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Abstract: Given a (symmetrically-moving) piece from a chesslike game, such
as shogi, and an n×n board, we can form a graph with a vertex for each square
and an edge between two vertices if the piece can move from one vertex to the
other. We consider two pieces from shogi: the dragon king, which moves like
a rook and king from chess, and the dragon horse, which moves like a bishop
and rook from chess. We show that the independence number for the dragon
kings graph equals the independence number for the queens graph. We show that
the (independent) domination number of the dragon kings graph is n − 2 for
4 6 n 6 6 and n− 3 for n > 7. For the dragon horses graph, we show that the
independence number is 2n − 3 for n > 5, the domination number is at most
n−1 for n > 4, and the independent domination number is at most n for n > 5.

Keywords: shogi, n-queens problem, combinatorics.

Introduction

Hundreds of papers have been written on problems involving the placement of
chess pieces on a board so that the placement satisfies given constraints [1, 6, 10].
One famous example is the n-queens problem of placing the maximum number
of queens on an n× n chessboard so that no queen “attacks” any other queen
(i.e., no queen can reach the position of another queen in one move). Another
problem, the queens domination problem, calls for placing the minimum number
of queens on an n× n board so that each empty square is attacked by at least
one queen. A third example, the queens independent domination problem, calls
for the placement of the minimum number of queens necessary on an n×n board
so that no two queens attack each other and every empty square is attacked by
at least one queen.

Among other approaches, these placement problems have been framed and
studied as problems in graph theory. Suppose M is a piece in a chesslike
game played on an n × n board and suppose its set of legal moves form a
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26 independence and domination on shogiboard graphs

symmetric relation on the set of positions; i.e., if M can move from position a to
position b it can also move from b to a (we exclude the case where M is a chess
pawn, which only moves in forward directions). Then we define the pieces
graph Mn to have vertex set V (Mn) = {(i, j)|i, j ∈ {0, . . . , n − 1}}, with (i, j)
representing the square in column i and row j, and edge set
E(Mn) = {{(a, b), (i, j)}|M can move from (a, b) to (i, j)}. For example, since
the rook attacks all squares in its row and column, the rooks graph Rn has edge
set E(Rn) = {{(a, b), (i, j)}|a = i or b = j}. Also, since the bishop attacks
all squares in its “falling diagonal” (i.e., squares for which the sum of row and
column coordinates is a constant) and its “rising diagonal” (i.e., squares for
which the row coordinate minus the column coordinate is a constant), the
bishops graph Bn has edge set E(Bn) = {{(a, b), (i, j)}|a + b = i + j or
a − b = i − j}. Finally, since the queen combines the powers of rook and
bishop, the edge set of the queens graph is E(Qn) = E(Rn) ∪E(Bn).

Recall from [4] that in any graph G, two vertices are adjacent if they share an
edge, a set of vertices of G is independent if no two of the vertices in that set are
adjacent, and a set of vertices is a dominating set if each vertex of G is either
in the set or adjacent to an element of the set. For any graph G we define the
following domination parameters:� the independence number β(G) is the maximum cardinality of an

independent set of vertices of G� the domination number γ(G) is the minimum cardinality of a dominating
set of vertices of G� the independent domination number i(G) is the minimum cardinality of
an independent dominating set of vertices of G.

These parameters are related by an inequality chain: for any graph G, we have
γ(G) 6 i(G) 6 β(G) [4, Corollary 3.7].

The values of these parameters for chessboard graphs are known for, among
other pieces, the rook and bishop: β(Rn) = i(Rn) = γ(Rn) = n, β(Bn) = 2n−2
for n > 2, and i(Bn) = γ(Bn) = n. Also, β(Qn) = n for n > 4 (β(Qn) = 1
for n = 1 or 2, and 2 for n = 3). However, the values of i(Qn) and γ(Qn) are
known for only finitely many n [5, Chapter 6].

In this paper we consider two pieces from shogi, a Japanese relative of chess: the
dragon king, which can move one square diagonally or any
number of squares vertically or horizontally, and the dragon horse, which can
move any number of squares diagonally or one square vertically or horizontally.
(For more information on shogi, we refer the interested reader to [2].) Let Dn be
the dragon kings graph on the n×n board — so E(Dn) = {{(a, b), (c, d)}|a = c

or b = d or max(|a − c|, |b − d|) = 1}. Also, let Hn be the dragon horses
graph on the n × n board – so E(Hn) = {{(a, b), (c, d)}|a + c = b + d or
a−c = b−d or max(|a−c|, |b−d|) = 1}. We note that E(Dn)∪E(Hn) = E(Qn),
so exploring domination parameters for the dragon kings graph and the dragons
horses graph may provide insight into the problems of queens domination and
queens independent domination.
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In Section 1 we determine β(Dn), γ(Dn), and i(Dn). In Section 2 we determine
β(Hn) and find upper bounds for γ(Hn) and i(Hn). We also discuss computer
calculations for γ(Hn) and i(Hn). In Section 3 we discuss open problems and
avenues for further study.

