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Abstract: In contrast to traditional toy tracks, a patented system allows the
creation of a large number of tracks with a minimal number of pieces, and
whose loops always close properly. These circuits strongly resemble traditional
self-avoiding polygons (whose explicit enumeration has not yet been resolved for
an arbitrary number of squares) yet there are numerous differences, notably
the fact that the geometric constraints are different than those of self-avoiding
polygons. We present the methodology allowing the construction and enumeration
of all of the possible tracks containing a given number of pieces. For small
numbers of pieces, the exact enumeration will be treated. For greater numbers
of pieces, only an estimation will be offered. In the latter case, a randomly
construction of circuits is also given. We will give some routes for generalizations
for similar problems.

Keywords: closed paths, toy tracks, combinatorics, exact and asymptotic
enumeration.

Introduction

Children’s tracks have existed for a long time, and allow the transportation of
small wooden trains, as well as cars or model trains. Today there are tracks
formed of a very large number of different pieces, i.e. larger than ten. This large
number of pieces is interesting, as it allows the production of different circuits
from the same set of pieces. On the other hand, due to this large number of
different pieces, there are also numerous situations where it is not possible to
simply connect the two extremities so as to close the circuit. In certain cases this
is simply not possible. Often, the circuits offered demonstrate some play, to a
greater or lesser extent, which allows the creation of large circuits. This play, of
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6 circuits capable of guiding a miniature vehicle

a geometric origin, is taken into account in the pieces constituting these circuits.
For example, the (mortise and tenon) connecting parts of Brio ® track pieces
allow them to move very slightly with respect to each other. Model train tracks
can be slightly deformed in order to close the circuit. The accumulation of this
play indeed allows the closure of the constructed circuit, however the play often
renders it difficult to close the circuit and, if it does close, it is also possible that
the resulting discontinuity derails the miniature vehicles which use these circuits.

The patented system Easyloop aims to overcome these drawbacks by offering a
circuit or a set of guiding pieces which

� allows the realization of a large number of closed circuits from the same
set of pieces,

� uses a minimum of different guide pieces,

� guarantees that it is always possible to simply close the circuit.

The play between the pieces of this system will be strictly zero, in contrast with
traditional systems, allowing a perfect fit of circuit loops. The manufacturing
will nonetheless provide a very small play, allowing the pieces to be connected
to each other by mortise and tenon joints. Typically, this system concerns
the domain of train tracks for children, though it may equally concern that of
circuits for small cars and the like.

The construction of the pieces of the circuits, which has led to a patent [1, 2], is
not the subject of this article, though it is briefly recalled in Section 2. We note
however that, from a pedagogical and didactic point of view, the construction of
these circuits has been the subject of various presentations to different audiences,
from the general public, to high school students, to a informal seminar for
final-year undergraduates to doctoral students (see [3, 4]).

These circuits employ various notions of geometry, spanning the curricula of
middle and high school up to undergraduate studies (Pythagoras’ theorem,
tangents, circles, parabolas, Bézier curves, radii of curvature, tessellation and
enumerative combinatorics), which may be brought up in a distinguished way,
and adapted to the relevant public. A collaboration is planned with Nicolas
Pelay from the Plaisir Maths association and we will try together to promote
the game on it’s pedagogical and didactic aspect.

The initial motivation of the work presented here was a question asked by a
manufacturer: “Is it possible to tally all of the circuits which can be realized
from a given number of pieces?” The objective of this article is to attempt to
respond to this question. We will present in Section 3 the methodology allowing
the construction and enumeration of all of the possible circuits containing a
given number of pieces. For greater numbers of pieces, only an estimation will
be offered (Section 4). In the latter case, a randomly construction of circuits is
also given (Section 5). We will give some routes for generalizations in Section 6.

All of the algorithms presented in this article have been implemented
computationally and have allowed the determination of the different circuits
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presented, as well as their to-scale depiction. Four executables (distributed
for Windows only) and a documentation in French allowing the installation of
graphical libraries, the creation of circuits in a manual or random manner, and
the drawing of the circuits are available on the internet at given in Appendix 8.

Two catalogues have been created in a totally automatic manner; see Appendix 8.

Principles of the patented system

Construction of the basic curves

The principle of this system is to define a path Γ in R2, and of class C1, which
ensures continuity between two successive pieces of the circuit, as well as their
good fit. Let N be any non-zero natural number. Two fundamental ideas are
used:

� We consider a set of squares Ci, 1 6 i 6 N each belonging to a square
tiling of the plane. The side of each square is defined by

L0 = 1. (1)

We will then assume, without loss of generality, that the coordinates of
the centers of the squares Ci are integers. Each square contains a part of
the path Γ, and the intersection of a square Ci with Γ is denoted Γi.

� For each of the squares Ci, the curve Γi must satisfy the following constraints:

– it is contained within the square Ci,
– it begins on one vertex of the square, or in the middle of one side of

the square, at a point Ai, and ends on another vertex of the square,
or in the middle of another side, at a point Bi,

– it is tangent atAi and atBi to the straight lines connecting respectively
the center of the square to the points Ai and Bi.

Thus, the path Γ will be defined as the union of the curves (Γi)16i6N . For
1 6 i 6 N − 1, each of the squares Ci must have a unique vertex or side
in common with the neighboring square Ci+1. If i = N , then the same rule
applies for the squares C1 and CN . One may hence define the path Γ, from
the centers (ci)16i6N of the squares Ci with integer coordinates. This problem
is therefore very similar to the research into self-avoiding walks, described in
[15, 17], in the planar case, and also in the particular case where the origin and
the end are identical, i.e. the case of the self-avoiding polygons, described in
[5, 7, 8, 10, 13, 17]. Five essential differences distinguish the game’s circuits from
self-avoiding polygons. On the one hand, in [5, 7, 8, 10, 13, 17], while the squares
must necessarily be distinct, the Easyloop system allows two non-successive
squares to be confounded; we will return to this point in Section 3.4. On
the other hand, in [10, 17], two successive squares may only have one side in
common, in contrast with the Easyloop system. Furthermore, some additional
constraints due to the number of available pieces are to be considered in the
Easyloop system. It will only be necessary to keep circuits which are different
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8 circuits capable of guiding a miniature vehicle

up to an isometry. See Section 3.3. Finally, the number of pieces used in
self-avoiding polygons is necessarily even; in the case of an odd number of pieces,
no polygon exists, which is not the case for the circuits.

