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Introduction

The Tower of Hanoi puzzle is a game that is played with disks of graduated
sizes on three pegs. When the game begins, the disks are arranged on the first
peg according to their size. The largest disk is located at the bottom of the peg
and above it are all of the other disks arranged in increasing size. The smallest
disk is therefore at the top of the peg. One must relocate all of the disks to the
third peg, but there are strict rules about how the disks are moved. Moving
one disk at a time, and never placing a larger disk on top of a smaller one, the
player slowly makes their way to the end of the puzzle, with the stack of disks
back in their original order on the third peg. The number of moves that it takes
to complete the puzzle grows exponentially with the number of starting disks.
It is for this reason, that when the priests at the temple of Benares were asked
to complete the same task, but with sixty-four disks, the world would end at
their completion. The legend speaks of sixty-four disks of gold being placed on a
brass plate with diamond needles acting as the pegs. The priests were required
to move each disk, one at a time, until the disks were back in their original
order on the third diamond peg. Using the same condition that no gold disk
ever be placed upon a smaller one, their task would exceed 500 billion years
before finishing.

Suppose we relaxed the rule demanding the priests not place a golden disk on top
of a smaller one by only requiring the bottom disk in any stack to be the largest.
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80 several bounds for the k-tower of hanoi puzzle

Then how long would it take the priests to finish their divine task? What about
if we only required the bottom two disks in any stack be the largest and allowed
them to place any smaller disks on top of those? Furthermore, suppose we
continue this and ask how long it will take to complete this puzzle if we allow
a disk to be placed on top of a smaller disk, provided that the k disks on the
bottom of the stack be the largest in the stack such that those k disks are
arranged from largest on bottom, increasing in size to the kth disk? It is this
question that is of interest in this paper. The resulting puzzle will take longer
to solve for larger values of k, and it can be solved relatively quickly for smaller
values of k. We will discuss several upper bounds on the optimal solutions for
the minimum number of moves that it takes to complete these type of puzzles.

In Section 2, we discuss the fundamentals of the approach we will take to obtain
our upper bounds. Next, in Section 3, we give upper bounds for some specific
cases when the value k depends on the number of starting disks, n. Then in
Section 4, we give an upper bound for the case whenever k is three and the
number of starting disks can be any value greater than or equal to k. Finally,
in Section 5, we discuss our future work to give a bound for an arbitrary value
of k and an arbitrary number of disks, n.

Preliminary

The structure of the proofs for the upper bounds of the modified Tower of Hanoi
puzzles (called k-Tower of Hanoi puzzles) is based on the concept of building
stacks of disks, from the n starting disks. Because the goal of the puzzle is to
relocate all disks to the third peg, at some point in the puzzle, the largest disk
must be placed onto the empty third peg. This can only be done when the
largest disk is the only disk on the first peg and the remaining (n − 1) disks
are on the second peg. These remaining disks form a stack. Now before we can
have a stack of (n− 1) disks, we must have a stack of (n− 2) disks so that the
second largest disk can be relocated, and so on. So, looking at the puzzle from
the forward direction, we must first form a stack of one, then a stack of two, etc.
until a stack of (n− 1). We refer to this as the midpoint. After this, we move
the largest disk onto the third peg. To complete the puzzle, we then reverse the
process. We will look at the puzzle from the viewpoint of building these stacks of
disks, and we will look at some patterns concerning how these stacks are formed.

It should be noted that in order to minimize the number of moves to complete
the puzzle, we cannot simply minimize the number of moves that it takes to
form each stack, and then add those together. We find that in minimizing the
number of moves to form some stacks, we greatly increase the number of moves
that it takes to form the next stack. However, there is a way to build successive
stacks such that the number of moves of the two together is kept to a minimum.
We see that the value of k will determine how we need to build these stacks.

We have written a computer program to give us possible moves from one
stack to the next, with the minimum paths to each configuration stored (since
we do not know which configuration we want to use in the overall minimum
solution). Then for each of these minimum paths, the program repeats the
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process, stopping at every configuration of the next stack. Once the midpoint
of the puzzle has been reached, the program takes the overall minimum path
(which is the concatenation of the paths from the first stack to the second
stack, and then from the second stack to the third stack, etc.) and uses that as
the minimum solution. Thus, what we are doing is minimizing the number of
moves that it takes to build each stack, such that the disks are in some desired
configuration in each stack.

When completing any k-Tower of Hanoi puzzle, one always makes the first move
based on whether n is odd or even. If n is odd, then one will move the first disk
to the third peg. If n is even, then one will move the first disk to the second
peg. Because of this, and because our proofs involve an arbitrary n, when we
speak of moving disks, we will use the terms source peg, intermediate peg,
and destination peg. For odd values of n, the intermediate peg will be the
second peg, and the destination peg will be the third peg. For even values of
n, the intermediate peg will be the third peg, and the destination peg will be
second peg. For both cases, the source peg will be the first peg. Thus, when
we build stacks of disks containing an even number of disks, they will always be
on the intermediate peg, and stacks of disks containing an odd number of disks
will always be on the destination peg. So, whenever we are making moves that
depend on whether n is even or odd, we will use this terminology. Otherwise, if
the peg is known, we will use the traditional terms.

With some of these proofs, when forming stacks of disks, we can take advantage
of the special rule involving k. For this, we will use the concept of flipping a
group of disks. A flip of a group of disks is the process of moving disks, which
are at the top of a stack, in succession to some other peg so that their new
arrangement is the inverted arrangement that they started in. Note that a flip
of x disks takes x moves. Also, the peg that the disks are being moved to must
contain at least k disks that are larger than each disk being flipped (so as to
not violate the rule involving k).