1 Dragon kings

First we show that the dragon kings independence number equals the queens
independence number.

Proposition 1. For 2 6 n 6 3, β(Dn) = β(Qn) = n− 1. For all other values
of n, β(Dn) = β(Qn) = n.

Proof: It is easy to check that β(D2) = 1 = β(Q2) and β(D3) = 2 = β(Q3),
so suppose n 6= 2 and n 6= 3. Since E(Rn) ⊆ E(Dn) ⊆ E(Qn), we have
β(Rn) > β(Dn) > β(Qn). So n = β(Rn) > β(Dn) > β(Qn) = n, and therefore
β(Dn) = β(Qn) = n for n = 1 and n > 4. �

The reader might wonder what the maximum independent sets of Dn are. For
n > 4, we obtain a maximum independent set of dragon kings on the squares
(i, σ(i)), i = 0, . . . n − 1, where σ is any permutation of {0, . . . , n − 1} such
that σ(i + 1) 6= σ(i) ± 1 for i = 0, . . . , n − 2. Such permutations exist; for
example, consider {(i, (2i+ 1) mod n)|i = 0, . . . , n− 1} for n > 4 (as pictured
in Figure 1). These permutations have been studied in many settings, and the
sequence {a(n)}∞n=1, where a(n) is the number of such permutations of
{0, . . . , n− 1}, is the sequence A002464 of the OEIS [8]. �� �� �� �� �

Figure 1: A 9× 9 board with 9 independent dragon kings.
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28 independence and domination on shogiboard graphs

Next we consider the domination and independent domination numbers. For
1 6 n 6 3, i(Dn) = γ(Dn) = 1. In the next few theorems we show that
the domination number and the independent domination number of the dragon
kings graph are equal for all n.

Lemma 2. Suppose we have an n×n board dominated by k independent dragon
kings. Then we can dominate an (n+ 1)× (n + 1) board by k + 1 independent
dragon kings.

Proof: We note that at least one of the four corner squares is empty, since
otherwise the dragon kings are not all independent. Without loss of generality,
say that square is (n− 1, n− 1). (If not, we can rotate until it is.) Add row n

and column n and place a dragon king on square (n, n). The new dragon king
dominates the newly added squares and attacks no other dragon king. �

Proposition 3. For 3 6 n 6 6, γ(Dn) = i(Dn) = n− 2.

Proof: First we show γ(Dn) 6 i(Dn) 6 n−2. For a 3×3 board, place a dragon
king in the center square and note that all other squares are attacked. We can
now prove our claim by induction on n using Lemma 2.

To complete the proof it remains to show n− 2 6 γ(Dn) for 3 6 n 6 6. This is
obviously true for n = 3, so let n > 4 and suppose we have a dominating set A
for Dn of size n − 3. We have at least three empty columns (that is, columns
containing no elements of A) and at least three empty rows.

Let c1 < c2 < c3 indicate the numbers of three empty columns and r1 < r2 < r3
indicate the numbers of three empty rows. Consider squares (c1, r1), (c1, r3),
(c3, r1), and (c3, r3). Each of those squares must be attacked diagonally by
members of A. For any i, the squares in column ci (respectively, row ri) can
only be diagonally attacked by pieces in column ci − 1 or ci + 1. (respectively,
row ri − 1 or ri + 1.) We show that no single piece covers any pair of the
squares under consideration. If a dragon king attacked both (c1, r1) and (c1, r3)
diagonally, that piece would be in row r1 + 1 = r3 − 1. But that row would
then also be row r2, which is empty. So the dragon king attacking (c1, r1) must
be distinct from the dragon king attacking (c1, r3). Similar arguments work for
any other pair of the considered squares. Hence our dominating set must have
at least 4 elements. But for 4 6 n 6 6, n − 3 < 4, a contradiction. We must
have n− 2 6 γ(Dn) for n = 4, 5, 6. �

An anonymous reviewer of a previous draft of this paper kindly provided the
following proof:

Proposition 4. (Anonymous) For n > 7, n− 3 6 γ(Dn) 6 i(Dn).
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Figure 2: A 9× 9 board dominated by 6 independent dragon kings.