It now remains to define the geometry of each of the curves Γi. Let us fix
i ∈ {1, ..., N}. We call Hi, the set of eight points formed by the four middles
and the four vertices of the square Ci. To have a high number of circuits, we
seek all of the possible curves corresponding to all of the possible choices of pairs
of distinct points Ai and Bi in Hi, which represents, a priori, C2

8 = 28 cases.
However, the square possesses a group of isometries S leaving it invariant, of
cardinal 8, which reduces the number of possible curves to 6. We define 6 types
of curve in the following way:

� a first type, grouping together only the curves for which the points Ai and
Bi are the middles of two opposite sides of the square,

� a second type, grouping together only the curves for which the points Ai

and Bi are the middles of two adjacent sides of the square,

� a third type, grouping together only the curves for which the points Ai

and Bi are two diagonally opposite vertices of the square,

� a fourth type, grouping together only the curves for which the points Ai

and Bi are two immediately consecutive vertices of the square,

� a fifth type, grouping together only the curves for which the points Ai

and Bi are the middle of one side and a vertex of the opposite side of the
square,

� a sixth type, grouping together only the curves for which the points Ai

and Bi are the middle of one side and a vertex of the same side of the
square.

Such constraints still do not totally define the curves, but we now seek them in
the set of line segments or circular arcs, as in the world of the toy.

In Figure 1, the six types of curves are presented. The first and third types
contain only line segments of respective lengths 1 and

√
2 (Figures 1(a) and

1(c)). The second and fourth types contain only quarter-circles, with respective
radii 1/2 and

√
2/2 (Figures 1(b) and 1(d)). Finally, for the last two types, no

circular arcs exist. We therefore seek a solution, for example, in the form of a
parabola defined by two points Ai and Bi and the two associated tangents.

On may either determine the unique parabola thus defined, or equivalently,
determine the unique Bézier curve of order two, which is then defined by the
following control points: the point Ai, the center of the square ci and the point
Bi (Figures 1(e) and 1(f)).

One may refer to [4, 6, 9, 14, 16].
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(a) Form 1 (b) Form 2

(c) Form 3 (d) Form 4

(e) Form 5 (f) Form 5’

Figure 1: The six basic forms.

Acting on the 6 curves in Figure 1 with the group of 8 isometries S, one indeed
obtains the 28 possible curves of Figure 2(b). The sixth type in Figure 1(f)
will be eliminated in the following, since the corresponding piece has a radius
of curvature which is too small for the miniature vehicles to be able to ride
there (see Section 2.2), which reduces the number of possible paths to 20 (see
Figure 2(a)).

In this case, the rule “every curve linking any two distinct points in Hi” is to
be replaced by “every curve linking any two distinct non-neighboring points in
Hi”, which, as we will see in the following, nevertheless offers a large number of
circuits.
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10 circuits capable of guiding a miniature vehicle

(a) with 5 basic pieces

(b) with 6 basic pieces

Figure 2: The set of possible paths.

The curve Γ is of class C1; indeed, each of the curves Γi is of class C∞.
Furthermore, the union of all of these curves will be of class C1. By construction,
indeed, at the connecting points, which can only be vertices or middles of the
sides of squares, the curves are continuous (since they pass by the same start
and end points) and have a continuous derivative, since the tangents coincide.

The curves Γ obtained are of class C1, but not of class C2, due to the discontinuity
of the radius of curvature, in contrast with real rail and road networks. We note
however that this discontinuity is also present in the existing traditional systems,
constituted of straight-line and circular pieces of different radii of curvature.
On a mechanical level, this generates, for the miniature vehicle which takes
the circuit, a discontinuity of the normal acceleration (at constant velocity)
and of the steering angle of the wheels. These constraints, significant for real
vehicles, directly affect the comfort of the passenger and the wear induced on
the mechanical parts, but are not taken into account in the domain of games.
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Indeed, the masses and the velocities of the vehicles are very low, and therefore
the shocks due to the discontinuity of the normal acceleration are negligible.
Moreover, the notion of the comfort of the passenger has no meaning here.
Finally, the wheels of the vehicles may be subjected to a discontinuity of the
steering angle since they exhibit a slight play with respect to the chassis.

Construction of the pieces

Once the path Γ has been constructed, it remains to define the different types
of tracks constituting the circuit. Each of the types of track will be defined from
one of the five types of curves defined above.

� These curves constitute the midline of each of the types of piece.

� The wheel passages are defined as two curves at a constant distance from
this middle curve, i.e: each point from one of these two curves is found
on a straight line perpendicular to the tangent of the midline at constant
distance from the middle curve. The edges of the tracks are defined in the
same way.

� The cross section of the piece is defined in a conventional way.

� Note that in [1], we specified that the half-width e/2 of the rail must be
less than the radius of curvature of the midline in order to avoid that,
at the considered point, the curve constructed at equal distance from the
midline does not feature a stationary point with a change in the direction
of the unit tangent vector. For the parabola in Figure 1(e), the minimal
radius is Rmin = 1, while for the parabola in Figure 1(f), the minimal

radius is Rmin =
√
5

25 . Thus, if we consider the curves in Figures1(a) to
1(e), the minimal radius of curvature is then

Rmin =
1

2
,

whereas if we consider the curves in Figures 1(a) to 1(f), the minimal
radius of curvature is then

Rmin =

√
5

25
.

In the first case, the width e of the rail is therefore strictly less than e0,
given by

e0 = 1, (2)

while in the second case, e0 is given by

e0 =
2
√
5

25
≈ 0.17889. (3)

The choice of a standard cross-section, compatible with Brio®-type vehicles,
corresponds to

e = 0.18349. (4)

Thus, for the curves in Figures 1(a) to 1(e), this choice of width allows us
to have no stationary points. On the other hand, for the curves in Figures
1(a) to 1(f), this choice of width presents a stationary point, as exhibited
by pieces 7 and 8 in Figure 4.
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12 circuits capable of guiding a miniature vehicle

� Finally, the connectors are mortise and tenon joints, designed such that
each track possesses one mortise and one tenon.

Piece-types 1 to 4 are symmetric: they possess a symmetry plane perpendicular
to the middle curve, and since the cross section is itself symmetric, it is therefore
sufficient to construct a single type of piece for each of these four types. On the
other hand, the type 5 piece isn’t symmetric, and the two extremities therefore
do not play the same role. In order to realize the circuit, it was therefore
necessary to construct two different pieces where the male and female connectors
are inverted.

Figure 3: The two pieces corresponding to the type 5 midline.

