj(1,3). However, this yields wasted
space over the 1-square for either permutation.
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n4 > 20

n = 10

19

6
4

3
1
×

Therefore, with the constraints of the 70 × 70 square, we cannot have n and
2n− 1 be the smallest squares on the edge.

Proof of Theorem 2

Proof. Suppose v = {9, 14, 23, 24} is an edge. The 9-square must be either a
corner square or a non-corner square.

1. Suppose the 9-square is a corner square. Then we must have adj(9,14) by
Theorem 1(iv). Further, the square on the adjacent edge (i.e., c or cop)
that is adjacent to the 9-square must be the 6, 7, or 8-square. Similar to
the proof of Lemma 2, we are guaranteed wasted space for the 9-square
adjacent to the 6, 7, and 8-squares.

2. Suppose the 9-square is not a corner square. Again by Theorem 1(iv) we
must have adj(9,14). Note that we also have either adj(9,23) or adj(9,24).
Then by Lemma 2 adj(4,5) is the only set of squares that can be placed
on the 9-square. Further, adj(1,3) will be the only squares that can be
placed on the 4-square, without wasted space. However, any set of squares
placed on the 3-square will hang over the 3-square. The 2-square is the
only square that can be placed under the overhang from the 3-square.
However, any set of squares placed on the 2,3-flush will hang over the
2-square, which guarantees wasted space. Thus, the 9-square must be a
corner; hence a contradiction.

23 or 24

9

14

4

3 2
1

5

Therefore combining these cases, we conclude v = {9, 14, 23, 24} is not an edge.
Thus establishing the theorem.
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38 optimal rectangle packing for the 70 square

Constructing the Frame

To construct a potential packing P, we first need to determine the edges. In
this section, we present the matlab code that generates all possible frames.

The Matrix A

Here we determine the matrix A : all possible combinations of squares that sum
to 70 taking Theorem 1(i) into account. If we do not include these restraints
initially, then matlab cannot handle the calculation.

1 c l ea r , c l c , format compact ;
2 sumto=70; % number we want to sum to
3 n=24; % l a r g e s t number to be used
4 m=7; % number o f e lements per row
5 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
6 zro=l i n s p a c e (0 , 0 , 3 ) ;
7 f =[ zro , 6 : n ] ; % f i s a vec to r with e lements to be used
8 A=nchoosek ( f ,m) ; % A i s a matrix o f a l l p o s s i b l e combos
9 Asum=sum(A, 2 ) ; % adds a column s t a t i n g the row ’ s sum

10 A=[A, Asum ] ; % l i s t o f a l l combos ; l a s t element in row i s
i t s sum .

11 R=rows (A) ; % R i s number o f rows
12 k=1;
13 f o r i =1:R % d e l e t e s rows that don ’ t sum to 70
14 i f A( i ,m+1)==sumto
15 B(k , : )=A( i , : ) ;
16 k=k+1;
17 end
18 end
19 A=unique (B, ’ rows ’ ) ; % El iminates repeated rows
20 A( : ,m+1) = [ ] ; % Removes the sum column

The purpose of the first line is to keep the display cleaner. In lines 2–4 we define
the variables sumto, n, m where sumto := 70 since we want integer numbers
that sum to 70, n := 24 since we use the numbers 1–24, and m := 7 since there
will be at most seven squares on an edge (due to the restraints stated earlier).
In line 6, we have linspace(0,0,3) which creates a vector with three elements
“from zero to zero” (i.e., a vector with three zeros only). The number of zeroes
is the max possible squares on an edge minus the minimum possible squares on
an edge. The zeros act as placeholders for the matrices computed. On line 7
we make a vector f = [zro, 6 : n] which means it has the elements from zro
and 6–24 (recall n := 24). On line 8 we create the matrix A using the nchoosek
function, which creates all possible combinations of the elements in f using
m := 7 columns. Lines 9 and 10 create an eighth column in the matrix A
which is the sum of each of the rows accordingly. In lines 11 and 12, we create
parameters for the loop which begins on line 13: R is the number of rows in A
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and k will be a counter in the loop. The for loop removes every row that does
not have 70 as the eighth element—since the last column is the sum of each
row. Finally, line 19 removes any repetition that may have occurred and line 20
removes the entire eighth column—it is no longer required and removing it will
reduce later computation.

