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Abstract: Peg solitaire is an old puzzle with a 300 year history. We consider

two ways a computer can be utilized to find interesting peg solitaire puzzles. It

is common for a peg solitaire puzzle to begin from a symmetric board position,

we have computed solvable symmetric board positions for four board shapes. A

new idea is to search for board positions which have a unique starting jump

leading to a solution. We show many challenging puzzles uncovered by this

search technique. Clever solvers can take advantage of the uniqueness property

to help solve these puzzles.
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Introduction

Peg solitaire was invented in France in the late 17th century, where it started
an early puzzle craze. Today most people recognize the puzzle, although its
popularity has declined.

We will refer to a board location as a hole, which can either be empty or
occupied by a peg. Figure 1 shows three peg solitaire boards—the first two
boards are based on a square lattice of holes, while the third is based on a
triangular lattice. While the first two boards are common, the 37-hole hexagon
board is not. Pressman Toy Company has manufactured this board under the
name Think ’N Jump, although it is not identical since they removed some of
the outer jumps (one can still play on this board by allowing these jumps).

The puzzle begins from some specified pattern of pegs, three examples are shown
in Figure 1. A jump consists of one peg jumping a neighbor into an empty
hole, the jumped peg is removed. Jumps are allowed only along lattice lines, i.e.
along columns and rows for the first two boards, and along three lines on the
hexagon board (as indicated by the arrows). The goal of the puzzle is to choose
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6 designing peg solitaire puzzles

jump directions

Figure 1: Sample puzzles on the 33-hole “English” board, the 37-hole “French”
board and the 37-hole hexagon board.

a sequence of jumps which finish at a board position with one peg. The hole
where the final peg ends at is called a finishing hole. A board position where
there exists a sequence of jumps ending with one peg is said to be solvable.

Figure 1 a shows the starting board position of a special puzzle called the
central game. The starting position has square symmetry, and the goal is
to finish with one peg in the center, a board position which not only has square
symmetry, but is also the complement of the starting position (where each
peg is replaced by a hole, and vice-versa).

If we take either of the 37-hole boards, and fill them with pegs, but remove
the central peg, then we are in an unsolvable board position (we will prove
this). Therefore, the analogous “central game” is unsolvable on these two
boards, but many other symmetric board states are solvable. The configuration
shown in Figure 1b, for example, is solvable. This board position is symmetric
with respect to reflection about both diagonals. Finally, the board position in
Figure 1c is solvable and is symmetric with respect to 60◦ rotations. If you solve
this puzzle you will discover that the finishing hole is not the central hole.

For the English and French boards, there are a total of seven symmetries
possible for a configuration of pegs, summarized in Table 1. These correspond to
subgroups of D8, the dihedral group of order 8 (the symmetries of the square).
We use the terminology that an “orthogonal reflection” is one that occurs along
lattice lines, while a “diagonal reflection” does not.

The English central game is interesting because the board begins and ends at
positions with square symmetry. John Beasley proved [1] that no matter how the
central game is solved, the board cannot pass through an intermediate position
with square symmetry (type 1) or 90 degree rotational symmetry (type 2). We
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George I. Bell 7

Type Symmetry description Order Examples
1 square symmetry 8 Fig. 1a, 7a
2 90◦ rotation 4 Fig. 5c, 7b
3 both diagonal reflections 4 Fig. 1b
4 both orthogonal reflections 4 Fig. 5a, 7c
5 180◦ rotation 2 Fig. 5d
6 one diagonal reflection 2 Fig. 7d
7 one orthogonal reflection 2 Fig. 5b

Table 1: The seven possible symmetries for an English or French board position.

note that this does not mean that a square symmetric board position cannot be
reached starting with the centre vacant, only that if a square symmetric position
is reached, it is not solvable. In what follows we will determine what types of
symmetric board positions can appear during a solution to the central game.

Position class theory

Given a board position, if we determine its position class we will know which
finishing holes are possible. We begin with the English and French boards by
labeling the holes diagonally with the numbers 0-2, and again with 3-5, as shown
in Figure 2.