See Figure 3. The extremities of the pieces may be either middles of side or
vertices, and it was necessary to mark on the rails the extremities corresponding
to vertices, which was done using a yellow dot, visible in Figure 3. This dot also
appears on all of the track designs which will be presented in this document.
The child which plays at assembling the pieces will therefore have this single
rule to obey: “only put pieces together if the two extremities of two contiguous
pieces have the same nature (simultaneous absence or presence of dots)”. This
rule is the only one to be obeyed in order to be able to make circuits which loop
properly!

Finally some prototypes were manufactured, of the type of those in Figure 3.
The theoretical squares shown with side of length given by (1) have all been
multiplied by a reference length given by

L = 21.8 cm, (5)

which is equal to the side of the basic square constituting the real tiling. The
pieces are henceforth numbered as indicated in Figure 4.
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1 2 3 4 5 6 7 8

Figure 4: The numbering of the parts.

Recall that pieces 7 and 8 present in theory in the circuit, were not produced in
practice, since they are too curved. The calculations presented in the following
can certainly take into account these two types of piece, but for simplicity we
will henceforth assume that only the first six types of piece are used. However,
the programs and algorithms described can also provide for the presence of these
two pieces. We give an actually manufactured circuit as an example in Figures 5
and 6.

1: 4, 2: 5, 3: 4, 4: 2, 5: 5, 6: 5
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Figure 5: An example track design.
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14 circuits capable of guiding a miniature vehicle

Figure 6: An example track created corresponding to the design in Figure 5.

2 2

1

22

1

(a) Circuit map representation

2 2

1

22

1

(b) Self-avoiding polygon

Figure 7: An example circuit.

In Figure 7, we have represented a track design, seen as a game map (Figure
7(a)) or as a self-avoiding polygon (Figure 7(b)), obtained by by joining the
centers ci. In this case, the circuit is a self-avoiding polygon in the classical
sense of the term.

In Figure 8, we have represented a track design seen as a game map (Figure
8(a)) or as a self-avoiding polygon (Figure 8(b)). The latter figure highlights the
essential differences which exist between our self-avoiding polygons and those
in the literature; ours allow successive squares to have a vertex in common, and
two different squares may be occupied by two different trajectory parts.
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(a) Circuit map representation
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(b) Self-avoiding polygon

Figure 8: An example circuit.
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16 circuits capable of guiding a miniature vehicle

Construction and enumeration of the circuits

Posing the problem

Recall the question which is of interest to the manufacturer: “Is it possible to
tally all of the circuits which can be realized from a given number of pieces?” For
1 6 j 6 6, we denote by Nj ∈ N ∪ {+∞} the number of pieces 1 to 6 available,
and by N the total number of pieces used, and we seek all of the circuits which
close containing exactly N pieces in all, and such that, for each type of piece,
the number of pieces used in less than Nj. We necessarily have

N 6

6
∑

j=1

Nj . (6)

The case Nj = +∞ corresponds to the case where the type of pieces concerned
is not a priori limited. However, the number of pieces of this type is necessarily
less than N .

A circuit is totally determined by the N centers (ci)16i6N of the squares. These
centers being given, it is therefore possible to determine, by taking the middles
of two successive centers, the coordinates of the points Ai and Bi for each
square, which correspond to the start and end of the curve Γi in square Ci.
Consideration of the mortises and tenons orients the circuit, and it is necessary
to consider this orientation for pieces 5 and 6. Let us choose an orientation of
the mortises and tenons (which amounts to orienting the circuit) in the following
way: if the circuit is traversed in increasing order of the square indices, 1, 2, . . . ,
then in each square, the first extremity of the piece corresponds to the female
connector and the second corresponds to the male one.

We denote by pi ∈ {1, ..., 6}, the type of piece concerned in square Ci. We
will write respectively Ai and Bi (elements of Hi), for the start of the curve Γi,
corresponding to the female connector, and the end of the curve Γi, corresponding
to the male connector. The number pi therefore depends only on the points Ai

and Bi. For example, if these two points are two successive vertices, the piece
is of type 4.

Another way to see this is to notice that each piece is totally determined by
the relative position of the square containing the previous piece and the one
containing the following piece, as well as the nature of the points Ai and Bi

(that is, being a vertex or middle). To this end, for i ∈ {2, ..., N − 1}, we
consider the angle

αi = ̂(−−−→ci−1ci,
−−−→cici+1) ∈ [0, 2π[. (7)

See Figure 9. If we let

∀i ∈ {2, ..., N − 1}, αi =
kiπ

4
, (8)

then the sole possible values of ki describe the set {0, 1, 2, 6, 7}.
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Ci−1

Ci

Ci+1

ci−1

ci

ci+1

αi

Figure 9: Each piece is defined by the two squares delimiting it and the square
to which it belongs.

The relations between these elements are given in Table 1. In Figure 9, the
example shows the case of a piece corresponding to ki = 1, that is, of type 6.

Ai Bi ki type of piece

middle middle 0 1
middle middle 2 or 6 2
vertex vertex 0 3
vertex vertex 2 or 6 4
middle vertex 1 or 7 5
vertex middle 1 or 7 6

Table 1: Piece numbers pi as a function of Ai, Bi and ki

Remark 1. In the case where ki 6= 0, the value of ki allows the determination
of the turning direction of the piece in question (right or left). For ki = 1 or
ki = 2, the piece turns towards the left, and for ki = 6 or ki = 7, it turns
towards the right. One may therefore also associate a sign to the numbers of the
curved pieces. Only the absolute value is important for counting of the different
types of piece, but we will see later that it may be necessary to keep this sign in
order to orient the direction in which this piece turns.
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18 circuits capable of guiding a miniature vehicle

Description of all circuits

Firstly, we describe the search for all circuits with N pieces for which the center
of the first piece is arbitrarily equal to the origin, and center of the last is given
by (x, y) ∈ Z2.

The second square, which is necessarily neighboring the origin, may be therefore
chosen among 8 possible squares. For each of these choices, one may choose
freely the values of ki, 2 6 i 6 N − 1 from {0, 1, 2, 6, 7}, which fixes the values
of ci, 1 6 i 6 N , as well as the values of the angles αi, 2 6 i 6 N − 1. We are
given, moreover, the first point A1 of the first curve (in H1) and the last point
BN of the last curve (in HN ). The point B2 is known; from this we deduce the
number of piece p1. Likewise, pN is known. For all i, 2 6 i 6 N−1, the natures
of all of the points Ai and Bi and the value of ki are known, from which we
deduce the value of pi using Table 1. Of all of the circuits thus defined, we will
keep only those corresponding to cN = (x, y).