Next, the remaining constraints from Theorem 1 are included. In particular,
we eliminate rows that do not satisfy at least one Theorem 1(ii)–(v). Using the
same R = rows(A) from above, we run another for loop.

1 R=rows (A) ;
2 f o r i=R:−1:1
3 f o r j =1:5
4 i f A( i , j )˜=0 && A( i , j +1)>=2*A( i , j )−1
5 A( i , : ) = [ ] ; % We cannot have (n , 2 n− 1 , . . . )
6 break ;
7 end
8 i f A( i , j )==6 && A( i , j +1)˜=7
9 A( i , : ) = [ ] ; % must have adj (6 , 7 )

10 break ;
11 end
12 i f A( i , j )==6 && A( i , j +1)==7 && A( i , j +2)==8
13 A( i , : ) = [ ] ; % Remove 6 ,7 ,8 from an edge .
14 break ;
15 end
16 i f ismember (6 ,A( i , : ) )==1 && ismember (11 ,A( i , : ) )==0
17 A( i , : ) = [ ] ;
18 break ;
19 end
20 end
21 end

Each if-statement is a different restriction. matlab performs this by removing
the cases that do not satisfy the claim; e.g., if there is a row in A that has
(6, 9, . . .) then that is removed since it does not satisfy Theorem 1 (iii). Therefore
from here on, A is the matrix of all possible ways to sum to 70 given our restraints
from Theorem 1. (Note that we use a for-loop where i : R → 1. It was later
determined that a while loop is more easily manageable and yields the same
result. This is why we use a for-loop first but while-loops later.)

The Matrix Aop

Next, we fix a row v ∈ A and remove all rows which have no common element
with v (not including zeros).
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1 q1=1;
2 v=A( q1 , : ) ; % we f i x a vec to r v in A
3 A( q1 , : ) = [ ] ; R=R−1; % we remove v from A
4 A2=A; R2=rows (A2) ;
5 p=1;
6 whi le p<=R2 % Here we c r e a t e A2
7 Int=i n t e r s e c t (A2(p , : ) , v ) ;
8 Int=Int ( Int>0) ; %removes zero element
9 r3=length ( Int ) ;

10 i f r3>=1 % i f the re i s a common element
11 A2(p , : ) = [ ] ;
12 R2=R2−1;
13 p=p−1;
14 end
15 p=p+1;
16 end

Note that line 1 states q1 = 1; this is for future potential loops. By adding this
we can later add a while loop to loop through all different choices of v, but for
now it determines our fixed v.

The Matrix C

Next, we fix a row vop ∈ Aop and create the matrix C which each row has one
common element with v and vop. This will also done for the other fixed edges.

1 q2=1; vop=A2( q2 , : ) ; % we f i x a vec to r vop on A2
2 A2( q2 , : ) = [ ] ; R2=R2−1;
3 C=A; R3=rows (C) ;
4 j =1;
5 whi le j<=R3 % c r e a t i n g matrix C
6 Int1=i n t e r s e c t ( v (v>0) ,C( j , : ) ) ;
7 L1=length ( Int1 ) ;
8 Int2=i n t e r s e c t ( vop ( vop>0) ,C( j , : ) ) ;
9 L2=length ( Int2 ) ;

10 i f L1˜=1 | | L2˜=1 % want L1=1 or L2=1 or both
11 C( j , : ) = [ ] ;
12 R3=R3−1;
13 j=j −1;
14 end
15 j=j +1;
16 end
17 C=unique (C, ’ rows ’ ) ;

The matrix C is now the matrix where each row corresponds to an edge of P
such that there is exactly one square in common with v and one (different)
square in common with vop.
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Throughout the following theorems, let P be a packing with edges {εi}. Define
ai = min εi to be the smallest square on each edge, and without loss of generality
assume |ai| < |ai+1|. Let

S = {1, 2, . . . , a4} − {a1, a2, a3, a4} ⊆ P

be the set of all possible squares that could be placed on top of all ai-squares.

