"A difficult case": Pacioli and Cardano on the Chinese Rings

Open access


The Chinese rings puzzle is one of those recreational mathematical problems known for several centuries in the West as well as in Asia. Its origin is diffcult to ascertain but is most likely not Chinese. In this paper we provide an English translation, based on a mathematical analysis of the puzzle, of two sixteenth-century witness accounts. The first is by Luca Pacioli and was previously unpublished. The second is by Girolamo Cardano for which we provide an interpretation considerably different from existing translations. Finally, both treatments of the puzzle are compared, pointing out the presence of an implicit idea of non-numerical recursive algorithms.

[1] Ahrens, Wilhelm. Mathematische Unterhaltungen und Spiele, Leipzig: B.G., Teubner, 1901.

[2] Arima, Yoriyuki. Shüki sanpō, [Edo]: Senshōdō, 1769.

[3] Ball, W. W. Rouse. Mathematical recreations and problems of past and present times, London: Macmillan and Co, 1892.

[4] Boncompagni, Baldessaro. \Appendice di documenti inediti relativi a Fra Luca Pacioli", Bullettino di bibliografia e di storia delle scienze matematiche e fisiche, 12 (June), 428-438, 1879.

[5] Cardano, Girolamo. Practica arithmetice & mensurandi singularis: in qua que preter alias continentur versa pagina demonstrabit, Mediolani: Io. Antonins Castellioneus Mediolani imprimebat, impensis B. Calusci, 1539.

[6] Cardano, Girolamo. Hieronymi Cardani Medici Mediolanensis De Subtilitate Libri XXI, Norimbergæ apud Ioh. Petreium (for a modern edition and translation, Forrester), 1550.

[7] Döll, Steffen; Hinz, Andreas M. \Kyü-renkan|the Arima sequence", Advanced Studies in Pure Mathematics, to appear.

[8] Dudeney, Henry Ernest. Amusements in Mathematics, London: Thomas Nelson, 1917.

[9] Fibonacci, Leonardo. Scritti di Leonardo Pisano, Baldassarre Boncompagni (ed.), Roma: Tipografia delle scienze matematiche e fisiche, 1857 (English translation by Laurence Sigler, Fibonacci's Liber Abaci: a Translation into Modern English of Leonardo Pisano's Book of Calculation, New York: Springer, 2002).

[10] Forrester, John (ed. tr.). The De subtilitate of Girolamo Cardano, Tempe, Arizona: Arizona Center for Medieval and Renaissance Studies, 2013.

[11] Garlaschi Peirani, Maria (ed.). De viribus quantitatis, Milano: Ente Raccolta Vinciana, 1997.

[12] Gardner, Martin. Knotted doughnuts and other mathematical entertainments, New York: W.H. Freeman, 1986.

[13] Gros, Louis. Théorie du Baguenodier par un clerc de notaire lyonnais, Lyon: Aimé Vingtrinier, 1872.

[14] Heeffer, Albrecht. \Regiomontanus and Chinese Mathematics", Philosophica, 83, 81-107, 2010.

Journal Information

Target Group

researchers in the fields of games and puzzles, problems, mathmagic, mathematics and arts, math and fun with algorithms


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 263 263 11
PDF Downloads 166 166 11