Thus, by varying a certain number of independent parameters, we are capable of
enumerating all of the circuits, in a geometric (the determination of the ci) and
constitutive (determination of the pi) way, going from the origin to a given point.

If one now seeks all of the circuits which form a loop, one will similarly consider
the center of the first square to be arbitrarily equal to the origin. The last
square cN can only be one of the 8 neighbors of the first one. By symmetry and
rotation, one may simply choose cN ∈ {(1, 0), (1, 1)}. For each choice of cN , we
apply that which we have seen above to determine all of the circuits going from
the origin to cN . In this case, the vertices A1 and BN are necessarily known
and equal, since they will necessarily be the vertex or the common middle of
the first and last square. Note that one could also set, in a similar manner to
(7) and (8),

α1 = ̂(−−→cNc1,
−−→c1c2) ∈ [0, 2π[, (9a)

αN = ̂(−−−−−→cN−1cN ,−−→cNc1) ∈ [0, 2π[, (9b)

and

∀i ∈ {1, N}, αi =
kiπ

4
. (10)

We will keep only the circuits such that k1 and kN belong to the set {0, 1, 2, 6, 7}.
We hence deduce the values of the N integers (pi)16i6N . Finally, of all of these
circuits, we will keep only those for which the total number of each piece of each
type is less than Nj .

This method, based on a parameter sweep, obtained as the Cartesian product
of finite sets, is very costly in time, and is quickly limited for values of N
which are too large (we will return to this point in Section 3.6). In [5, 7, 8,
10, 11, 13, 17], there exist some much more subtle and parallelizable techniques
for the enumeration of all self-avoiding or polygons walks. However, we have
already pointed out in the introduction the essential differences between our
circuits and self-avoiding walks or polygons, which may render the use of the
methods from [11] ineffective here. Furthermore, the geometric trajectories of
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the circuits need to be determined in order to satisfy the constraint concerning
the Nj . These circuits will also need to undergo eliminations to take into account
the repetition of isometric circuits (see Section 3.3), as well as the satisfaction
of a local constraint, which is not that of self-avoiding walks or polygons (see
Section 3.4). Finally, we consider it important, in addition to counting all the
circuits, to present them all, for small values of N at least.

Consideration of the isometries

Let us begin by studying a simple example. We will choose a small value of N
without regard for the constraints imposed by Nj .

Example 2. If we plot all the feasible circuits with N = 5 pieces and Nj = +∞,
we obtain the 10 circuits in Figure 10. In this figure, one can in fact see two
different circuits repeating several times. In each of the two sets of circuits, one
finds the same circuit up to a direct isometry. Two circuits are isometric (this
isometry being direct) if and only if they both possess the same signed number of
pieces (see Remark 1), up to cyclic permutations and up to direction of travel.
We note that the total number of circuits examined equals 2000.

If we keep only those which are different, up to a direct isometry, we obtain
the 2 circuits in Figure 11. In this figure, one notices that the first circuit is
the image of the second under an indirect isometry. The numbers of the pieces
are identical, up to cyclic permutations and up to direction of travel. Moreover,
to take this indirect isometry into account, it is necessary to replace the signed
numbers of curved pieces with their opposites.

If we keep only those which are different up to an isometry, we obtain the unique
circuit in Figure 12.

More generally, we draw all the circuits obtained for N and Nj given .

A consideration of the direct isometries will result in the comparison of all of
the obtained circuits. If two among them possess the same signed numbers of
pieces, up to cyclic permutations, then one of the two will be eliminated.

Secondly, a consideration of the indirect isometries will be performed. Similarly,
if two circuits possess the same signed numbers of pieces, but which are opposite
(for the curved pieces), up to cyclic permutations, then one of the two will be
eliminated. To take all of the indirect isometries into account, it will also be
necessary to eliminate the circuits by also comparing the indices with
permutations of the type N , N − 1, ..., 2, 1, which amounts to considering
the traversal of the circuit in the opposite direction. In this case, one will
replace the signed number of pieces ±5 by ∓6 and vice-versa. The two pieces 5
and 6 are in effect identical; only the orientation changes. This elimination will
be legitimate if the number of available pieces of types 5 and 6 are identical, ,
which will always be true in the following (see Remark 3).
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Figure 10: All of the 10 circuits kept from the set of 2000 possible circuits.
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Figure 11: All of the 2 circuits kept from the set of 2000 possible circuits.
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Figure 12: The sole circuit kept from the set of 2000 possible circuits.

Remark 3. In the case of traditional self-avoiding polygons, the number of
squares is necessarily even, which is no longer true here. Nonetheless, we can
say that, in every circuit, the numbers of pieces of types 5 and 6 are equal.
Indeed, note that, from Table 1,

� the pieces of type 1, 2, 3 and 4 connect together two points of the same
nature (middles of sides or vertices of squares);

� the pieces of type 5 connect a middle to a vertex (in this order);

� the pieces of type 6 connect a vertex to a middle (in this order);

A circuit departs from a point and returns to the same point. All of the points
corresponding to the extremities of the pieces used in the circuit are either
vertices or middles. It follows that that there are as many pieces connecting
a middle to a vertex (in this order) as pieces connecting a vertex to a middle (in
this order). Otherwise, the point of departure would not be of the same nature
as the point of arrival.
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22 circuits capable of guiding a miniature vehicle

(a) Case where the two
midlines are necessarily secant:
Ka = {2}, Kb = {0, 4, 5, 6, 7}.

(b) Case where the two midlines are
necessarily disjoint.

Figure 13: Two pieces within a single square.

Remark 4. Note that, in the enumeration of traditional self-avoiding polygons,
only translations are taken into account in the isometries. Our enumeration
problem is therefore quite different to the one in the literature. In the case
where both notions coincide, this implies that the configurations that one will
obtain will be a priori less numerous than those in the literature.

Consideration of local constructibility constraints

In the research into self-avoiding walks and polygons, a very important additional
local constraint is considered: the squares must be pairwise distinct. Here, this
constraint isn’t imposed, since only the fact of being able to produce circuits
which are constructible with the real pieces counts. These constraints are not
exhibited by Example 2, since the small number of pieces considered does not
provide unconstructible circuits, but these constraints come up in larger circuits,
exemplified below.

First of all, it is necessary that, aside from each of the pairs of contiguous
pieces, which therefore have a unique extremity in common, none of the pieces
has an extremity in common with other pieces which aren’t contiguous. If this
extremity is a vertex, this criterion is easy to write, and is not detailed here. If
this extremity is a middle, and if two non-contiguous pieces have this extremity
in common, they necessarily belong to the same square, which is the case that
we now study.