Also, the moves that we can make that take advantage of the rule involving
k will be highlighted in the proofs. Such moves will be considered saves as
compared to moves made while completing the classic Tower of Hanoi puzzle,
as these are the moves that allow the puzzle to be completed more quickly.
Whenever we make moves that follow the traditional Tower of Hanoi puzzle,
the case where k = (n− 0), we say that we follow the classic rules. We often
leave these moves to the reader for the sake of simplicity. Additionally, because
our proofs involve many specific moves, we have included figures for clarity.
The figures use arrows connecting distinct steps of the puzzles and these arrows
denote either a single move or a group of moves. For groups of moves, we will
make them using the classic rules, using a flip, or by reversing moves that were
previously shown. The type of move will be listed beneath the arrow. For the
case of a flip, which always results in some number of moves being saved (as
compared to how the classic Tower of Hanoi puzzle is completed), we typically
indicate the number of saves by a negative number, which will be listed above
the arrow. Color-coded disks are used to help identify the disks being moved.
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Rules for the k-Tower of Hanoi Puzzle

• Disks can only be moved one at a time.

• Only the top disk on a stack can be moved from that peg.

• A disk can be placed on top of a smaller disk, provided that the bottom
k disks of that stack are the largest in the stack (where the largest disk is
at the bottom, the next largest on top of it, etc., up to the kth largest disk).

Upper bound on the minimum number of moves

to complete the k-Tower of Hanoi Puzzle whenever

k = (n− x)

Here we consider the k-Tower of Hanoi puzzle where k depends on the number
of disks, n. We show an upper bound Tk(n) for the cases of k = (n − x) for
x = 0, 1, 2, 3, 4, 5.

Tn−x(n) =















2n − 1 if x = 0, 1, 2
2n − 3 if x = 3
2n − 4n+ 3 if x = 4, n > 7
2n − 20n+ 57 if x = 5, n > 9

Upper bound on the minimum number of moves to complete

the k-Tower of Hanoi Puzzle whenever k = (n− 0)

Since k = (n− 0) = n, this puzzle is the classic Tower of Hanoi puzzle (since no
disk can be placed on top of a smaller one), so its upper bound is 2n − 1.

Upper bound on the minimum number of moves to complete

the k-Tower of Hanoi Puzzle whenever k = (n− 1)

This puzzle requires the same number of moves as the k = (n−0) puzzle because
a disk can be placed on top of a smaller disk provided the bottom k = (n− 1)
disks are the largest in that stack. If this condition is true, then there is only
one disk that is not in the stack of (n − 1) disks. Thus, there does not exist
another disk that can be placed on top of some smaller disk.

Upper bound on the minimum number of moves to complete

the k-Tower of Hanoi Puzzle whenever k = (n− 2)

Once again, this puzzle requires the same number of moves as the k = (n − 0)
puzzle because the only time we can place disks out of order is whenever we
have a stack of (n − 2) disks with the two remaining disks being smaller than
each of the (n− 2) disks. Obviously the only configurations that allow this are
the beginning and ending configurations, but these configurations are fixed.
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Upper bound on the minimum number of moves to complete

the k-Tower of Hanoi Puzzle whenever k = (n− 3)

This puzzle has a bound of 2n − 3. Notice that this is 2 fewer moves than using
the classic rules. So, there are two places in the k = (n− 3) case where a move
is saved as compared to the k = (n − 2) case. The saves occur when we are
building a stack of (n−1) disks. We complete this puzzle differently based upon
whether n is even or odd.

• If n is even, we make moves using the classic rules until we reach the
configuration where the first peg contains the nth and (n − 1)st largest,
and the largest disks; the third peg contains no disks; and the second peg
contains the remainder of the disks.

• If n is odd, we make moves using the classic rules until we reach the
configuration where the first peg contains largest disk; the third peg
contains the nth and (n − 1)st largest disks; and the second peg contains
the remainder of the disks.

Next, we flip the nth and (n−1)st largest disks onto the second peg, which saves
1 move, getting us to the midpoint. Then we move the largest disk onto the
third peg. Next, we reverse the steps prior to moving the largest disk, which
saves 1 more move and completes the puzzle. See Figure 1.

Figure 1: Upper Bound for k = (n−3). Whenever n = 4, the disk labelled n−2
coincides with the disk labelled 2.

Thus, it takes

(2n − 1)− 1− 1 = 2n − 3

moves to complete the puzzle.
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Upper bound on the minimum number of moves to complete

the k-Tower of Hanoi Puzzle whenever k = (n− 4)

To obtain this bound, we will divide it into the following steps.

• Building a stack of 3

• Building stacks of 4, 5, . . . , (n− 3)

• Building a stack of (n− 2)

• Building a stack of (n− 1)

• Building a stack of n

Note that this bound assumes a starting number of disks n > 7.

From the starting configuration, we build a stack of 3 disks using the classic
rules. Thus, it takes 23 − 1 = 7 moves. See Figure 2.

Figure 2: Building a Stack of 3 Disks

Next, we build stacks of 4, 5, . . ., (n− 3) using the classic rules until we reach
a configuration where we can take advantage of the rule involving k. This
configuration occurs, for each of these stacks, right before we are to place the
2nd largest disk of the stack we are building onto the largest disk of the stack
we are building. Building a stack of 4 disks illustrates this concept immediately.
We first move the (n − 3)rd largest disk (this is the largest disk in the stack of
4 that we are building) from the source peg onto the intermediate peg. Notice
that because k = (n−4) and because we have (n−4) disks on the source peg, we
can flip 2 disks from the destination peg to the source peg, which saves 1 move.
Next, we move the (n−2)nd largest disk (this is the 2nd largest disk in the stack
of 4 that we are building) from the destination peg onto the intermediate peg.
We then flip 2 disks from the source peg onto the intermediate peg, which saves
1 more move. We have now completed the stack of 4 disks and we have saved
2 moves. See Figure 3.
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Figure 3: Building a Stack of 4 Disks. Whenever n = 7, the disk labelled n− 4
coincides with the disk labelled 3.

For the next stacks of 5, 6, . . . , (n− 3) disks we repeat this process.

• For a stack of an even number of disks, we make moves using the classic
rules until we reach a configuration where the destination peg contains the
nth and (n− 1)st largest disks and the 2nd largest disk of the stack we are
building; the intermediate peg contains only the largest disk of the stack
we are building; and the source peg contains the remainder of the disks.