Theorem 4. If P is a packing, then P must satisfy

4∑
i=1

|ai| 6
∑
n∈S
|n|.

Proof. Consider a packing P such that

4∑
i=1

|ai| >
∑
n∈S
|n|

for contradiction. Then we can place the squares adj(1, 2, . . . ,max{S}) such
that there is a common flush. Similarly, on the opposing side of the flush place
adj(a1, a2, a3, a4). By assumption |adj(1, 2, . . . ,max{S})| < |adj(a1, a2, a3, a4)|,
so any permutation of either sets of squares shows that there will be wasted
space over ai for some i = 1, 2, 3, 4. Therefore a packing P must satisfy

4∑
i=1

|ai| 6
∑
n∈S
|n|,

as needed.

1 2 3 4 · · ·
max{S}

a1 a2 a3 a4

Example Let

∂P = {9, 14, 23, 24} ∪ {10, 17, 21, 22} ∪ {11, 13, 22, 24} ∪ {12, 17, 18, 23}

be the set of all edge squares of a packing P. The smallest squares on each edge

are {9, 10, 11, 12}. Then S = {1, . . . , 8}, so we have
∑
n∈S
|n| = 1 + · · · + 8 = 36.

Further,
∑
|ai| = 9 + 10 + 11 + 12 = 42. That is,∑

n∈S
|n| = 36 < 42 =

∑
|ai|.

Thus by Theorem 4, P will yield wasted space.
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42 optimal rectangle packing for the 70 square

Corollary 1. If P is a packing, then P must satisfy

4(|a1|+ |a2|+ |a3|+ |a4|) 6 |a4|(|a4|+ 1).

Proof. Consider the inequality of Theorem 4 and recall |ai| < |ai+1|. Then,

4∑
i=1

|ai| 6
∑
n∈S
|n|

|a1|+ |a2|+ |a3|+ |a4| 6 (1 + · · ·+ |a4|)− (|a1|+ |a2|+ |a3|+ |a4|)
2(|a1|+ |a2|+ |a3|+ |a4|) 6 1 + · · ·+ |a4|

2(|a1|+ |a2|+ |a3|+ |a4|) 6
|a4|(|a4|+ 1)

2
4(|a1|+ |a2|+ |a3|+ |a4|) 6 |a4|(|a4|+ 1),

as needed.

In matlab it is more practical to use Corollary 1 as opposed to Theorem 4.

Example Let ∂P be as in the above example. We can see that

4(9 + 10 + 11 + 12) = 4(42) = 168 > 156 = 12(13).

So, by Corollary 1, ∂P will again yield wasted space.

The Matrix Cop

We run a large while loop fixing each row in C. Once c ∈ C is fixed, we
then create the matrix Cop ⊆ C by again removing all rows in C with common,
non-zero elements of c. After the matrix Cop is created, we then apply Corollary
1 and remove rows in Cop that do not satisfy

4(|a1|+ |a2|+ |a3|+ |a4|) 6 |a4|(|a4|+ 1),

where ai are the minimum squares on each of the edges and |ai| < |ai+1|.
Finally, after including Corollary 1, we create the matrix (for display purposes)
Frm which has rows v, vop, and c; we also display the matrix Cop to each
corresponding Frm (count is used to count the number of frames, i.e., count
adds 1 for every cop generated).
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1 % Next we c r e a t e Cop : v e c t o r s oppos i t e o f c and loop
through i t

2 q3=1;
3 R3=rows (C) ;
4 count =0;
5 whi le q3<=R3
6 c=C( q3 , : ) ;
7 C( q3 , : ) = [ ] ;
8 R3=R3−1;
9 Frm=[v ; vop ; c ]