0

2 0 1
2 0 1 2 0

2 0 1 2 0 1 2
0 1 2 0 1 2 0
1 2 0 1 2 0 1

0 1 2 0 1
2 0 1

4 3 5
3 5 4 3 5

5 4 3 5 4 3 5
3 5 4 3 5 4 3
4 3 5 4 3 5 4

4 3 5 4 3
4 3 5

0 1 2 0
1 2 0 1 2

2 0 1 2 0 1
0 1 2 0 1 2 0

2 0 1 2 0 1
1 2 0 1 2

0 1 2

Figure 2: Diagonal labeling of holes for the English and French boards (left),
and the hexagon board (right).

Let Ni be the number of pegs in the holes labeled i. We now observe what
happens to N0, N1, N2 after a peg solitaire jump is executed. One of the three
increases by 1, while the other two decrease by 1. Therefore, if we add any two
of N0, N1, N2, the parity of the sum can never change as the game is played.
For example, (N1 +N2) mod 2 is an invariant of the game, its value can only
be 0 or 1. The same holds for N3, N4, N5, so the binary 6-tuple

~N = (N1 +N2, N0 +N2, N0 +N1, N4 +N5, N3 +N5, N3 +N4) (1)

is an invariant of the game (here each component of ~N is taken modulo 2).

The sixteen values of ~N separate all board positions into sixteen equivalence
classes [1], which we call position classes. A peg solitaire game is played
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8 designing peg solitaire puzzles

entirely in one position class, so it is interesting to figure out which position
classes have representatives with one peg. The position class of one peg in the
centre is an important one and we call it “position class A”, it corresponds to
~N = (0, 1, 1, 0, 1, 1). The reader can check that all three board positions in
Figure 1 are in position class A1.

C

A

A A A

A

B B B

B

C C

C

Figure 3: The three possible patterns for finishing holes on the English or
French boards. Note that ~N = (0, 1, 1, 0, 1, 1), (1, 1, 0, 1, 1, 0) and (0, 1, 1, 1, 0, 1),
respectively.

Figure 3 shows the possible finishing holes for any board in position class A, as
well as the other one-peg position classes B and C. Figure 3 shows that there
are essentially only three possible patterns for the finishing peg, up to rotations
and reflections. It should be noted that the holes labeled ‘A’ in Figure 3a are
only a necessary condition for a one-peg finish. If we are in position class A,
the only possible finishing holes are those marked by A’s. However, it may not
be possible to finish with one peg at all, or only at some A’s.

The symmetry of the three patterns in Figure 3 turns out to be very important
for what follows. We note that the pattern of A’s has square symmetry (type 1),
while the B’s and C’s have one reflection symmetry (types 7 and 6, respectively).

One position class to be avoided is the position class of the empty board,
~N = (0, 0, 0, 0, 0, 0). The reason to avoid it is that this position class has no
representatives with one peg, so any board in the position class of the empty

board is unsolvable. For example, if we take either of the 37-hole boards and
fill the board, then remove the central peg, we are in the position class of the
empty board and therefore in an unsolvable board position.

The same idea can be applied to boards on a triangular lattice. On the 37-hole
hexagon board we use the hole labeling of Figure 2c, the vector ~N has only three
components, and there are only four position classes (for details see [5]). Three
of the four position classes have representatives with one peg, the exception
being the position class of the empty board.

The three possible patterns for finishing holes are given in Figure 4. As before,
the position class of one peg in the centre is “position class A”. We note that
patterns B and C are related by a reflection about the y-axis, so there are

1For (a), one should find N0 = N3 = 10, N1 = N2 = N4 = N5 = 11, for (b), N0 = 2,
N1 = N2 = 5, N3 = 6, N4 = N5 = 3, and (c), N0 = 1, N1 = N2 = 6.
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Figure 4: The three possible patterns for finishing holes on the hexagon board.

essentially two patterns for the finishing holes.

Symmetric board positions

We denote a board position by a lower case letter, while sets of board positions
will be denoted by upper case letters. If b is a board position then we denote
the complement of b by b, and if B is a set of board positions, B is the set of
complemented board positions (b ∈ B if and only if b ∈ B).

The English and French boards

Suppose we begin from an English or French board position b which is square
symmetric (type 1) and solvable. Where can the final peg be? A powerful
observation is that the set of finishing holes must have the same symmetry type

as b itself. So on one hand we know the set of finishing holes must be square
symmetric, and we also know it can only be a subset of one of the three patterns
in Figure 3. But only finishing pattern A is square symmetric, so we must be
in position class A, and we can only finish in the holes marked ‘A’. Not only
that, if the finishing hole is one of those along the edge of the board, then by
reversing the direction of the last jump, we can always finish in the centre. This
same argument works for any symmetry of type 1-5, so we have proved:

Theorem 1. On the English and French boards, if a board position is solvable

and has symmetry type 1-5, then it lies in position class A and is solvable to the

centre.