Two pieces may belong to the same square on the condition that they are disjoint
(or have tangent edges).

We therefore take two pieces in the same square Ci, and we wish to verify that
they are disjoint. Several cases present themselves:

1. They have at least one extremity in common. In this case, they are not
disjoint.
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2. Their extremities are pairwise distinct.

(a) We denote by P1 = Ai and P2 = Bi (respectively P ′
1 and P ′

2) the
extremities of the first (respectively second) piece. The two points
P1 and P2 belong to the border ∂Ci of the square. They therefore
define two connected components (for the induced topology) denoted
Pa and Pb. If

(P ′
1 ∈ Pa and P ′

2 ∈ Pb) or (P
′
2 ∈ Pa and P ′

1 ∈ Pb), (11)

then the two vertices of the second piece are on both sides of the
midline of the first piece, and by continuity of the midlines, they
have a point in common and, necessarily, in this case, the two pieces
are not disjoint. Conversely, if (11) does not hold, one can show that
the midlines are necessarily disjoint (see case 2b).

Let us clarify this. We describe the location of the extremities P1

and P2 of the first piece by two integers, κ1 and κ2, in {0, ..., 7}
in the following way: if ~I designates the first vector of the chosen
orthonormal basis, and ci is the center of the square, then

̂
(

~I,
−−→
ciP1

)

=
κ1π

4
,

̂
(

~I,
−−→
ciP2

)

=
κ2π

4
.

Define κ′
1 and κ′

2 for the second piece. The set {0, ..., 7} can be
partitioned as follows: {0, ..., 7} = Ka ∪Kb ∪ {κ1} ∪ {κ2}, such that
all of the vertices corresponding to the indices of Ka (respectively
Kb) are consecutive in the square. Property (11) is equivalent to

(κ′
1 ∈ Ka and κ′

2 ∈ Kb) or (κ
′
2 ∈ Ka and κ′

1 ∈ Kb). (12)

If this holds, the two pieces are not disjoint. See, for example,
Figures 13(a) and 14(a), which illustrate this case.

(b) Let us now assume that (12) does not hold. In this case, κ′
1 and

κ′
2 both belong to either Ka or to Kb. If none of the pieces is

straight, the cardinality of Ka and Kb is necessarily in {1, 2} or in
{4, 5}. Thus, κ′

1 and κ′
2 cannot belong to the smaller set, and we are

necessarily in the case where the set of vertices contained between
the two extremities of the first piece and the set of vertices contained
between the two extremities of the second piece are disjoint. See for
example Figure 13(b), which illustrates this case. A Bézier curve is
necessarily included in the control polygon AiciBi. It is the same for
the midlines of the circular pieces. Thus, in this case, each of the
middle curves is included in two triangles which only have the center
ci of the square in common, through which none of the midlines pass
(since the straight midlines are not considered). This reasoning is
still valid if one of the midlines is straight. In short, in this case, the
midlines of the two pieces are disjoint.

It thus follows that, if the two pieces under consideration are coincident, we are
in case 1. Otherwise we are either in case 1 or 2a, in which the pieces are not
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24 circuits capable of guiding a miniature vehicle

(a) Case where the two midlines are
necessarily secant.

(b) Configuration where the distance
between the two midlines is the
smallest.

Figure 14: Two pieces within the same square.

disjoint. Finally, if we are in the last case, 2b, the midlines of the two pieces are
disjoint. In this case, if we write Γi and Γ′

i for the two curves (which are in the
same square), one may consider

δ =
√

inf
(M,M ′)∈Γi×∈Γ′

i

d2(M,M ′), (13)

where d(M,M ′) is the Euclidean distance between the points M and M ′. The
pair (M,M ′) describes a compact subset of R2 × R2 and d is continuous. This
lower bound exists and is necessarily attained at a pair of points (M0,M

′
0) of

Γi×Γ′
i. Since the two curves Γi and Γ′

i are disjoint, the number δ is necessarily
strictly positive. In addition, one can show that for every pair of curves Γi ×Γ′

i

which fall into in this case, the real number δ is necessarily attained at a
pair of points which cannot be at the edge of the square. In this case, since
(M,M ′) 7→ d2(M,M ′) is a differentiable function, its differential is zero there,
which results in the perpendicularity of the straight line (M0M

′
0) to the tangent

to the curve Γi (respectively Γ′
i) at the point M0 (respectively M ′

0).

Computationally, all of these properties have been verified by conducting a
sweep of all the possible pairs of curves Γi × Γ′

i, which represents 1600 cases to
study. We have determined the pair of curves which correspond to the smallest
possible distance δ, given by (in the case of a square of unit length):

δmin = 0.20711, (14)

which corresponds to the configuration in Figure 14(b). This expression equals

δmin =
1

2

(√
2− 1

)

. (15)
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By construction of the edges, and by the perpendicularity properties seen above,
at a constant distance equal to the half-width e/2 of the piece, two pieces will
be disjoint if and only if

δmin > e. (16)

The case δmin = e corresponds to the case where the edges of both rails
are tangent, and is still acceptable1. The choice of a standard cross-section,
compatible with the Brio®-type miniature vehicles, corresponds to e given by
(4). We therefore verify that (16) holds, which means that with the chosen
cross-section, every pair of curves which are not in the case where the midlines
necessarily cut across each other (case 1 or 2a), gives rise to a situation where
the two pieces are disjoint, as in the case indicated by Figure 14(b)). We note
that in the case where the smallest distance is attained, the smallest distance
between the two edges is given by δmin − e > 0, which (multiplying by the
reference length given by (5)) numerically gives:

ξ = (δmin − e)L = 0.51493 cm,

which is very small in the end, with respect to the value given by (5)!

By induction, the complete study where several pieces belong to the same square
has been implemented. Note that, for the values of N used in this article, there
not exist square containing more of three squares.

In the patent [1, 2], the inclusion of switches, bridges, and crossings was
considered; it suffices that these elements are also included in squares and
satisfy the principles of construction. In the first instance, only planar and
simple (without switches or crossings) pieces have been realised. For circuits
including other element than these, this study of local constraints will therefore
need to be reconsidered. See Section 6.2.

We conclude by two examples showing unconstructable and constructible circuits,
demonstrated computationally.

Example 5. In Figure 15(a), we chose three examples of non-disjoint pieces,
covering the three cases seen above. In contrast, in Figure 15(b), the circuit is
constructible with three squares in which two disjoint pieces appear each time.