Proof: Suppose that for some integer n > 7 there exists a dominating set A of
size n− 4 for Dn. Let e denote the number of empty rows and let f denote the
number of empty columns. By rotating the board if necessary, we may assume
that e 6 f .

For i = 0, 1, 2 let Ai = {s ∈ A : square s is in a row adjacent to exactly i empty
rows} and let ai = |Ai|. Then

a0 + a1 + a2 = n− 4. (1)

For i = 0, 1, 2, let di be the number of rows having a square in Ai. Then

d0 + d1 + d2 = n− e. (2)

The definitions imply di 6 ai for each i, so (1) and (2) give e − 4 as a sum of
nonnegative integers:

(a0 − d0) + (a1 − d1) + (a2 − d2) = e − 4. (3)

Since at most 2e rows are adjacent to empty rows,

d1 + 2d2 6 2e. (4)

Let U be the set of board squares not in the same row or column as any square
of A; these squares must be covered diagonally. There are ef squares in U .
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30 independence and domination on shogiboard graphs

For i = 1, 2, a square of Ai covers at most 2i squares of U , and squares of A0

cover no squares of U . Thus 2a1 + 4a2 > ef . We rewrite this as

2[d1 + (a1 − d1)] + 4[d2 + (a2 − d2)] > ef. (5)

By (4), 4e > 2d1 + 4d2, so (5) implies

4e+ 2(a1 − d1) + 4(a2 − d2) > ef.

From (3), 4(e − 4) > 4(a1 − d1) + 4(a2 − d2) > 2(a1 − d1) + 4(a2 − d2), so
4e+ 4(e− 4) > ef . This gives

0 > e(f − e) + (e − 4)2. (6)

Since each of e, f − e, and (e− 4)2 is nonnegative, (6) implies e = f = 4. Then
(3) implies ai = di for i = 0, 1, 2: every nonempty row contains just one square
of A. Since e = f , we may similarly conclude that every nonempty column
contains just one square of A.

Let c1 < c2 < c3 < c4 be the numbers of the empty columns, and
r1 < r2 < r3 < r4 be the numbers of the empty rows. The four squares of
U in row r1 must be diagonally covered by squares of A in rows r1 + 1 and
r1 − 1. Then these rows must contain exactly one square each of A, and these
must be in columns c1+1 and c3+1, with c2 = c1+2 and c4 = c3+2. However,
the four squares of U in row r4 will similarly need to be covered by squares of
A in columns c1 + 1 and c3 + 1, and these squares cannot be the same as those
covering the squares of U in row r1. This means A contains two squares in some
columns, a contradiction. Thus no dominating set of size n− 4 exists. �

Corollary 5. For n > 7, γ(Dn) = i(Dn) = n− 3.

Proof: By Proposition 4, it suffices to show an independent dominating set
of Dn for each n > 7. For n = 7, take an 7 × 7 board and place dragon
kings on squares (0, 0), (2, 4), (4, 2) and (6, 6). We can check that this set is an
independent dominating set. Then we can prove the statement by induction on
n using Lemma 2 (an example of the construction is shown in Figure 2). �

2 Dragon horses

We start the section by determining the independence number of the dragon
horses graph.

Proposition 6. The independence number of the dragon horses graph, β(Hn),
is 1 for n = 1 and n = 2, n for n = 3 and n = 4, and 2n− 3 for n > 5.

Proof: On a 1× 1 or a 2× 2 board, a single dragon horse placed on any square
leaves all other empty squares attacked, so β(H1) = β(H2) = 1.

On a 3× 3 board, we can place dragon horses on (0, 1), (2, 0) and (2, 2) to show
β(H3) > 3. To see β(H3) 6 3, suppose 4 pieces are on the board. If they are not
on the four corners, then at least two are on physically touching squares, and if
the pieces are on the four corners, then we have pieces on the same diagonal.
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To see that β(H4) > 4, place dragon horses on squares (0, 0), (0, 2), (2, 1), and
(2, 3). To see that β(H4) 6 4, partition the board into a 2 × 2 array of
2 × 2 blocks and note that each block can only hold one dragon horse of an
independent set.