It is critical in Theorem 1 that the board be solvable. If a board position is
not solvable, then the set of finishing holes is empty, which is trivially a square
symmetric pattern. An unsolvable board may be in the position class of the
empty board. In fact, if we take any board position in position class A, and
remove or add the centre peg (depending on whether it is present or not), we
are in the position class of the empty board, and therefore not solvable.

What happens if the board position has only a single reflection symmetry (type
6 or 7)? In that case it may be in position class A, B or C, and it may finish
somewhere other than the centre.
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10 designing peg solitaire puzzles

Theorem 1 tells us that all solvable symmetric positions (types 1-5) are solvable
to one peg in the centre. This suggests that we can find them all by playing
backward from one peg in the centre. Playing peg solitaire backward is equivalent
to playing forward from the complement board position [2, 4], so here is a
simple algorithm for calculating them: Let b1 be the board position with a full
board with the centre peg missing (Figure 1a for the English board), and define
B1 = {b1}. Now define Bn+1 as the set of all board positions which can be
reached from any board position in Bn by executing any single jump.

Note that by design, Bn is the set of n-peg board positions solvable to the centre.
We now search through Bn for board positions with various symmetries. The set
of all n-peg solvable positions with type j symmetry can be found by searching
Bn for board positions with type j symmetry.

For details on how these calculations are done, see [7]. We do not store duplicate
copies of board positions which are rotations or reflections of one another, each
symmetric board position has a single entry, determined by the mincode() (the
minimum value of the board code over all symmetry transformations). A board
position is conveniently (but not efficiently) stored in a single, 64-bit integer.

13 pegs, type 521 pegs, type 4 17 pegs, type 7 12 pegs, type 2

Figure 5: Sample solvable boards with an assortment of symmetry types.

Position English French Square
Type Symmetry description Order class 33-hole 37-hole 36-hole
1 square symmetry 8 A 13 17 21
2 90◦ rotation 4 A 25 27 79
3 both diagonal reflections 4 A 22 126 238
4 both orthogonal reflections 4 A 220 258 76
5 180◦ rotation 2 A 2,238 7,051 9,148
6 one diagonal reflection 2 A 5,139 40,722 64,135
6 one diagonal reflection 2 C 15,187 n/c n/c
7 one orthogonal reflection 2 A 34,501 113,375 20,961
7 one orthogonal reflection 2 B 92,732 n/c n/c

Total 150,077 161,576 94,658

Table 2: A count of solvable board positions for the various symmetry types.
“n/c” means not calculated.

Table 2 shows the results of such a computation, and four sample positions are
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shown in Figure 5. For the English board, the totals for type 1 and 2 symmetries
have been calculated by Beasley [1], and our results agree with his. We note
that any board position appearing in the English list is solvable on the French
board as well. We have removed these duplicates, so the 17 type 1 positions on
the French board do not include the 13 English board positions.

The largest Bi for the English board has size |B18| = 3, 626, 632 and for the
French board, |B20| = 53, 371, 113. This is small enough that a binary search
tree of these sets fits into memory2.

By Theorem 1, for symmetry type 1-5 we need only start in the centre and all
board positions are in position class A. For symmetry type 6, we need a separate
run for position class C, and for type 7, position class B. Note that for these extra
runs, the starting set B1 contains more than one board position. For example,
for position class B we begin with a full board with one peg missing at each B
in Figure 4b, although due to symmetry it suffices to use only those in bold.
The reason for this is that we need to capture all possible finishing holes. These
runs are time consuming for the French board, and we have not completed them.

Figure 5c is an interesting case, because this board position fits on the English
board but is not solvable there. The four added holes are necessary in order to
solve it. You can try all type 1-4 puzzles on my Javascript web program for the
English board [9] and the French Board [10] (solutions can also be displayed).
You can make these puzzles more challenging by trying to solve them in the
minimum number of moves (where a move is one or more jumps by the same
peg).

Having computed these symmetrical board positions, we are in a position to
demonstrate:

Theorem 2. A solution to the central game on the English board cannot pass

through an intermediate position with symmetry type 1-5.