• For a stack of an odd number of disks, we make moves using the classic
rules until we reach a configuration where the destination peg contains
the nth and (n− 1)st largest disks and the largest disk of the stack we are
building; the intermediate peg contains only the 2nd largest disk of the
stack we are building; and the source peg contains the remainder of the
disks.

Next, we flip the nth and (n−1)st largest disks onto the source peg, which saves
1 move. Then we move the 2nd largest disk of the stack we are building onto
the largest disk of the stack we are building. Next, we flip the nth and (n− 1)st

largest disks from the source peg onto the intermediate peg, which saves 1 more
move. We then use the classic rules to finish building the stack. So, whenever
we are building these stacks, we save 2 moves from the two times that we flip
disks and the other moves are done according to the classic rules. See Figure 4.

Thus, it takes

(1+23−1−2)+(1+24−1−2)+· · ·+(1+2n−4
−1−2) =

n−4
∑

i=3

(2i−2) =
1

8
(32+2n−16n)

moves to build stacks of 4, 5,. . ., (n− 3) disks.
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Figure 4: Overview of Building Stacks of 4, 5, · · · , (n − 3) Disks. Notice that
the pegs for the final configuration are fixed and are labelled accordingly.

Next, we wish to build a stack of (n− 2) disks.

• If n is even, we begin by making moves using the classic rules until we
reach a configuration where the second peg contains the nth and (n− 1)st

largest disks on top of the 4th largest disk; the third peg contains only the
3rd largest disk; and the first peg contains the remainder of the disks.

• If n is odd, we begin by making moves using the classic rules until we
reach a configuration where the second peg contains only the 4th largest
disk; the third peg contains the nth and (n − 1)st largest disks on top of
the 3rd largest disk; and the first peg contains the remainder of the disks.

Then we flip the nth and (n− 1)st largest disks onto the first peg, which saves
1 move. Next, we move the 4th largest disk onto the third peg.

• If n is even, we flip the nth and (n− 1)st largest disks onto the third peg.

• If n is odd, we flip the nth and (n− 1)st largest disks onto the second peg.

This flip saves 1 more move.

• If n is even, we make moves using the classic rules until we reach a
configuration where the first peg contains the nth and (n − 1)st largest,
the 2nd largest, and the largest disks; the second peg contains no disks;
and the third peg contains the remainder of the disks.

• If n is odd, we make moves using the classic rules until we reach a
configuration where the first peg contains the 2nd largest and the largest
disks; the second peg contains the nth and (n− 1)st largest disks; and the
third peg contains the remainder of the disks.
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Then we flip the nth and (n − 1)st largest disks onto the third peg. This flip
saves 1 more move and completes the stack of (n− 2). See Figure 5.

Figure 5: Overview of Building a Stack of (n− 2) Disks

Thus, we save 3 moves and it takes

1 + (2n−3
− 1)− 1− 1− 1 = 2n−3

− 3

moves to build this stack.

We now form a stack of (n− 1) disks. We start by moving the 2nd largest disk
from the first peg onto the second peg.

• If n is even, we flip the nth and (n−1)st largest disks onto the second peg.

• If n is odd, we flip the nth and (n− 1)st largest disks onto the first peg.
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This flip saves 1 move.

• If n is even, we follow the classic rules until we reach a configuration where
the second peg contains the nth and (n− 1)st largest, and the 2nd largest
disk; the third peg contains the 3rd largest disk; and the first peg contains
the remaining disks.

• If n is odd, we follow the classic rules until we reach a configuration where
the second peg contains only the 2nd largest disk; the third peg contains
the nth and (n − 1)st largest, and the 3rd largest disk; and the first peg
contains the remaining disks.

We then flip the nth and (n− 1)st largest disks onto the first peg. This saves 1
more move. Next, we move the 3rd largest disk onto the second peg.

• If n is even, we flip the nth and (n− 1)st largest disks onto the third peg.

• If n is odd, we flip the nth and (n− 1)st largest disks onto the second peg.

This saves us 1 more move.

• If n is even, we follow the classic rules until we reach the configuration
where the first peg contains the nth, (n− 1)st and (n− 2)nd largest disks
and the largest disk; the third peg contains no disks; and the second peg
contains the remaining disks.

• If n is odd, we follow the classic rules until we reach the configuration
where the first peg contains only the largest disk; the third peg contains
the nth, (n− 1)st and (n− 2)nd largest disks; and the second peg contains
the remaining disks.

We flip the nth, (n− 1)st, and (n− 2)nd largest disks onto the second peg. This
saves 4 more moves and completes the stack of (n− 1). See Figure 6.

We have now reached the midpoint. So far we have made

(

7 +
1

8
(32 + 2n − 16n) + (2n−3

− 3) + (2n−2
− 7)

)

=

(

2n

2
− 2n+ 1

)

moves.

Now, we wish to form a stack of n. We do this by moving the largest disk
onto the third peg and then reversing the previous steps for building stacks of
1, 2, . . . , (n− 1). See Figure 7.
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Figure 6: Overview of Building a Stack of (n− 1) Disks
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Figure 7: Overview of Building a Stack of n Disks

Thus, to build this stack it takes

1 +

(

2n

2
− 2n+ 1

)

moves.

Therefore, to complete the puzzle, it takes

(

2n

2
− 2n+ 1

)

+ 1 +

(

2n

2
− 2n+ 1

)

= 2n − 4n+ 3

moves.

Upper bound on the minimum number of moves to complete

the k-Tower of Hanoi Puzzle whenever k = (n− 5)

To obtain this bound, we will divide it up into the following steps.

• Building a stack of 3

• Building a stack of 4

• Building stacks of 5, 6, . . . , (n− 4)

• Building a stack of (n− 3)

• Building a stack of (n− 2)

• Building a stack of (n− 1)

• Building a stack of n

Note that this bound assumes a starting number of disks n > 9.

From the starting configuration, we build a stack of 3 disks using the classic
rules. Thus, it takes 23 − 1 = 7 moves. See Figure 8.