For n > 5, we show β(Hn) > 2n − 3. If n is odd, place dragon horses on
(n−1

2 , n−1
2 ), (1, 0), (1, n − 1), and, for each i = 1, . . . , n−3

2 , (0, 2i),
(n − 1, 2i), (2i + 1, 0), and (2i + 1, n− 1). If n is even, place dragon horses on
(0, 0),(n−2, 0),(1, n−1),(n−1, n−2), (n2 −1, n2 ), and, for each i = 1, . . . , n

2 −2,
(2i, 0), (2i + 1, n− 1), (0, 2i+ 1), and (n − 1, 2i). Examples of these construc-
tions are pictured in Figures 3 and 4. We can check that none of these positions
are on the same diagonal and that for any pair of positions, either the row
coordinates or the column coordinates differ by at least 2.

To conclude the proof, we show β(Hn) 6 2n− 3 for n > 5. Partition the board
into 2n − 3 “slices”, where the first slice consists of squares (0, 0), (0, 1), and
(1, 0), the (2n− 3)rd slice consists of squares (n − 1, n− 2), (n− 2, n− 1), and
(n− 1, n− 1), and the ith slice for i = 2, . . . 2n− 2 consists of the squares in the
ith falling diagonal. Each slice can have at most one independent dragon horse,
so the board can have at most 2n− 3 independent dragon horses. �� � �� ��� �� � �

Figure 3: A 7× 7 board with 11 independent dragon horses.

Next we consider the domination and independent domination numbers. We
note that for 1 6 n 6 3, i(Hn) = γ(Hn) = 1. We obtain an upper bound for
the domination number of the dragon horses graph.
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Figure 4: An 8× 8 board with 13 independent dragon horses.

Proposition 7. For n > 4, γ(Hn) 6 n− 1.

Proof: If n is odd, we place dragon horses on all but the bottom row of the
central column, as shown in Figure 5, and check that the empty squares are
dominated. If n = 2k is even, we place dragon horses on all but the first and
last rows of column k and square (n − 1, k), as shown in Figure 6, and check
that the empty squares are dominated. �����

Figure 5: A 5× 5 board dominated by 4 dragon horses.

We next obtain an upper bound for the independent domination number of the
dragon horses graph.
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Figure 6: A 8× 8 board dominated by 7 dragon horses.

Proposition 8. For n > 5, i(Hn) 6 n.

Proof: If n is odd, place dragon horses on squares (1, 2i+1) and (n− 2, 2i) for
each i such that 0 6 i 6 n−1

2 − 1 and square (n− 2, n− 1), as shown in Figure
7. If n is even, place dragon horses on squares (1, 2i) and (n − 2, 2i) for each i

such that 0 6 i 6 n
2 − 1, as shown in Figure 8. In each case, we can check that

each empty square is dominated and that none of the dragon horses attack each
other. � �� �� �� �

Figure 7: A 7× 7 board dominated by 7 independent dragon horses.
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Figure 8: A 8× 8 board dominated by 8 independent dragon horses.

1 i n c l ude ” g l o b a l s .mzn” ;
2
3 i n t : n ;
4
5 array [ 0 . . n−1 , 0 . .n−1] o f var 0 . . 1 : horse ;
6 array [ 1 . . 2 ] o f var s t r i n g : p i e c e ;
7
8 p i e c e =[” . ” , ”h ” ] ;
9

10 % Each space i s e i t h e r occupied or attacked by a horse
11 con s t r a i n t f o r a l l ( i i n 0 . . n−1, j i n 0 . . n−1) ( ( sum(h in 0 . . n−1,k in

0 . . n−1 where h+k==i+j \/h−k==i−j \/( abs (h−i )<=1/\abs ( j−k )<=1)) (
horse [ h , k ] )>=1)) ;

12
13 % No ”sum diagona l ” ( i . e . squar es ( i , j ) where i+j=s f o r some

constant s ) has two hor ses
14 con s t r a i n t f o r a l l ( s i n 0 . . 2 * n−2) (sum( j in 0 . . n−1 where 0<=s−j /\ s−j

<=n−1) ( horse [ s−j , j ] )<=1) ;
15
16 % No ” d i f f e r e n c e d iagona l ” ( i . e . squar es ( i , j ) where i−j=d f o r some

constant d) has two hor ses
17 con s t r a i n t f o r a l l (d in 1−n . . n−1) (sum( j in 0 . . n−1 where 0<=d+j /\d+j