1If the design of the pieces is perfect, as no imperfection is permitted. In practice therefore,
to be safe, one will prefer to choose δmin > e.
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1: 4, 2: 5, 3: 5, 4: 4, 5: 3, 6: 3
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(a) A
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circuit.
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(b) A constructible circuit.

Figure 15: Two circuits.

Adopted definitions

Definition 6 (perfectly looping walk). We will call a perfectly looping walk,
a path Γ of class C1 in R2, defined in Section 2.1. This path is defined up to
isometries, up to a cyclic permutations and up to direction of travel. In an abuse
of terminology, we will also call a perfectly looping walk that which allows us to
define the path Γ, i.e, any of:

� the sequence of the centres of the squares (ci)16i6N occupied by the path
Γ, satisfying all of the constraints given in Sections 3.2, 3.3 and 3.4, this
sequence being defined up to isometries, up to cyclic permutations and up
to direction of travel;

� the sequence of angles (αi)16i6N defined in Sections 3.1 and 3.2, this
sequence being defined up to multiplication by −1, up to cyclic permutations
and up to direction of travel;

� The sequence of signed piece numbers (pi)16i6N defined in Section 3.1,
this sequence being defined up to exchange of ±5 with ∓6, up to cyclic
permutations and up to direction of travel.

Note as well that a perfectly looping walk depends on Nj and on the width e
which, in this article, is chosen to be less than the critical width equal to the
maximum of e0 defined by (2) and δmin defined by (14) and (15). In the slightly
different case where e > e0, e must remain less than 1/2; in the latter case, the
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connection rules, given in Section 3.4, are to be modified, which is also taken
into account in the algorithms used. If we decide to include the pieces of types
7 and 8, e0 is then given by (3).

Definition 7 (circuit). In the remainder of this article, a circuit is therefore
the set of geometric pieces which is based on the geometric construction of a
perfectly looping walk.

Computational limitations and algorithmic complexity

In [11], the number of self-avoiding walks was able to be exactly determined up
to N = 71; the author obtained 4 190 893 020 903 935 054 619 120 005 916
paths! In [5], the number of self-avoiding polygons could be exactly determined
up to N = 130; the author obtains 17 076 613 429 289 025 223 970 687 974
244 417 384 681 143 572 320 polygons! Unfortunately, as noted above, these
parallelizable methods could not be implemented here. All of the algorithms
presented have been programmed in Matlab ®. Two versions were planned:
the first is vectorial (and therefore parallelizable), and avoids the use of loops,
which is relatively fast. However, the tables used are quickly of a significant
size, as well as the total number of circuits to be studied. Up to N = 9, these
calculations are possible. Beyond that, the memory size is too great. It is
necessary to move on to calculations with loops, which are much longer, but
which avoid the storage of large tables corresponding to possible circuits. Up to
N = 11, the calculations are reasonable. Beyond N = 11, the calculations were
not carried out.

The exhaustive enumeration of possible circuits makes use of Cartesian products
of finite sets, and is therefore of complexity O(AN ), which, in any case, limits
computer calculations in theory.

In [5, 7, 8, 10, 13, 17], an estimation of the number of self-avoiding polygons is
given for N → +∞:

q(N) ∼ AµNNγ−1, (17)

where µ is called the connective constant, γ a critical exponent and A a critical
amplitude. The proposed value of µ is the same as the one corresponding to
self-avoiding walks (see [10]):

µ ≈ 2.638. (18a)

The value of γ corresponding to square lattices is given by

γ − 1 ≈ −5

2
, (18b)

and finally, we have (see [10])

A ≈ 0.0795774715. (19)

The estimation (17) cannot be used here as is, since we have seen that the
search for self-avoiding walks and polygons is not identical. Nevertheless, we
will improperly use this approximation to evaluate the number of circuits for
larger values of N in Section 4.
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28 circuits capable of guiding a miniature vehicle

Some examples of the enumeration of circuits

We reconsider some examples similar to Example 2, by giving the circuits in the
sences of definitions 7 and 6.

Example 8. If we draw some of the feasible circuits with N = 8 pieces and
Nj = +∞, we obtain the 10 circuits in Figure 16. Note that Figures 16(a),
16(b) and 16(c) correspond to circuits which are used only the parts 1 et 2. We
shall return to these particular circuits.
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Figure 16: 10 of the 33 circuits retained from the set of 250000 possible circuits.
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Example 9. If we draw some of the feasible circuits with N = 11 pieces and
Nj = 4, we obtain the 10 circuits in Figure 17.

Comparison with traditional systems and the classical theory
of self-avoiding polygons (square tiling)

Traditional systems, such as Brio ®, offer a multitude of shapes of track pieces,
which are all circular or straight, but never parabolic. Naturally, one cannot
compare the studied circuits with these types of system, which do not offer
designs which can be varied, scaled and modulated at will. However, in some
such systems there exist in particular eighths of a circle, which assembled in
pairs gives a quarter-circle, whose radius is equal to one of the lengths of the
straight track pieces. In other words, the pieces of the studied systems numbered
1 and 2, used alone2, allow the creation of simple circuits which could be created
with the traditional systems. These circuits have straight pieces which can only
be perpendicular to each other. The forms are less varied and above all, the
number of possible circuits offered is much smaller than those of our system (see
Sections 3.9 and 4).

We now choose to show a circuit formed solely from pieces 1 and 2. We note that,
in this case, adjacent squares may only have one common side, and that this is
very close to the case of self-avoiding polygons, but pieces in the same square
may also coexist. We also note that the number of pieces used is necessarily
even, exactly in the case of self-avoiding polygons.

Example 10. We choose N = 8 pieces, Nj = +∞ if j ∈ {1, 2}, and zero
otherwise, and we draw all the feasible circuits with N = 8 pieces. We obtain
the 4 circuits in Figure 18. Note that we find naturally some of circuits with 8
pieces of Example 8 (see Figures 16(a), 16(b) and 16(c)).

Example 11. As in the example 10, we draw all the feasible circuits with N =
10 pieces. We obtain the 7 circuits in Figure 19.

2One may also consider pieces 3 and 4 which are homothetic to pieces 1 and 2 with the
ratio

√
2.
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Figure 17: 10 of the 753 circuits retained from the set of 31250000 possible
circuits.
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Figure 18: All of the 4 circuits kept from the set of 250000 possible circuits.
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Figure 19: All of the 7 circuits kept from the set of 6250000 possible circuits.
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Determination of the number of circuits

N Nj = +∞ Nj = 4

1 0 0
2 0 0
3 0 0
4 2 2
5 1 1
6 5 5
7 7 6
8 33 28
9 74 63

10 304 244
11 986 753

Table 2: Numbers of circuits corresponding to Nj = +∞ and Nj = 4

In Table 2 we give the numbers of circuits corresponding to Nj = +∞ et Nj = 4.
This last case corresponds to the distributed Easyloop boxes.