Recreational Mathematics Magazine, Number 7, pp. 79–118
DOI 10.1515/rmm–2017–0015



S. B. Gregg, B. Hopkins, K. Karber, T. Milligan, J. Sharp 91

Figure 8: Building a Stack of 3 Disks

Next, we build a stack of 4 in the same manner that we built a stack of 4 in the
bound for k = (n− 4). This takes 6 moves, as before. See Figure 9.

Figure 9: Building a Stack of 4 Disks

We now wish to build stacks of 5, 6, . . . , (n − 4). These stacks are built in a
similar manner that stacks of 4, 5, . . . , (n− 3) for k = (n− 4) were built. Since
k = (n − 5), we now only need a stack of (n − 5) in order to take advantage
of the special rule involving k. As a result, we can flip 3 disks onto stacks of
(n − 5) instead of flipping 2 disks onto stacks of (n − 4) (as we did whenever
k = (n − 4)). For a flip of 3 disks, we save 4 moves each time. So, we build
stacks of 4, 5, . . ., (n−3) by using the classic rules until we reach a configuration
where we can take advantage of the rule involving k. This configuration occurs,
for each of these stacks, right before we are to place the 2nd largest disk of the
stack we are building onto the largest disk of the stack we are building. Building
a stack of 5 illustrates this concept immediately. We first relocate the (n− 4)th

largest disk (this is the largest disk in the stack of 5 that we are building) from
the source peg onto the destination peg. Notice that because k = (n − 5) and
because we have (n − 5) disks on the source peg, we can flip 3 disks from the
intermediate peg to the source peg, which saves 4 moves. Next, we move the
(n − 3)rd largest disk (this is the 2nd largest disk in the stack of 5 that we are
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building) from the intermediate peg onto the destination peg. We then flip 3
disks from the source peg onto the destination peg, which saves 4 more moves.
We have now completed the stack of 5 disks and we have saved 8 moves. See
Figure 10.

Figure 10: Building a Stack of 5 Disks

For the next stacks of 6, 7, . . . , (n− 4) disks we repeat this process. For each of
these stacks, we begin by making moves using the classic rules until we reach a
configuration where the source peg contains every disk except: the largest disk
of the stack we are building, the 2nd largest disk of the stack we are building,
and the nth, (n−1)st and (n−2)nd largest disks. Moreover, the nth, (n−1)st and
(n− 2)nd largest disks must be on a peg with only the largest disk of the stack
we are building or the 2nd largest disk of the stack we are building. Note that
where these disks are depends on whether the stack we are building contains
an odd or an even number of disks. For example, when building a stack of 5
disks, the nth, (n − 1)st and (n − 2)nd largest disks will be on the 2nd largest
disk of the stack we were building. When building a stack of 6, they will be on
largest disk of the stack we are building. Now, because we have (n − 5) disks
on the source peg, we can take advantage of the special rule involving k. So,
flip the nth, (n − 1)st and (n − 2)nd largest disks onto the source peg, which
saves 4 moves. Move the 2nd largest disk of the stack we are building onto the
largest disk of the stack we are building, and then flip the nth, (n − 1)st and
(n− 2)nd largest disks from the source peg onto one of the other pegs (if we are
building a stack of an even number of disks, we flip the disks onto the empty
peg, otherwise we flip the disks onto the peg containing disks), which saves 4
more moves. We then use the classic rules to finish building the stack. So,
whenever we are building these stacks, we save 4 moves from the two times that
we flip disks and the other moves are done according to the classic rules. See
Figure 11.
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Figure 11: Overview of Building Stacks of 5, 6, · · · , (n − 4) Disks. Whenever
n = 9, the disk labelled n− 6 coincides with the disk labelled 3.

So, to build all of these stacks, it takes

(1 + 24 − 1− 8) + · · ·+ (1 + 2n−5
− 1− 8) =

n−5
∑

i=4

(2i − 8) =
(2n − 128n+ 768)

16

moves.

Now we want to build a stack of (n − 3) disks. We start by moving the 4th

largest disk onto the second peg.

• If n is even, we follow the classic rules until we reach the configuration
where the second peg contains only the 4th largest disk; the third peg
contains the nth, (n− 1)st and (n− 2)nd largest disks and the 5th largest
disk; and the first peg contains the remainder of the disks.

• If n is odd, we follow the classic rules until we reach the configuration
where the second peg contains the nth, (n − 1)st and (n − 2)nd largest
disks and 4th largest disk; the third peg contains only the 5th largest disk;
and the first peg contains the remainder of the disks.

We then flip the nth, (n − 1)st and (n − 2)nd largest disks onto the first peg,
which saves 4 moves. Next, we move the 5th largest disk onto the second peg.

• If n is even, we flip the nth, (n− 1)st and (n− 2)nd largest disks from the
first peg onto the second peg.

• If n is odd, we flip the nth, (n− 1)st and (n− 2)nd largest disks from the
first peg onto the third peg.

This flip saves 4 more moves.
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• If n is even, we make moves using the classic rules until we reach the
configuration where the first peg contains the largest, 2nd largest and 3rd

largest disks; the third peg contains the nth and (n − 1)st largest disks;
and the second peg contains the remainder of the disks.

• If n is odd, we make moves using the classic rules until we reach the
configuration where the first peg contains the nth and (n − 1)st largest,
3rd largest, 2nd largest and largest disks; the third peg contains no disks;
and the second peg contains the remainder of the disks.

Then we flip the nth and (n−1)st largest disks onto the second peg, which saves
1 more move.See Figure 12.

Figure 12: Overview of Building a Stack of (n− 3) Disks. Whenever n = 9, the
disk labelled n− 6 coincides with the disk labelled 3.
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This completes the stack of (n− 3) disks and it takes 1 + (2n−4
− 1)− 9 moves.

Now we want to build a stack of (n − 2) disks. We begin by moving the 3rd

largest disk onto the third peg.

• If n is even, we flip the nth and (n− 1)st largest disks from the second peg
onto the first peg.

• If n is odd, we flip the nth and (n− 1)st largest disks from the second peg
onto the third peg.

This flip saves 1 move.