10 Cop=C;
11 R4=rows (Cop) ;
12 q4=1;
13 whi le q4<=R4 %c r e a t e s Cop
14 cop=Cop( q4 , : ) ;
15 In tc=i n t e r s e c t ( cop , c ( c>0) ) ; % vecto r o f union
16 Rc2=length ( Intc ) ;
17 i f Rc2>0
18 Cop( q4 , : ) = [ ] ;
19 R4=R4−1;
20 q4=q4−1;
21 end
22 q4=q4+1;
23 end
24 % next we remove frames that do not s a t i s f y amax(amax

+1) ,4sum( a i ) , a i=min o f edges
25 R4=rows (Cop) ;
26 q4=1;
27 whi le q4<=R4
28 cop=Cop( q4 , : ) ;
29 a i s =[min ( v (v>0) ) , min ( vop ( vop>0) ) , min ( c ( c>0) ) , min (

cop ( cop>0) ) ] ;
30 amax=max( a i s ) ;
31 i f amax*(amax+1)<4*sum( a i s )
32 Cop( q4 , : ) = [ ] ;
33 R4=R4−1;
34 q4=q4−1;
35 end
36 q4=q4+1;
37 end
38 i f rows (Cop)>1 % a l l e l s e w i l l f a i l Cmid
39 Frm=[v ; vop ; c ]
40 Cop
41 Copsize=s i z e (Cop) ;
42 count =count+Copsize (1 ) ;
43 end
44 q3=q3+1;
45 end
46 count

Recreational Mathematics Magazine, Number 9, pp. 5–47
DOI: https://doi.org/10.2478/rmm-2018-0001

https://doi.org/10.2478/rmm-2018-0001


44 optimal rectangle packing for the 70 square

Proof of Theorem 3

Proof. Running our code from the preceding section with v = {7, 8, 14, 18, 23}
and vop = {9, 10, 11, 12, 13, 15}, there are 56 frames to check. Each “Frm” is a
matrix where the first and second rows are v and vop, respectively. The third
row is a different c for each Frm. The matrix/vector following is Cop matrix,
i.e., possibilities for the last edge.

The following Lemma will be important as it cuts the number of frames down
from 56 to 9.

Lemma 3. Given our fixed edges v and vop, the 10 and 14-squares cannot be
corner squares.

Proof. Suppose firstly the 10-square is a corner square. Consider the square
that will be placed adjacent to the 10-square in the adjacent edge (i.e., c or
cop). Since the 7-square is in v, then the 6-square cannot be adjacent to the
10-square. Further, squares 7–15 have been placed in either v or vop. Therefore,
the next smallest square that can be placed adjacent to the 10-square in the
adjacent edge is the 16-square. Therefore, the 9-square is the only square that
can be placed adjacent to the 10-square in vop. However, this guarantees wasted
space over the 9-square. Thus, the 10-square cannot be an edge.

Now, suppose the 14-square is a corner square. By the same reasoning, we know
that the 16-square is next possible square that can be placed adjacent to the
14-square in the adjacent edge. This along with Theorem 1(iii) implies we must
have adj(7,8,14) on vop. Then the possible sets of squares to be placed on the
7-square are adj(1,6), adj(2,5), adj(3,4), and adj(1,2,4). Consider when we have
adj(7,14). Adj(1,2,4) is guaranteed wasted space adjacent to the 2-square for
all permutations, and placing adj(1,6) on the 7-square would leave a 1 × 2 (or
longer) gap above the 6-square. Therefore the set of squares on the 8-square
must sum to eight. Suppose adj(3,4) is placed on the 7-square, then we must
have adj(1,2,5) on the 8-square. However, this guarantees wasted space over the
1-square for all permutations. In a similar way, we rule out placing adj(2,6) on
the 8-square. Suppose adj(2,5) is placed on the 7-square. Then we must have
adj(1,3,4) placed on the 8-square. We must have adj(1,2) to avoid wasted space
over either the 1 or 2-square. This guarantees wasted space over the 1,2-flush.