N Self-avoiding polygons traditional Brio system Easyloop system

4 1 1 2
5 0 0 1
6 2 1 5
7 0 0 6
8 7 4 28
9 0 0 63
10 28 7 244
11 0 0 753

Table 3: The numbers of self-avoiding polygons, the (non-zero) numbers of
circuits for traditional Brio system and the Easyloop system

Finally, in Table 3, the numbers of self-avoiding polygons, corresponding to a
square lattice (see [15, table p. 396]) or http://oeis.org/A002931/b002931.txt
and a comparison between traditional systems (see Section 3.8) and the Easyloop
system are proposed. For the Easyloop system, only the number of constructible
circuits up to an isometry is displayed. The number Nj equals 12 if j = 1, 2,
and zero otherwise.

Traditional circuits are very close to self-avoiding polygons, except for the
following two differences already mentioned above: the permitted isometries
are all the isometries of a square, and a square may be used multiple times by
the circuit. The common point is that for N odd, the number obtained is zero.

We draw the circuits obtained in examples 10 and 11 in the form of closed
polygons. See Figures 20 and 21 respectively.
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(a) (b) (c)

(d)

Figure 20: The 4 circuits with 8 pieces, drawn under polygons form.

(a) (b) (c)

(d) (e) (f)

(g)

Figure 21: The 7 circuits with 10 pieces, drawn under polygons form.
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� For N = 8 (see Figure 20), we obtain 4 traditional circuits and
7 self-avoiding polygons. As noted in http://oeis.org/A002931, the
7 self-avoiding polygons correspond to the 1, 2 and 4 rotations (by angle
π/2) of the circuits in Figures 20(a) 20(b) and 20(c) respectively. The
circuit in Figure 20(d) does not correspond to any self-avoiding polygon,
since one of the squares is occupied by two pieces. We have thus indeed
found 7 = 1 + 2 + 4.

� For N = 10 (see Figure 21), we obtain 7 traditional circuits and 28
self-avoiding polygons. In fact, the two circuits in Figures 21(a) and 21(b)
each provide, by 2 rotations (by angle π/2), 2 self-avoiding polygons. The
2 circuits in Figures 21(c) and 21(d) each provide, by 4 rotations (by
angle π/2) and one reflection, 8 self-avoiding polygons. The circuit in
Figure 21(e) provides, by one rotation (by angle π/2) and one reflection,
4 self-avoiding polygons. The circuit in Figure 21(g), provides, by 4
rotations (by angle π/2), 4 self-avoiding polygons. The circuit in Figure
21(f) does not correspond to any self-avoiding polygon, since one of the
squares is occupied by two pieces. We have thus indeed found 28 =
2× 2 + 2× 2× 4 + 4 + 4 self-avoiding polygons.

Estimation of the number of circuits with a
significant number of pieces

In the case where N is greater than 11, the calculations take too long, and
it is not possible to use the enumeration of the circuits. We use, with much
impropriety, the estimation given by (17), which comes from [17, 10, 13, 7, 8, 5].
We will take the number of circuits given in Section 3.9, and we will make use
of it to evaluate the constants A, µ and γ in formula (17). This evaluation is
replaced by an equality and the coefficients A, µ and γ are determined by solving
a least squares system, which becomes linear when we take the logarithm.

Nj = +∞ Nj = 4

γ − 1 −8.75998 −8.69817
µ 9.13739 8.69023

Table 4: The values of γ − 1 and µ obtained using Table 2.

Let us now estimate γ − 1 and µ using the different results from Table 2. See
Table 4. The obtained values are naturally different from the values given in
(18). This is normal since the estimation (17) has been replaced by an equality,
and naturally, nothing a priori validates this equality. We note that the signs
of the coefficients are consistent with those in the literature.

The retained values of the coefficients A, µ and γ − 1 in formula (17) in the
case of the Easyloop boxes, corresponding to Nj = 4, therefore correspond to
the last column in Table 4 and are given by

A = 4.5900 101, γ − 1 = −8.69817, µ = 8.69023. (20)
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In case (20), the estimated numbers of circuits are then
{0, 0, 0, 2, 2, 3, 8, 21, 65, 226, 857}, which is close to the exact numbers of circuits
({0, 0, 0, 2, 1, 5, 6, 28, 63, 244, 753}). For N = 24, we obtain

q(24) ≈ 1560511691458. (21)

We then obtain the curve shown in Figure 22.

To compare the Easyloop circuits with traditional systems, one obtain with the
same way

q(24) ≈ 130229, (22)

which is still much smaller than (21).
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Figure 22: Estimation of the number of circuits in the case Nj = 4.

Random construction of circuits with a large number
of pieces

For values ofN smaller than 11, we are capable of obtaining all of the constructible
circuits, and in particular to show them. Another objective of a manufacturer
would be to offer a catalogue of train-track designs which may contain circuits
with any N . Unfortunately, beyond N = 11, this is no longer conceivable.
Manual designs are possible, but tiresome, and non-programmable. We thus
propose in this section a way to automatically generate circuits for given N and
Nj for values larger than N = 11, without having to create all of the possible
circuits as proposed in Section 3.2, by relying on a random method.
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For a given N > 1, we consider r, s ∈ N∗ such that N = r + s. We are
capable of determining all of the circuits with r pieces starting from the origin
by describing a Cartesian product of finite sets. To avoid this long stage, we will
simply randomly choose q circuits by choosing the parameters in this Cartesian
product. For each of these circuits, the last square occupied by the last piece,
is not necessarily equal to the origin. We take R ∈ N∗ and we keep from
these circuits only those for which the absolute value of the abscissa and the
ordinate is less than R. For each of these retained circuits, we are capable
of determining all of the circuits with s pieces starting from the last square
and returning to the origin. We therefore consider all of the circuits obtained
by the concatenation of the circuits with r pieces going from the origin to
any square with the circuits with s pieces returning to the origin. Finally,
of these circuits, we keep only those for which they types of pieces are less
than Nj . We also apply the selection of the isometries and the constructibility
constraints. One has hence obtained a certain number of circuits constructible
with N pieces, without having had to to construct the Cartesian product of the
circuit parameters determining all of the possible circuits, whose cardinality is
too great. Naturally, to increase the chances of success, one must choose r, s, q
and R as large as possible. Computationally, it is necessary that these numbers
not be too great. The random determination will therefore consist of choosing
these parameters appropriately. One may create such circuits oneself using the
executables distributed for Windows, quoted on page 41.