• If n is even, we follow the classic rules until we reach the configuration
where the second peg contains only the 4th largest disk; the third peg
contains the nth, (n− 1)st and (n− 2)nd largest disks and the 3rd largest
disk; and the first peg contains the remainder of the disks.

• If n is odd, we follow the classic rules until we reach the configuration
where the second peg contains the nth, (n − 1)st and (n − 2)nd largest
disks and 4th largest disk; the third peg contains only the 3rd largest disk;
and the first peg contains the remainder of the disks.

We then flip the nth, (n− 1)st and (n− 2)nd largest disks onto the first peg and
save 4 more moves. Now, we move the 4th largest disk onto the third peg.

• If n is even, we flip the nth, (n− 1)st and (n− 2)nd largest disks from the
first peg onto the second peg.

• If n is odd, we flip the nth, (n− 1)st and (n− 2)nd largest disks from the
first peg onto the third peg.

This flip saves 4 more moves.

• If n is even, we follow the classic rules until we reach the configuration
where the first peg contains the 2nd largest and the 1st largest disks; the
second peg contains the nth, (n− 1)st and (n− 2)nd largest disks; and the
third peg contains the remainder of the disks.

• If n is odd, we follow the classic rules until we reach the configuration
where the first peg contains the nth, (n − 1)st and (n − 2)nd largest, the
2nd largest and the 1st largest disks; the second peg contains no disks; and
the third peg contains the remainder of the disks.

Next, we flip the nth, (n − 1)st and (n − 2)nd largest disks onto the third peg,
which saves 4 more moves. See Figure 13.
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Figure 13: Overview of Building a Stack of (n− 2) Disks. Whenever n = 9, the
disk labelled n− 6 coincides with the disk labelled 3.

Recreational Mathematics Magazine, Number 7, pp. 79–118
DOI 10.1515/rmm–2017–0015



S. B. Gregg, B. Hopkins, K. Karber, T. Milligan, J. Sharp 97

This completes the stack of (n− 2) disks and it takes

1 + (2n−3
− 1)− 1− 4− 4− 4 = 2n−3

− 13

moves.

Next, to build a stack of (n−1) disks, we will divide this step up into two parts.
For the first part, we start by moving the 2nd largest disk onto the second peg.

• If n is even, we flip the nth, (n− 1)st and (n− 2)nd largest disks from the
third peg onto the first peg.

• If n is odd, we flip the nth, (n− 1)st and (n− 2)nd largest disks from the
third peg onto the second peg.

This flip saves 4 moves.

• If n is even, we follow the classic rules until we reach the configuration
where the first peg contains only the largest disk; the third peg contains
the nth and (n− 1)st largest disks, the 4th largest disk and the 3rd largest
disk; and the second peg contains the remainder of the disks.

• If n is odd, we follow the classic rules until we reach the configuration
where the first peg contains the nth and (n − 1)st largest disks and the
largest disk; the third peg contains the 4th largest and the 3rd largest
disks; and the second peg contains the remainder of the disks.

See Figure 14.

We flip the nth and (n − 1)nd largest disks onto the second peg, which saves 1
more move. Next, we move the 4th largest disk from the third peg onto the first
peg.

• If n is even, we flip the nth and (n− 1)st largest disks from the second peg
onto the first peg.

• If n is odd, we flip the nth and (n− 1)st largest disks from the second peg
onto the third peg.

This flip saves 1 more move.

• If n is even, we follow the classic rules until we reach the configuration
where the second peg contains only the 2nd largest disk; the third peg
contains the nth, (n− 1)st and (n− 2)nd largest disks and the 3rd largest
disk; and the first peg contains the remainder of the disks.

• If n is odd, we follow the classic rules until we reach the configuration
where the second peg contains the nth, (n − 1)st and (n − 2)nd largest
disks and the 2nd largest disk; the third peg contains only the 3rd largest
disk; and the first peg contains the remainder of the disks.

See Figure 15.
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Figure 14
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Figure 15

We then flip the nth, (n− 1)st and (n− 2)nd largest disks onto the first peg and
save 4 more moves. Then we move the 3rd largest disk from the third peg onto
the second peg.

• If n is even, we flip the nth, (n− 1)st and (n− 2)nd largest disks from the
first peg onto the second peg.

• If n is odd, we flip the nth, (n− 1)st and (n− 2)nd largest disks from the
first peg onto the third peg.

This flip saves 4 more moves. See Figure 16.
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Figure 16

This concludes the first part of this step. Now we begin the second part of this
step.

• If n is even, we make moves using the classic rules until we reach a
configuration where the first peg contains the 5th largest, 4th largest, and
largest disks; the third peg contains the nth largest and (n − 1)st largest
disks; and the second peg contains the remainder of the disks.

• If n is odd, we make moves using the classic rules until we reach a
configuration where the first peg contains the nth largest, (n−1)st largest,
5th largest, 4th largest, and largest disks; the third peg contains no disks;
and the second peg contains the remainder of the disks.

Then we flip the nth largest and (n − 1)st largest disks onto the second peg,
which saves 1 more move. We then move the 5th largest disk onto the third peg.

• If n is even, we flip the nth largest and the (n− 1)st largest onto the first
peg.

• If n is odd, we flip the nth largest and the (n− 1)st largest onto the third
peg.

This flip saves 1 more move. See Figure 17.
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Figure 17

Next, we make a similar sequence of moves.

• If n is even, we make moves using the classic rules until we reach a
configuration where the first peg contains only the largest disk; the third
peg contains the nth largest, (n − 1)st largest, 6th largest and 5th largest
disks; and the second peg contains the remainder of the disks.

• If n is odd, we make moves using the classic rules until we reach a
configuration where the first peg contains the nth largest, (n−1)st largest,
and largest disks; the third peg contains the 6th largest and 5th largest
disks; and the second peg contains the remainder of the disks.

Then we flip the nth largest and (n − 1)st largest disks onto the second peg,
which saves 1 more move. We then move the 6th largest disk onto the first peg.

• If n is even, we flip the nth largest and the (n− 1)st largest onto the first
peg.