Proof: A board position b can appear during a solution to the central game if
and only if b is solvable to the centre and b is solvable to the centre [4]. If Sj

is the set of all solvable board positions with type j symmetry, then a board
position b with type j symmetry can appear during the central game if and
only if b ∈ Sj and b ∈ Sj . We can easily check each element of Sj , and we find
no matches among types 1-5 (except, of course, for the initial and final board
states).

Beasley [1] proves Theorem 2 for symmetry types 1 and 2. In [6] he proves
Theorem 2 for type 5 symmetry (180◦ rotation).

Among the 5, 139 type 6 board positions (in position class A), we find 198 which
form 99 complement pairs, all can appear during a solution to the central game.
Similarly, there are 912 type 7 board positions which form 456 complement
pairs. Martin Gardner gave a solution he calls Jabberwocky [3] which passes

2Run on a PC with a clock speed of 2.4 GHz and 8 GB of RAM.
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12 designing peg solitaire puzzles

through eleven intermediate positions with reflection symmetry about the y-axis
(type 7). On my web site [8] I show a solution to the central game which passes
through seven positions with diagonal reflection symmetry (type 6).

The 36-hole square board

This board is different because it does not have a central hole. Nonetheless,
it can be analyzed for symmetrical board positions using the same technique.
The smallest solvable board position with square symmetry is “four pegs in
the centre”, shown in Figure 7a, this board position defines “position class A”.
Figure 6 shows the three possible patterns for finishing holes, crucially their
symmetry types are the same as those in Figure 3.

C

A A

A A

B B

B B

C C

C

Figure 6: The three possible patterns for finishing holes on the square 6 × 6
board.

Theorem 1 is valid on this board (except for the part about being “solvable
to the centre”). Symmetrical board positions may be calculated by playing
backwards, and Table 2 (right column) includes totals for each symmetry type.
Four examples of symmetrical board positions on the 36-hole square board are
shown in Figure 7. Unfortunately, most symmetrical board positions are easy
to solve, because an obvious sequence of symmetrical jumps reduces them to
“four pegs in the centre”. Figure 7b-d show three of the harder examples where
this is not possible.

15 pegs, type 64 pegs, type 1 16 pegs, type 2 16 pegs, type 4

Figure 7: Sample solvable 6× 6 boards with various symmetry types.
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The 37-hole hexagon board

We now repeat the analysis of symmetrical board positions for the 37-hole
hexagon board. We need to be aware of several important differences. First, the
symmetries are subgroups ofD12, the dihedral group of order 12 (the symmetries
of the regular hexagon). There are nine possible symmetries, shown in Table 3.

Position
Type Symmetry description Order class Count Examples
1 hexagonal symmetry 12 A 20 Fig. 8a
2 60◦ rotation 6 A 14 Fig. 1c
3 120◦ rot. & orth. refl. (y-axis) 6 A 30 Fig. 8b
4 120◦ rot. & diag. refl. (x-axis) 6 A 87 Fig. 8c
4 120◦ rot. & diag. refl. (x-axis) 6 B 185 Fig. 8d
5 both x-axis and y-axis refl. 4 A 1,438 Fig. 9c
6 120◦ rotation 3 A 330
6 120◦ rotation 3 B 754 Fig. 9b
7 180◦ rotation 2 A 34,894
8 one orthogonal refl. (y-axis) 2 A 219,295 Fig. 9d
9 one diagonal refl. (x-axis) 2 A 436,697
9 one diagonal refl. (x-axis) 2 B n/c

Table 3: The nine possible symmetries for a board position on the 37-hole
hexagon. “n/c” means not calculated.

We now consider the symmetry of the two possible patterns for finishing pegs
on the board, shown in Figure 4. Position class A has hexagonal symmetry, and
position class B (and C) have type 4 symmetry (120◦ rotation plus reflection
about the x-axis), as well as the “sub-symmetries” type 6 and 9. The same
argument as before leads to:

Theorem 3. On the 37-hole hexagon board, if a board position is solvable and

has symmetry type 1-3, 5, 7 or 8, then it lies in position class A.