Example 12. We choose Nj = 4 and the following parameters

r = 12, s = 5, q = 18, R = 8.

We obtain the random circuit with 17 pieces given in Figure 23.

We have obtained some circuits in a random way, being able to take values of
N strictly larger than 11, and, finally, in a much shorter time.

Generalizations

Shape of the tiling

We have seen that for a square tiling, the number of curves necessary to connect
each point ofHi to every other distinct point in Hi was equal to 5 or 6, according
to whether or not one takes the pieces numbered 7 and 8. This number depends
intrinsically on the number of points in Hi and on the cardinality of the group
of the isometries leaving the square invariant.

The question arises whether or not the method of constructing the rails of the
studied circuits can be applied to types of tiling other than the square, and if
one is capable of determining the number of basic curves, here equal to 5 or
6, uniquely from the tiling and the points Hi considered. This generalization
is also mentioned for self-avoiding walks in [12], which is a simpler case since
the circuits may only follow the edges of the tiles constituting the tiling of the
plane.
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1: 4, 2: 3, 3: 1, 4: 3, 5: 3, 6: 3
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Figure 23: A random circuit with 17 pieces.

(a) : with the 3 middles (b) : with the 3 middles and the 3 vertices

Figure 24: Other possible tilings: the equilateral triangle

For example, one may consider tiling the plane with equilateral triangles, taking
only the 3 middles of the 3 sides (see Figure 24(a)) or the 3 middles and the
3 vertices of the triangle (see Figure 24(b)). We impose that the curve passes
through two distinct points of this set Hi, while being tangent to the straight
line connecting this point with the center of the triangle. In the first case, a
single curve is necessary, while in the second, 3 are. Other solutions can be
envisaged, with other types of possible tilings.
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Can the number of necessary curves be expressed as a function of the tiling
polygon and the nature of the points Hi? The enumeration of circuits,
constructed using these methods, seems once again to be an open problem.

Presence of switches

We keep to the case of square tiling. As described earlier, if the presence of
switches is not anticipated, the pieces of circuits must not have extremities in
common. One can, on the contrary, allow certain extremities be common to
several pieces, which simply corresponds to allowing switches.
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Figure 25: An example track design with 2 switches

In this case, the oriented circuits may contain several loops, which makes them
directed graphs, whose enumeration is a much more arduous problem due to the
multiplicity of the types of possible switches and therefore the types of possible
graphs. See Figure 25, which shows an example of a circuit with switches.

Conclusion

The question “Is it possible to tally all of the circuits which can be realized from
a given number of pieces?” is simple to express, and more difficult to resolve.
We have succeeded in this article: the enumeration and the construction of such
circuits is possible and have been implemented computationally up to N = 11.
Beyond that, an estimation of the number of possible circuits has been provided
(see (21), corresponding to the case Nj = 4, and (22)). We note that these
numbers correspond to the number of circuits which contain exactly 24 pieces.
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If we want to tally all of the circuits which contain at most 24 pieces, it is
sufficient to sum the last column in Table 2, which gives 1102 circuits, then to
apply the estimation forN varying from 12 to 24, with the estimated parameters
given by (20), which gives in total

1873804310490, (23)

that is, a total of more than

one trillon feasible circuits with 24 pieces. (24)

In addition, a random circuit construction has been offered, allowing values of
N strictly larger than N = 11 to be obtained. Some executables and a catalogue
of circuits are available online.

1: 4, 2: 4, 3: 4, 4: 4, 5: 4, 6: 4
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Figure 26: An example track design with 24 pieces.

Finally, we note that one circuit corresponding toNj = 4, and containing exactly
the maximum number of pieces (24) has been created by hand. See Figures 26.

It is interesting that the traditional theory of self-avoiding paths corresponds
almost to existing trains circuits (see Section 3.8) while the patend studied
system corresponds to the notion of perfectly looping walk.

It remains to improve the circuit enumeration algorithms to obtain higher values
of N , in the deterministic case, by trying, for example, to avoid the very
long enumeration of possible circuits; is a direct construction of constructible
circuits possible, without going through this enumeration? An application of
the parallelizable techniques proposed by G. Slade, I. Jensen, or A. J. Guttmann
might be tried on the circuits in order to increase the values of N for which the
circuit enumerations are exact.
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It would be interesting to prove if estimation (17) is valid, with an eventual
calculation of the constants A, µ and γ. The generalization raised in Section 6
allows the creation of other types of circuits, but also an attempt to understand
the algebraic nature of the system proposed with squares.

URLs of softwares and catalogues available on

Internet

http://utbmjb.chez-alice.fr/recherche/brevet_rail/MCRInstaller.exe

http://utbmjb.chez-alice.fr/recherche/brevet_rail/creecircuit.exe

http://utbmjb.chez-alice.fr/recherche/brevet_rail/creecircuitaleat.exe

http://utbmjb.chez-alice.fr/recherche/brevet_rail/dessinecircuit.exe

http://utbmjb.chez-alice.fr/recherche/brevet_rail/mode_emploi_rail_demo.pdf

http://utbmjb.chez-alice.fr/recherche/brevet_rail/catalogue.pdf

http://utbmjb.chez-alice.fr/recherche/brevet_rail/catalogue_exhaustif_11rails.pdf
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à guider un véhicule miniature]”, Patent WO2013171170, University Lyon
I, May 13, 2013.
http://bases-brevets.inpi.fr/fr/document/WO2013171170.html?p=6&s=1423127405077&cHash=6947975351b6d1cf7dd56d4e749a98bb

[3] Bastien, J. Comment concevoir un circuit de train miniature qui se reboucle
toujours bien?, Transparents présentés lors du Forum des mathématiques
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preparing the CAPES mathematics.
http://www.math.u-psud.fr/~perrin/CAPES/geometrie/BezierDP.pdf

[17] G. Slade. “The self-avoiding walk: a brief survey”, in Surveys in
stochastic processes. EMS Ser. Congr. Rep. Eur. Math. Soc., 181–199,
doi: 10.4171/072-1/9, Zürich, 2011.

Recreational Mathematics Magazine, Number 6, pp. 5–42
DOI 10.1515/rmm–2016–0006

http://www.asiapacific-mathnews.com/02/0204/0001_0010.pdf
http://www.math.u-psud.fr/~perrin/CAPES/geometrie/BezierDP.pdf