• If n is odd, we flip the nth largest and the (n− 1)st largest onto the third
peg.

This flip saves 1 more move. See Figure 18.
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Figure 18

Notice that in Figure 17, we took advantage of the special rule involving k

whenever we had the 4th largest and 5th largest disks together on a peg separate
from a stack of (n−5) disks. Also, in Figure 18, we took advantage of the special
rule involving k whenever we had the 5th largest and 6th largest disks together on
a peg separate from a stack of (n− 5) disks. In general, we can take advantage
of the special rule involving k whenever we have a jth largest and (j + 1)st

largest disk together on a peg separate from a stack of (n − 5) disks, where
4 6 j 6 (n− 4). That is,

• If n is even and j is even, we make moves using the classic rules until we
reach the configuration where the first peg contains the (j + 1)st largest,
jth largest, and largest disks; the third peg contains the nth largest and
the (n − 1)st largest disks; and the second peg contains the remainder of
the disks.

• If n is even and j is odd, we make moves using the classic rules until we
reach the configuration where the first peg contains only the largest disk;
the third peg contains the nth largest, (n − 1)st largest, (j + 1)st largest
and jth largest disks; and the second peg contains the remainder of the
disks.
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Then we flip the nth largest and the (n− 1)st largest disks onto the second peg,
which saves 1 more move.

• If j is even, we move the (j + 1)st largest disk onto the third peg.

• If j is odd, we move the (j + 1)st largest disk onto the first peg.

Next, we flip the nth largest and the (n − 1)st largest disks onto the first peg,
which saves 1 more move. See Figure 19.

Figure 19: Moves made for 4 6 j 6 (n − 4) whenever n is even. The disks on
the second peg are uniquely determined by the disks depicted on the other two
pegs.
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Otherwise,

• If n is odd and j is even, we make moves using the classic rules until
we reach the configuration where the first peg contains the nth largest,
(n− 1)st largest, (j + 1)st largest, jth largest, and largest disks; the third
peg contains no disks; and the second peg contains the remainder of the
disks.

• If n is odd and j is odd, we make moves using the classic rules until
we reach the configuration where the first peg contains the nth largest,
(n− 1)st largest, and the largest disk; the third peg contains the (j +1)st

largest and jth largest disks; and the second peg contains the remainder
of the disks.

Then we flip the nth largest and the (n− 1)st largest disks onto the second peg,
which saves 1 more move.

• If j is even, we move the (j + 1)st largest disk onto the third peg.

• If j is odd, we move the (j + 1)st largest disk onto the first peg.

Next, we flip the nth largest and the (n− 1)st largest disks onto the third peg,
which saves 1 more move. See Figure 20.

Notice that because we use values of j = 4, 5, 6, . . . , (n − 4), there are (n − 7)
distinct values of j. Thus, we will have (n − 7) pairs of j and (j + 1) where
we can take advantage of the special rule involving k. Also, for each of these
pairs we save 2 moves. Thus, we will save 2(n − 7) moves after we have made
these sequences of moves, as depicted in Figure 21, we reach the following
configuration:

• If n is even, we reach the configuration where the first peg contains the nth

largest, (n− 1)st largest, (n− 4)th largest and the largest disks; the third
peg contains only the (n− 3)rd largest disk; and the second peg contains
the remainder of the disks.

• If n is odd, we reach the configuration where the first peg contains the
(n − 3)rd largest and the largest disk; the third peg contains the nth,
(n − 1)st, and (n − 4)th largest disks; and the second peg contains the
remainder of the disks.

Next,

• If n is even, we make moves using the classic rules until we reach the
configuration where the first peg contains only the largest disk; the third
peg contains the nth largest, (n−1)st largest, (n−2)nd largest and (n−3)rd

largest disks; and the second peg contains the remainder of the disks.

• If n is odd, we make moves using the classic rules until we reach the
configuration where the first peg contains the nth largest, (n−1)st largest,
(n− 2)nd largest and (n− 3)rd largest disks and the largest disk; the third
peg contains no disks; and the second peg contains the remainder of the
disks.
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Figure 20: Moves made for 4 6 j 6 (n − 4) whenever n is odd. The disks on
the second peg are uniquely determined by the disks depicted on the other two
pegs.

Next, we flip the nth, (n − 1)st, (n − 2)nd and (n − 3)rd largest disks onto the
second peg, which saves 11 more moves. See Figure 22.
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Figure 21

Figure 22
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This completes the stack of (n− 1) disks and it takes

1 + (2n−2
− 1)− 4− 1− 1− 4− 4− 2(n− 7)− 11 = 2n−2

− 2n− 11

moves.

Now, we wish to form a stack of n. We do this by moving the largest disk
onto the third peg and then reversing the previous steps for building stacks of
1, 2, . . . , (n− 1). Thus, it takes

1+
(

7 + 6 + 1

16
(2n − 128n+ 768) + (2n−4

− 9) + (2n−3
− 13) + (2n−2

− 2n− 11)
)

=

1 +
(

2
n

2
− 10n+ 28

)

moves to build this stack. See Figure 23.

Figure 23: Overview of Building a Stack of n Disks

Therefore, it takes

(

2n

2
− 10n+ 28

)

+ 1 +

(

2n

2
− 10n+ 28

)

= 2n − 20n+ 57

moves to complete the puzzle.

Upper bound on the minimum number of moves

to complete the k-Tower of Hanoi Puzzle whenever

k = 3

We now look at the k-Tower of Hanoi puzzle whenever k = 3. We skip to k = 3
because upper bounds on the minimum number of moves required to complete
the k-Tower of Hanoi puzzle whenever k = 1 and k = 2 are known. An upper
bound of n2

− n + 1 is shown in [2] whenever k = 1, and an upper bound of
2n2

− 4n+ 1 whenever k = 2 is shown in [1].
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Rules for the k-Tower of Hanoi Puzzle Whenever k = 3

• Disks can only be moved one at a time.

• Only the top disk on a stack can be moved from that peg.

• A disk can be moved on top of a smaller one provided that the three disks
on the bottom of that stack are the largest on that peg (with the largest
disk on the bottom, the second largest disk on top of that one, and the
third largest disk on top of that one).