Another difference is that when the board is solvable and in position class A, it
may not be solvable to the centre (as in Figure 1c). Therefore, when we initialize
the set B1, we need to start with three board positions with one peg missing at
each of the bold A’s in Figure 4a. The calculation of all Bn for position class A
is time consuming, taking about a week of CPU time and 20 GB of disk space.
The largest set Bn in this case is |B19| = 364, 696, 466, and the binary search
tree containing it is too large to fit into memory on my machine. The calculation
therefore has to be split into pieces, which increases the computation time.

Figures 8 and 9 show seven board positions obtained from these calculations,
with board counts given in Table 3 and Javascript web program for types 1-4 here
[12]. Note that Figure 8d and Figure 9b show board positions in position class
B. All other board positions shown in this document are in position class A. The
board positions in Figure 9c and d were selected because they are particularly
difficult to solve.
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14 designing peg solitaire puzzles

12 pegs, type 4 (B)25 pegs, type 1 18 pegs, type 3 10 pegs, type 4

Figure 8: Sample solvable hexagon boards with an assortment of symmetry
types.

11 pegs, type 8

12 3 4 5 11
11 6 1 2 6 12

10 5 2 0 1 3 7
9 4 1 2 4 8

8 3 6 5 9
7 12 11 10

9 pegs, type 6 (B) 15 pegs, type 5

7 8 9 10

Figure 9: A template for 120◦ symmetry, and more sample solvable hexagon
boards.

To complete all entries in Table 3 for position class B would require a second run,
even more time consuming than the first. For position class B and symmetry
types 4 and 6, we used a different technique. All board positions with 120◦

symmetry can be obtained by mapping every 13-bit binary integer to the board
in Figure 9a, where a peg is present at location i iff the i’th bit is set. We
can then exhaustively attempt to solve each board, one by one, to derive a
complete list of solvable boards by position class and symmetry type (1-4 or 6).
This technique is reasonable when the total number of boards is under a few
thousand, and it gives us a way to double check our results (at least for types
1-4 and 6).

Board positions with a unique winning jump

Many of the symmetrical board positions found in the previous section tend to
be easy to solve by hand. The problems shown in Figures 5-9 are not typical,
they are some of the harder problems. Often, it is possible to make a few
symmetrical jumps which reduce the pattern to a smaller symmetrical pattern
which has been solved previously.

At any initial board position, a number of starting jumps are available. Often,
any starting jump can be executed, after which the board remains solvable.
But suppose we search specifically for initial positions where only one of the
starting jumps gives a solvable board position. It is not obvious that such
board positions exist, because during the English central game (for example)
most board positions have many possible jumps that can lead to a solution.

Fortunately, the sets Bn calculated in the last section are exactly what we need
to search for these “unique winning jump” board positions. Consider a board
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George I. Bell 15

position b ∈ Bn. We are looking for b’s where only a single jump ends at a
solvable board position. We can execute jump k on b, producing the board
position bk. bk is solvable if and only if bk ∈ Bn−1.

In order to find a puzzle which is “difficult”, the number of dead ends should be
large, this suggests we want a large number of starting jumps. It would seem
that the most difficult n-peg initial positions are those which

1. Have a single winning jump, and

2. Have as many starting jumps as possible.

24 pegs, 12 jumps6 pegs, 7 jumps 12 pegs, 13 jumps 17 pegs, 17 jumps

Figure 10: English puzzles with a unique winning jump. Under each diagram
is the number of pegs and the total number of starting jumps. Playable on the
web at [13].

13 pegs, type 521 pegs, type 4 17 pegs, type 7 12 pegs, type 2

Figure 11: French puzzles with a unique winning jump. Playable on the web at
[14].

24 pegs, 12 jumps7 pegs, 12 jumps 11 pegs, 18 jumps 16 pegs, 21 jumps

Figure 12: Hexagonal puzzles with a unique winning jump. Playable on the web
at [15].