<=n−1) ( horse [ d+j , j ] )<=1) ;
18
19 % No 2x2 block has more than one horse
20 con s t r a i n t f o r a l l ( i i n 0 . . n−2, j i n 0 . . n−2) ( horse [ i , j ]+ horse [ i +1, j ]+

horse [ i , j +1]+horse [ i +1, j+1]<=1) ;
21
22 s o l v e minimize sum( i in 0 . . n−1, j i n 0 . . n−1) ( horse [ i , j ] ) ;
23
24 % optimal s o l u t i o n d i sp l ayed as a 2−D diagram
25 output [ show ( p i e c e [ horse [ i , j ]+1 ] ) ++ i f j==n−1 then ”\n” e l s e ””

end i f | i i n 0 . . n−1, j i n 0 . . n−1] ;

Figure 9: MiniZinc model for determining i(Hn).
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The problem of finding the (independent) domination number of a graph can
be expressed as an integer programming problem. (See [4, Section 11.1] and
[5, Chapter 1].) We set up models in MiniZinc [7, 9] for the domination and
independent domination numbers ofHn and applied the G12 MIP solver to those
models. The model for i(Hn) is shown in Figure 9. To get a model for γ(Hn),
take Figure 9 and remove lines 10-11. The results indicate that for 4 6 n 6 18,
γ(Hn) = i(Hn) = n − 1, except that γ(H6) = 4, not 5. (To see γ(H6) 6 4,
place dragon horses on squares (1, 1), (1, 4), (4, 1) and (4, 4).) However, we lack
a general proof that γ(Hn) = i(Hn) = n− 1.

3 Open problems

The results in this paper provoke many questions, including the following.

1. It is known that there are 2n arrangements of 2n − 2 independent
bishops on an n × n board where n > 2 [10, Theorem 10.2]. How many
arrangements are there of 2n− 3 independent dragon horses on an n× n

board (where n > 5)?

2. Is it true that γ(Hn) = i(Hn) = n− 1 for n > 6?

3. For each 0 < k 6 n, we define a k-step rook on a n×n board to be a piece
that can move up to k squares in a vertical or horizontal direction and a
k-step bishop as a piece that can move up to k squares in a
diagonal direction. Further, we define a k-step dragon king to be the
combination of the rook and a k-step bishop and a k-step dragon horse
to be the combination of the bishop and a k-step rook. What happens
to the domination parameters of the k-step dragon kings graph Dk,n and
k-step dragon horses graph Hk,n as k increases? How quickly do those
parameters reach the corresponding parameters of the queens graph?

We note that since β(Dn) = β(Qn) and E(Dn) ⊆ E(Dk,n) ⊆ E(Qn),
we have β(Dk,n) = β(Qn) for all k. On the other hand, for n > 5,
n = β(Qn) < β(Hn) = 2n − 3 < β(Bn) = 2n − 2, so we cannot yet
determine β(Hk,n) for all k and n.

4. What can be said about the domination parameters of other shogi pieces?
The shogi king, bishop, and rook move like their chess counterparts
(ignoring rules about castling and the king avoiding check), and their
graphs have been studied [5, Chapter 6]. The other shogi pieces have
nonsymmetrical moves. Suppose the initial position of a player’s king is
in row 0 and that the opponent’s king starts in row n − 1. Then for the
pieces on the player’s side:� The lance moves any number of squares forward; i.e., from (i, j) to

(i, j + k) for k > 1.� The shogi pawn moves one square forward; i.e., from (i, j) to (i, j+1).� The shogi knight leaps to positions that are two squares vertically
forward plus one square to the left or right; i.e., from (i, j) to
(i− 1, j + 2) or (i+ 1, j + 2).
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36 independence and domination on shogiboard graphs� The silver general moves one square diagonally or one square
vertically forward; i.e., from (i, j) to (i± 1, j ± 1) or (i, j + 1)� The gold general moves one square vertically, one square horizontally,
or one square diagonally forward; i.e., from (i, j) to (i, j ± 1) or
(i ± 1, j) or (i± 1, j + 1).

So, if we examine the appropriate directed graphs, what are the
domination parameters for these pieces?

5. Since chess queens do not move through other pieces, placing pawns on
a board may increase the maximum number of independent queens we
can put on that board. In [3] it is noted that the maximum number of
mutually nonattacking queens that can be placed on an n× n board with

pawns is n
2

4 if n is even and (n+1)2

4 if n is odd. The argument divides the
board into 2 × 2 blocks and notes that each block can take at most one
queen, regardless of how many pawns are on the board. That argument
also works for dragon kings and dragon horses. So, as [3] asks for queens,
how many pawns are needed to allow the maximum number of dragon
kings or dragon horses on the board?

Acknowledgment: The author wishes to thank Yoshiyuki Kotani of the Tokyo
University of A & T for suggesting the study of the dragon king and dragon
horse.
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