The upper bound, T3(n), for the minimum number of moves required to complete
the k-Tower of Hanoi puzzle with n disks whenever k = 3 is

T3(n) =























2n − 1 if n = 3, 4, 5
61 if n = 6
103 if n = 7
161 if n = 8
2n2 + 24n− 153 if n > 9.

Notice that for the cases of n = 3, 4, 5, 6, 7, we just refer back to the bounds
from Section 3 for k = n − x for x = 0, 1, 2, 3, 4 respectively, to obtain bounds
of 7, 15, 31, 61 and 103 moves, respectively. We begin with the case of n > 9.

Theorem 1. The optimal solution for the k-Tower of Hanoi puzzle for n > 9
disks whenever k = 3 has an upper bound of T3(n) = 2n2 + 24n− 153.

Proof. To obtain this bound, we will divide it up into the following steps.

• Building a stack of 3

• Building stacks of 4, 5, · · · , (n− 4)

• Building a stack of (n− 3)

• Building a stack of (n− 2)

• Building a stack of (n− 1)

• Building a stack of n

Note that this bound assumes a starting number of disks n > 9. Also, for the
previous bounds, we focused on totaling the number of saves at various steps in
completing those puzzles and then subtracting these saves from the number of
moves that would have been made when using only the classic rules. However,
to obtain the bound for k = 3, we will simply total the number of moves that
we make as we complete the puzzle.
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Building a Stack of 2 Disks:

We build a stack of 3 disks on the destination peg using the classic rules. This
takes 7 moves.

Building Stacks of 4, 5, · · · , (n− 4) Disks:

To build a stack of 4 disks, we move the (n− 3)rd largest disk from the source
peg onto the intermediate peg. This takes 1 move. Then we flip the nth and
(n− 1)st largest disks from the destination peg onto the source peg. This takes
2 moves. We then move the (n−2)nd largest disk from the destination peg onto
the intermediate peg. This takes 1 move. Next, we flip the nth and (n − 1)st

largest disks from the source peg onto the intermediate peg. This takes 2 moves.
Thus, it takes

1 + 2 + 1 + 2 = 2(3)

moves to build a stack of 4 disks. See Figure 24.

Figure 24: Overview of Building a Stack of 4 Disks

We repeat this same process to build the next stack of 5 disks. We begin by
moving the (n− 4)th largest disk from the source peg onto the destination peg.
We then flip all disks, except the (n − 3)rd largest disk, from the intermediate
peg onto the source peg. This takes 3 moves. We then move the (n−3)rd largest
disk onto the destination peg. This takes 1 move. Next, we flip the same disks
that were flipped onto the source peg, onto the destination peg. This takes
another 3 moves, and gives us a stack of 5. Thus, it takes

1 + 3 + 1 + 3 = 2(4)

moves to build a stack of 5 disks. See Figure 25.
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Figure 25: Overview of Building a Stack of 5 Disks

In general, to build a stack of x disks, for 4 6 x 6 (n − 4), it takes 1 move to
relocate the largest disk of the stack we are building, (x−2) moves to flip disks,
1 move to put the 2nd largest disk of the stack we are building onto the largest
disk of the stack we are building, and (x− 2) more moves to flip the remaining
disks onto the stack we are building. That is, it takes

1 + (x− 2) + 1 + (x − 2) = 2(x− 1)

moves to build a stack of x disks. See Figure 26.

Figure 26: Overview of Building a Stack of x Disks. Stacks of an even number
of disks will be on the intermediate peg and stacks of an odd number of disks
will be on the destination peg. The final stack of (n − 4) disks will be on the
third peg.
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So, it takes
n−4
∑

i=4

(2(i− 1)) = n2
− 9n+ 14

moves to build stacks of 4, 5, . . . , (n− 4).

Building a Stack of (n− 3) Disks:

After building a stack of (n − 4) disks, we reach the configuration where the
first peg contains the 4th, 3rd, 2nd, and largest disks; the second peg contains no
disks; and the third peg contains the remainder of the disks. We now need to
build a stack of (n− 3) disks, and we start by moving the 4th largest disk onto
the second peg. This takes 1 move. Next, we flip the top (n− 5) disks from the
third peg onto the first peg. This takes (n − 5) moves. Then we move the 5th

largest disk from the third peg onto the second peg. This takes 1 move. Next,
we move the 6th largest disk from the first peg onto the second peg. This takes
1 move. Then we move the 7th largest disk onto the third peg. This takes 1
move. We then flip (n− 7) disks from the first peg onto the second peg, which
takes (n − 7) moves. Lastly, we move the 7th largest disk from the third peg
onto the second peg, giving us a stack of (n− 3) disks. See Figure 27.

Figure 27: Overview of Building a Stack of (n− 3) Disks. Notice that we make
a counterintuitive move by taking out the 7th largest disk. Doing this will save
many moves in the long term.
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Thus, it takes

1 + (n− 5) + 1 + 1 + 1 + (n− 7) + 1 = 2n− 7

moves to build a stack of (n− 3) disks.

Building a Stack of (n− 2) Disks:

We now build a stack of (n− 2) disks. First, we move the 3rd largest disk onto
the third peg. This takes 1 move. Next, move the 7th largest disk from the
second peg onto the first peg. This takes 1 move. Flip (n − 7) disks from the
second peg onto the first peg. This takes (n − 7) moves. Move the 6th largest
disk from the second peg onto the third peg. This takes 1 move. Flip (n − 7)
disks from the first peg onto the second peg. This takes (n − 7) moves. Move
the 7th largest disk from the first peg onto the third peg. This takes 1 move.
Flip (n − 7) disks from the second peg onto the third peg. This takes (n − 7)
moves. Move the 5th largest disk from the second peg onto the first peg. This
takes 1 move. Move the 8th largest disk from the third peg onto the second
peg. This takes 1 move. Flip (n − 8) disks from the third peg onto the first
peg. This takes (n − 8) moves. Move the 8th largest disk from the second peg
onto the first peg. This takes 1 move. Flip the 7th largest and 6th largest disks
from the third peg onto the first peg. This takes 2 moves. Move the 4th largest
disk from the second peg onto the third peg. This takes 1 move. Flip (n − 5)
disks from the first peg onto the second peg. This takes (n − 5) moves. Move
the 5th largest disk from first peg onto the third peg. This takes 1 move. Flip
(n− 5) disks from the second peg onto the third peg. This takes (n− 5) moves
and completes the stack of (n− 2) disks. See Figure 28.