Table 4 summarizes the results of these calculations, and Figures 10-12 show
example board positions calculated using this strategy. All of these puzzles can
be played on my Javascript programs [13, 14, 15] (the programs can also display
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16 designing peg solitaire puzzles

English board French board hexagon board
n (pegs) max jumps count max jumps count max jumps count

4 4 2 4 3 6 6
5 7 1 7 1 10 2
6 7 2† 8 1 10 26
7 9 2 10 1 12 10†
8 9 4 10 1 14 6
9 11 1 12 1 16 2
10 12 1 13 1† 18 1
11 12 2 14 2 18 3†
12 13 4† 16 1† 20 1
13 14 1 17 1 20 1
14 14 4 16 4 22 1
15 15 1 17 2 21 2
16 15 1 19 1 21 2†
17 17 1† 19 2† 22 1
18 15 2 18 4 22 1
19 15 2 21 1 20 1
20 14 3 19 1 18 3
21 13 3 18 5 17 1
22 14 1 20 1† 16 2
23 11 6 18 1 13 1
24 12 1† 18 2 12 1†
25 10 1 17 1
26 7 3 17 1
27 6 2 16 1
28 13 1
29 11 1
30 10 3
31 6 1
32 8 1

Table 4: A summary of board positions with a unique winning jump by pegs
and maximum starting jumps, for each of the three board types. †: case appears
in Figures 10-12.

solutions). We note that for a particular board and number of pegs n, there
is sometimes a unique board position with as many jumps as possible and one
winning jump. When an entry in Table 4 is blank, this indicates there are no
n-peg board positions with a unique winning jump.
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These puzzles tend to be challenging to solve by hand, particularly as they
become larger. As an aid to the solver, we have identified the first peg to jump
in red for the larger board positions.

If some jump is a winner on a symmetrical board position, then the symmetrical
partners of this jump are also winners. Thus, board positions with a unique
winning jump tend to have no symmetry. The only exception would be a board
position with a single reflection symmetry, it could have a single winning jump
along the axis of reflection. We have found a few examples like this, but none
with the maximum number of jumps.

These puzzles have an entirely different character from the symmetrical puzzles
in the last section. The fact that there is a unique winning jump can be used
to help solve these puzzles. After the first jump is executed, any jump which
could have been executed first must still be a dead end. The second jump can
only be a jump which was opened up by the first jump, and so on. Sometimes,
if you can identify the first jump, the rest of the solution follows more easily.

While the first jump of a solution is unique, subsequent jumps can often be
executed in either order, or the final jump can go in either direction, so the
solution is not unique. However, a few of these puzzles do have a unique solution,
which is quite rare in peg solitaire. An example is Figure 12c—there is only one
sequence of jumps which solves this puzzle.

When the number of pegs is relatively small (say, under 13), the board may
not limit the jumping possibilities. We can often translate the pattern of pegs,
and this gives a solution which is counted as different. This effect is responsible
for the large counts on the hexagonal board (26 solutions with 6 pegs and 10
jumps), this is not 26 different solutions but a few solutions translated. These
board positions with less than 13 pegs can be considered as puzzles on an infinite
board. These puzzles retain the property that the number of starting jumps is
large, and there is a unique winning jump. As the puzzles become larger, on an
infinite board the unique winning jump property tends to be lost.

Finally, we note that all these unique winning jump puzzles were calculated
using position class A. Since symmetry plays no role here, there is no reason
why we could not use position class B or C. This would produce a whole new
set of problems with a unique winning jump, and Table 4 would be different for
each position class.

Summary

We have presented two different strategies for creating peg solitaire puzzles.
The first searches for solvable symmetric positions, while the second identifies
solvable positions with a unique winning jump. The two strategies don’t seem
to have anything in common, but they can both be calculated using the sets of
board positions Bn obtained by playing the game backwards.
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18 designing peg solitaire puzzles

The central game on the English board is an attractive puzzle because it begins
and ends at positions with square symmetry, but in between symmetry is lost,
and by Theorem 2 symmetry is not possible (except for reflection symmetry).
For a good puzzle, it is desirable that symmetry is not possible in the middle, for
symmetric intermediate positions often indicate an easy solution where jumps
are repeated in a symmetrical fashion. We have identified all solvable symmetric
board positions (of most types), both on a square a triangular grid. Many of
these make nice puzzles to solve by hand.

The “unique winning jump” puzzles have a completely different feel—they lack
symmetry and are much harder to solve. The fact that they have a unique
winning jump can be exploited by crafty solvers.

Any solvable board position presented above is also solvable when considered on
an infinite board. This means that in some sense these puzzles exist
independently of any particular board. We saw in going from the English
to French board that additional puzzles were found that were solvable on the
French board but not on the English board (Figure 5c). Similarly, in going from
the French board to an infinite board, we would expect additional problems
solvable only on a sufficiently large board. Searching for all n-peg symmetric or
unique winning jump puzzles on an infinite board is an interesting computational
challenge.
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