Designing Peg Solitaire Puzzles

Open access

Abstract

Peg solitaire is an old puzzle with a 300 year history. We consider two ways a computer can be utilized to find interesting peg solitaire puzzles. It is common for a peg solitaire puzzle to begin from a symmetric board position, we have computed solvable symmetric board positions for four board shapes. A new idea is to search for board positions which have a unique starting jump leading to a solution. We show many challenging puzzles uncovered by this search technique. Clever solvers can take advantage of the uniqueness property to help solve these puzzles.

References

  • [1] Beasley, J. The Ins and Outs of Peg Solitaire, Oxford Univ. Press, 1992.

  • [2] Berlekamp, E., Conway, J., Guy, R. “Purging pegs properly”, in Winning Ways for Your Mathematical Plays, 2nd ed., Vol. 4, Chap. 23: 803-841, A K Peters, 2004.

  • [3] Gardner, M. “Peg Solitaire”, in Knots and Borromean Rings, Rep-Tiles and Eight Queens, Cambridge Univ. Press, 2014.

  • [4] Bell, G. “Triangular peg solitaire unlimited”, Games and Puzzles Journal, 36, 2004. http://www.gpj.connectfree.co.uk/gpjr.htm http://arxiv.org/abs/0711.0486

  • [5] Bell, G. “Solving triangular peg solitaire”, Journal of Integer Sequences, 11, 2008. http://arxiv.org/abs/math/0703865

  • [6] Beasley, J. “On 33-hole solitaire positions with rotational symmetry”, 2012. http://www.jsbeasley.co.uk/puzzles/solitairerotations.pdf

  • [7] Bell, G. “Notes on solving and playing peg solitaire on a computer”, 2014. http://arxiv.org/abs/0903.3696

  • [8] Bell, G. Peg Solitaire web site, http://www.gibell.net/pegsolitaire/

  • [9] Bell, G. Symmetric English positions, http://www.gibell.net/pegsolitaire/Tools/Symmetric/English.htm

  • [10] Bell, G. Symmetric French positions, http://www.gibell.net/pegsolitaire/Tools/Symmetric/French.htm

  • [11] Bell, G. Symmetric 6x6 positions, http://www.gibell.net/pegsolitaire/Tools/Symmetric/SixBySix.htm

  • [12] Bell, G. Symmetric Hexagon positions, http://www.gibell.net/pegsolitaire/Tools/Hex37/Symmetric.htm

  • [13] Bell, G. Difficult English positions, http://www.gibell.net/pegsolitaire/Tools/Difficult/English0.htm

  • [14] Bell, G. Difficult French positions, http://www.gibell.net/pegsolitaire/Tools/Difficult/French0.htm

  • [15] Bell, G. Difficult Hexagon positions, http://www.gibell.net/pegsolitaire/Tools/Hex37/Difficult.htm

Journal Information


Mathematical Citation Quotient (MCQ) 2016: 0.05

Target Group

researchers in the fields of games and puzzles, problems, mathmagic, mathematics and arts, math and fun with algorithms

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 66 66 50
PDF Downloads 10 10 9