Thus, it takes

1+1+(n−7)+1+(n−7)+1+(n−7)+1+1+(n−8)+1+2+1+(n−5)+1+(n−5) =
6n− 28

moves to build stack of (n− 2) disks.

Building a Stack of (n− 1) Disks:

We now build a stack of (n− 1) disks. Due to the length of this step, we break
the sequence of moves up into three sections. We start by moving the 2nd largest
disk from the first peg onto the second peg. This takes 1 move. Then we flip
the 6th largest and 7th largest disks from the third peg to the first peg. This
takes 2 moves. Move the 8th largest disk from the third peg onto the second
peg. This takes 1 move. Flip (n − 8) disks from the third peg onto the first
peg. This takes (n − 8) moves. Move the 8th largest disk from the second peg
onto the first peg. This takes 1 move. Move the 5th largest disk from the third
peg onto the second peg. This takes 1 move. Flip (n − 7) disks from the first
peg onto the second peg. This takes (n − 7) moves. Move the 7th largest disk
from the first peg onto the third peg. This takes 1 move. Flip (n − 7) disks
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Figure 28: Overview of Building a Stack of (n− 2) Disks. Whenever n = 9, the
disk labelled n coincides with the disk labelled 9.

from the second peg onto the third peg. This takes (n − 7) moves. Move the
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6th largest disk from the first peg onto the second peg. This takes 1 move. Flip
(n− 7) disks from the third peg onto the second peg. This takes (n− 7) moves.
Move the 7th largest disk from the third peg onto the second peg. This takes
1 move. Move the 4th largest disk from the third peg onto the first peg. This
takes 1 move. Flip (n − 6) disks from the second peg onto the first peg. This
takes (n− 6) moves. See Figure 29.

Move the 6th largest disk from the second peg onto the third peg. This takes 1
move. Figure 30 will begin after this move is made.

Figure 29

Recreational Mathematics Magazine, Number 7, pp. 79–118
DOI 10.1515/rmm–2017–0015



S. B. Gregg, B. Hopkins, K. Karber, T. Milligan, J. Sharp 115

Flip (n − 7) disks from the first peg onto the second peg. This takes (n − 7)
moves. Move the 7th largest disk from the first peg onto the third peg. This
takes 1 move. Flip (n− 7) disks from the second peg onto the third peg. This
takes (n − 7) moves. Move the 5th largest disk from the second peg onto the
first peg. This takes 1 move. Flip (n − 7) disks from the third peg onto the
first peg. This takes (n − 7) moves. Flip the 7th largest and 6th largest disks
from the third peg onto the first peg. This takes 2 move. Move the 3rd largest
disk from the third peg onto the second peg. This takes 1 move. Move the 6th

largest disk from the first peg onto the second peg. This takes 1 move. Move
the 7th largest disk from the first peg onto the third peg. This takes 1 move.
Flip (n − 7) disks from the first peg onto the second peg. This takes (n − 7)
moves. Move the 7th largest disk from the third peg onto the second peg. This
takes 1 move. Move the 5th largest disk from the first peg onto the third peg.
This takes 1 move. Move the 7th largest disk from the second peg onto the first
peg. This takes 1 move. Move the 8th largest disk from the second peg onto the
third peg. This takes 1 move. See Figure 30.

Flip (n − 8) disks from the second peg onto the first peg. This takes (n − 8)
moves. Figure 31 will begin after this move is made.
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Figure 30
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Move the 8th largest disk from the third peg onto the first peg. This takes 1
move. Move the 6th largest disk from the second peg onto the third peg. This
takes 1 move. Flip (n − 7) disks from the first peg onto the second peg. This
takes (n− 7) moves. Move the 7th largest disk from the first peg onto the third
peg. This takes 1 move. Flip (n− 7) disks from the second peg onto the third
peg. This takes (n− 7) moves. Move the 4th largest disk from the first peg onto
the second peg. This takes 1 move. Flip (n − 4) disks from the third peg onto
the second peg. This takes (n− 4) moves. See Figure 31.

Figure 31

Thus, it takes

1+2+1+(n-8)+1+1+(n-7)+1+(n-7)+1+(n-7)+1+1+(n-6)+1+(n-7)+1+(n-7)+1
+(n-7)+2+1+1+1+(n-7)+1+1+1+1+(n-8)+1+1+(n-7)+1+(n-7)+1+(n-4)=13n-63

moves to build a stack of (n− 1) disks.
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Building a Stack of n Disks:

Now, we wish to form a stack of n. We do this by moving the largest disk
onto the third peg and then reversing the previous steps for building stacks of
1, 2, · · · , (n− 1). Thus, it takes

1+
(

7 + (n2
− 9n+ 14) + (2n− 7) + (6n− 28) + (13n− 63)

)

= 1+(n2+12n−77)

to build a stack of n disks. See Figure 32.

Figure 32: Overview of Building a Stack of n Disks

Therefore, it takes

(n2 + 12n− 77) + 1 + (n2 + 12n− 77) = 2n2 + 24n− 153

moves to complete the puzzle.

The optimal solution for the k-Tower of Hanoi puzzle for n = 8 disks
whenever k = 3 has an upper bound of 161.

This can be shown by disregarding two steps for the bound of n > 9, which
gives a bound of 161.

Further Work

As the value of k increases, the number of steps needed to complete the puzzle
also increases. We have noticed a relationship between the sequences of moves
for various values of k. We can explore these relationships between the bounds
to find a general solution to the k-Tower of Hanoi puzzle for an arbitrary number
of disks and an arbitrary value of k.
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