This shows we cannot have adj(14,7). However, all cases were exhausted
without the permutation of the 7 and 8-square taken into account except for
adj(1,6) on the 7-square; we only need to consider this case. Let ord(14,8,7)
be on vop, and place adj(1,6) on the 7-square. Then we must have adj(1,8) to
avoid wasted space over the 1-square. Then we need a set of squares that sum
to nine to be placed on the 1,8-flush. The only sets are adj(2,3,4) and adj(4,5).
But adj(2,3,4) is ruled out by Lemma 2. Place adj(4,5) on the 1,8-flush. Then
either permutation will leave wasted space over the 4-square.

Therefore, we have exhausted all possibilities and so the 14-square cannot be a
corner square.
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14

7 8

18 or 23

16+

×

To account for this Lemma in the computer code, we add the following scripts
before the code for generating Cop and Frm, and then run the code to generate
the new set of possible frames.

1 q3=1;
2 R3=rows (C) ;
3 whi le q3<=R3
4 c=C( q3 , : ) ;
5 i f ismember (14 , c )==1 | | ismember (10 , c )==1
6 C( q3 , : ) = [ ] ;
7 R3=R3−1;
8 q3=q3−1;
9 end

10 q3=q3+1;
11 end

Note that this takes into consideration if a given v, vop, and c yield zero cop
options, then these cases are ruled out immediately. This yields the following
frames:

Frm1 = 0 0 7 8 14 18 23
0 9 10 11 12 13 15
0 0 0 11 16 20 23

Cop = 0 0 0 12 18 19 21
0 0 0 13 17 18 22

Frm2 = 0 0 7 8 14 18 23
0 9 10 11 12 13 15
0 0 0 11 16 20 23

Cop = 0 0 0 12 16 18 24
0 0 0 15 16 18 21

Frm3 = 0 0 7 8 14 18 23
0 9 10 11 12 13 15
0 0 0 11 18 20 21

Cop = 0 0 0 12 16 19 23

Frm4 = 0 0 7 8 14 18 23
0 9 10 11 12 13 15
0 0 0 12 16 19 23

Cop = 0 0 0 11 17 18 24
0 0 0 13 17 18 22
0 0 0 15 17 18 20

Frm5 = 0 0 7 8 14 18 23
0 9 10 11 12 13 15
0 0 8 9 16 17 20

Cop = 0 0 0 12 18 19 21
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46 optimal rectangle packing for the 70 square

Frames 1, 2, and 3 are all ruled out (for all choices of cop) as the 11-square is in
the corner of c and vop, but we must have adj(11,16) or adj(11,20) which yields
wasted space to the right of the 11-square, for any cop.

For frame 4, we have the 12-square in the corner of c and vop, where
adj(12,> 16) ⊂ c. We can see that the 9, 10, and 11-squares are the only possible
squares that can be adjacent to the 12-square in vop. However,
placing the 10 or 11-square adjacent to the 12-square leaves a 1× k1 or 2× k2
for k1, k2 > 4. Therefore we must have adj(9,12). Then the only tiling that
can be placed above the 9-square is placing the 3-square adjacent to the 9 and
12-squares, then placing adj(1,2) on the 3-square. Finally the 4-square is the
only remaining square that can be placed on the 9-square which makes the set
of squares on the 9-square sum to nine. However, this guarantees wasted space
over the 2-square.

12
9

3 2
1 4

16

Finally, consider fame 5. Note the 8 and 9-squares are a corner squares and
the next smallest square to be adjacent to the 8-square in c is the 16-square.
That is, we must have adj(8,> 16), which contradicts Theorem 1(iv). Therefore
frame 5 is also ruled out.

Therefore, we have exhausted all possible frames for v = {7, 8, 14, 18, 23} and
vop = {9, 10, 11, 12, 13, 15}. Thus these cannot both be edges opposite each
other.
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Near Misses

Here is the matlab code to determine near-misses (Table 2.5).

1 c l e a r ; c l c ; format long ;
2 t =1;
3 s t =2*10ˆ6; % s t a r t va lue
4 en =4*10ˆ6; % end value
5 f o r n=s t : en
6 y=s q r t (n*(n+1)*(2*n+1)/6) ;
7 i f rem(y , 1 )==0
8 S( t , 1 )=n ;
9 S( t , 2 )=y ;

10 t=t +1;
11 end
12 end
13 S
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